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ABSTRACT

 In this study, to analyze the biomedical signals emerging from fractal structures in the human body, fractal analysis was used. Respiratory signals, such 
as airflow, mouth pressure, and lung volume, comprise a complex relationship that has not been inspected to date. Furthermore, the mechanism for 
which it is linked to the lung’s fractal structure has not been scrutinized to date. Thus, using a well-known method, known as multifractal detrended 
fluctuation analysis (MF-DFA), this study aims to determine both mono- and multi-fractal property of respiratory signals ,. The real signals were analyzed 
using the MF-DFA algorithm. Moreover, for different scales, generalized Hurst exponent values were calculated. The results demonstrated that respiratory 
signals are fractional Brown motion-type signals, whereas fractal properties demonstrate less intersubject change. Moreover, in addition to both airflow 
and lung volume, respiratory signals and sounds are multifractal signals. In conclusion, the presence of the lung’s long-memory property is the primary 
reason of multifractality.
Keywords: Generalized Hurst exponent, monofractal, multifractal, respiratory signals

Introduction

Fractal behavior is a scaling symmetry that defines a physical phenomenon’s behavior. In a 
time series, this symmetry demonstrates as a statistical self-similarity at mulitple scales. At 
such time scales, statistically self-similar indicates that aspects of the time series demonstrate 
the same statistical properties. To obtain statistical self-similarity in a time series x(t), the scal-
ing time t using a factor of α may require scaling the values of x(t) by a αH factor. In the scaling 
relation x(t) → αH x(at), H is known as the Hurst exponent. Moreover, it defines the type of 
self-similarity, e.g., if x(t) is a trace of a Brownian motion defined by H = 0.5, the scaling time 
axis by a factor of four scales the signal by a factor of two. However, multiple time series do 
not exhibit the monofractal scaling behavior, in which a single scaling exponent is sufficient 
to describe the system’s dynamics. For these cases, to define the scaling behavior, a multitude 
or an infinite number of scaling exponents must be used. Consequently, a multifractal analysis 
must be applied.

Recently, researchers demonstrated that many of the encountered time series demonstrate 
both mono- and multi-fractal properties. Thus, for scrutinizing the complexities of the time 
series, fractal analysis may be an effective approach. In this respect, in the human body, fractal 
analysis has been used to analyze the biomedical signals emerging from fractal structures. 
For identifying the characteristics of the complexities in the human body, techniques, such 
as electrocardiography and heart rate [1], electroencephalography and nerve conduction [2], 
[3], biomedical imaging [4], and respiratory sounds [5], are the best candidates . In these stud-
ies, as a tool to discover the parameters or features to determine and classify ailments, fractal 
analysis has been used.

Moreover, the fractal structure of lungs has been proven using the anatomical and morpho-
logical structures and gas dynamics of lungs [6]. In [7], the lung’s fractal dimension was re-
ported to be 2.88 using the lung’s morphological structure. In both [5] and [8], respiratory 
sounds were shown to have information about the lung’s fractal structure. , Moroever, the 
fractal dimension was estimated using different methods. In [9], [10], and [11], to distinguish 
the normal and abnormal lung sounds for diagnosis, fractal dimension was used. Moreover, it 
was used to detect and filter out heart sounds covered in lung sounds [10, 12].

Airflow, mouth pressure, and lung volume have a complex relationship in the form of imped-
ance in electrical circuit models. However, how this complex relationship is linked to the lung’s 
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fractal structure has not been investigated to date. Therefore, 
the first step should be a complete understanding of the fractal 
properties of both respiratory signals and sounds, in which the 
correlation between the past, present, and future behaviors of 
signals is revealed. MFA explains the statistical properties of 
signals between the periods and within one period of the re-
spiratory signals. Thus, using multifactal detrended fluctuation 
analysis (MF-DFA), this study aims to determine the mono or 
multifractal property of the respiratory signals .

Method

In this work, we used MF-DFA originally proposed in [13] and 
the implementation discussed in [14] to investigate the mul-
tifractal properties of both respiratory sounds and signals. 
According to MF-DFA, let x[n] be a N point time series with 
Gaussian noise statistical properties. The steps comprising the 
method application are then summarized as follows:

Step 1: Computing the profile Yi by integrating the time series:

  (1)

where x  is the mean of x[n], and i=1,L, N. Basically, this step 
converts the statistical properties of time series from a Gauss-
ian noise-like signal to a random walk-like signal (discrete-time 
counterpart of Brownian motion) because the MF-DFA method 
works on random walk-like signals.

Step 2: Dividing the profile Yi into nonoverlapping scales of 
length s:

Using a rectangular window, profile Yi is divided into nonover-
lapping scales s ∈ Z+. Segment Yv (i) of Yi is then obtained for v 
= 1, L, 2Ns. The length N of Yi is not always an integer multiple 
of s; hence, Yi is divided into Ns = int(N/s) segments right from 
the beginning and the end of the sequence. The total number 
of the segments then becomes 2N.

Step 3: Computing the local trend for each segment using least 
squares fit:

An m th-order polynomial Yv(i) is then fitted to each segment 
Yv(i). Here, yv(i) is the m th-order polynomial fitted to the v th 
segment.

Step 4: Computing mean square fluctuations (variance):

This trend is removed in each segment v by subtracting the 
local trend Yv(i) from the vth original profile Yv(i). The mean 
square fluctuations are then computed.

  (2)

Step 5: Computing the qth-order fluctuation function:

  (3)

where q ∈ R is the order. The standard DFA procedure is ob-
tained if q = 2. We examined how Fq(s) changes based on dif-
ferent values of q with respect to s by repeating steps 2–5 for 
distinct values of s and q. In (3), Ns should be large; thus, s was 
forced to be sufficiently small to have statistically solid results. 
However, for the small s values, we may observe an overfitting 
in the polynomial curve fitting step. The literature recommends 
that s should change in the range of m+2 ≤s< N/4.

Step 6: Analyzing the scaling behavior of the q th-order fluctu-
ation function.

To determine the scaling behavior of the fluctuation functions 
and to investigate the relationship between the curves, Fq(s) is 
plotted versus scale s on a double logarithmic graph for select-
ed q orders. In particular, the slopes of the curves are evaluated 
in terms of resemblance.

Considerations for MF-DFA Analysis

Before using the abovementioned method proposed in Ref. 
[13], we should consider the following points:

1) If the original time series x[n] is long range power law cor-
related, then for large values of scale s, Fq(s) increases and 
is expressed as a power law as (4):

  (4)

 where h(q) is called a generalized Hurst exponent that is 
generally dependent on q. In a monofractal time series, 
h(q)is independent from q. Moreover, in a stationary time 
series, h(2) corresponds to the classical Hurst exponent.

2) If x[n] is a zero-mean and normalized time series with a 
statistical property of stationarity, Step 3 is skipped, and 
the variance in (2) is computed using the consecutive seg-
ments of Yv(i). This method corresponds to standard fluc-
tuation analysis.

  (5)

3) In Step 3, order m is selected using a trial and error meth-
od. For a biomedical time series, it generally changes in the 
range of 1 ≤ m <3.
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4) The generalized Hurst exponent will be significantly al-
tered by q if the small and large fluctuations are differently 
scaled. When one envisages the mean square fluctuations 
in (2) and the averaged fluctuation function in (3) for small 
time scale values s, the F2 (v, s) values computed for the 
segments with small fluctuations dominate the average 
value Fq (s) for q < 0. However, the F2 (v, s) values com-
puted for the segments with large fluctuations dominate 
Fq (s) for q < 0; thus, Fq>0(s) > Fq<0(s). If Fq(s) is assumed to 
have a homogenous scaling behavior because of (4), in the 
double logarithmic plot of Fq(s) versus s, the slope of h(q) 
for q < 0 will be greater than the slope of h(q) for q > 0, i.e., 
h(q < 0) < h(q > 0).

Data Collection and Preprocessing

We acquired 22 different respiratory signals and sounds from 
11 different subjects in the Department of Respiratory Medi-
cine at Koc University Hospital. Table 1 lists the acquired respi-
ratory signals and channel names. During data acquisition, the 
subjects were in an erect position and wore noise clips. They 
regularly inhaled and exhaled in a relaxed condition with a low 
flow for 60 s and in deep breath with a high flow for another 
60 s. The respiratory signals were then digitized using a sam-
pling frequency of 8000 Hz and a resolution of 16 bit using a 
commercial data acquisition (DAQ) card, and then stored in the 
computer. In the preprocessing step, discrete signals contain-
ing 480,000 sample points were separated into cycles compris-
ing both inspiration and expiration phases. No filtering was 
applied to preserve all components in the signal and maintain 
the statistical properties, which are sensitive to the filtering 
process.

Application of MF-DFA to Respiratory Signals and Sounds

MF-DFA is applicable to a time series having a random walk-
like structure. Therefore, before multifractal analysis, the sta-
tistical properties of respiratory signals and sounds should 
be assessed. In Step 1, the abovementioned method converts 
Gaussian noise-like signals to random walk-like signals. As ex-
plained in [14], the method computes the Hurst exponent h(2)  
for the signal. If h(2) <1, the signal is a Gaussian noise-like one; 
therefore, the abovementioned method is applied without any 
change. However, if the Hurst exponent h(2) >1, the signal is a 
random walk-like one. In this case, Step 1 is skipped, i.e., Yi = 
x[i], i = 1, L, N.

In each respiratory cycle, the number of samples varied be-
tween 9369 and 64180 samples. Thus, for the first analysis, 
where the fractal scaling properties are compared between 
breathing cycles, the time scale was changed from 64 ms (smin 
= 512 samples) to the quarter of the cycle length with a step 
size of 64 ms. For each cycle, the lengths N of the periods were 
different; thus, we had distinct numbers of segments 2N2 in 
Step 2. In the second analysis, where the fractal scaling prop-
erties were identified within the breathing cycle, a rectangu-
lar window with a length of 2048 sample divided the period 

into non-overlapped segments. In this case, the time scale 
was changed from 2 (smin = 16 samples) to 64 ms (smax = 512  
samples). The fractal analysis within one period yielded scaling 
properties comparable between inspiration and expiration or 
between different parts of the period.

In the literature, during the curve fitting step, orders m = 1, 2, 
and 3 were normally used, and the generalized Hurst exponent 
successfully revealed the scaling properties. In this study, m = 
1 was selected for all the simulations, and order q of the fluctu-
ation function changed over the range q = -10, L, 10, and the 
generalized Hurst exponent was calculated as explained in the 
Method section.

Results and Discussion

Figure 1 shows the Hurst exponent h(2) values in each chan-
nel for all subjects as a box plot. The average Hurst exponent 
values calculated over all periods for all subjects were used in 
the figure. As shown in the figure, the Hurst exponent values of 
the lung sounds in channels 1–7 were <1, whereas those of the 
respiratory signals were >1. This result indicates that the lung 
sounds were Gaussian noise-like signals that should be con-

Table 1. Acquired Respiratory Signals

Lung sounds
Ch. 1–6: lung sounds Multifractal

Ch. 7: tracheal sound Multifractal

Auxilary signals

Ch. 8: temperature of 
the breathing air

Multifractal

Ch. 9: humidity of the 
breathing air

Multifractal

Respiratory signals

Ch. 10: airflow Monofractal

Ch. 11: mouth pressure Multifractal

Ch. 12: lung volume Monofractal

Figure 1. Box plot chart of the Hurst exponent  h(2) for each
channel
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verted to random walk-like signals with the help of Step 1. Fur-
thermore, the Hurst exponents of the respiratory sounds were 
>0.5, which statistically indicates that the respiratory sound 
signals have considerable memory. The temperature of breath-
ing air, airflow, and lung volume signals in channels 8, 10, and 
12 were random walk-like signals because the Hurst exponent 
values were >1. In channels 9 and 11, the humidity of breathing 
air and the mouth pressure signals were at the border. Further-
more, for most subjects, these signals showed random walk-
like properties. However, for three (i.e., 10, 11, and 14) and four 
(i.e., 13, 14, 18, and 19) subjects, the humidity signal and the 
mouth pressure signal, respectively, were slightly <1, showing 
Gaussian noise-like properties. We demonstrated the results 
for only one patient in Figure 2 to investigate the deviations 
of the Hurst exponent values between periods in each channel 
for a chosen subject (Subject 22). The Hurst exponent values 
apparently demonstrated very minor differences between pe-
riods. Therefore, the Hurst exponent values between the pe-
riods did not supply the distinctive properties of the signals. 
Similar results were obtained from the other subjects’ Hurst 
exponent values.

The other interesting investigation aimed to explore the chang-
es in the Hurst exponent within each period. Figures 3a and 
b show the variation of the Hurst exponent calculated for the 
airflow and mouth pressure signals of Subject 22, respective-
ly. Here, to segment the periods, 1024 points nonoverlapped 
rectangular windows were used. As explained earlier, the Hurst 
exponent was calculated for each segment. On the same fig-
ure, the original signal was plotted to demonstrate changes 
via inspiration and expiration. First, the Hurst exponent was 
nearly constant at ~1 for both signals. This result was expected 
because the signals changed slowly. Moreover, no significant 
difference was reported between inspiration and expiration, 
indicating that raw respiratory sounds and signals did not 

demonstrate statistical differences between inspiration and ex-
piration in terms of fractal analysis. This result is very surprising 
because the dynamic relationship between these signals is dif-
ferent in both inspiration and expiration [15].

Finally, MFA was performed on the signals. Figures 4a and b 
show the first result from the analysis for Subject 22 and the 
fluctuation function Fq(s) with respect to time scale s on double 
logarithmic scale for airflow signal and tracheal sounds, respec-
tively. Figures 4a and b show the generalized Hurst exponent 
H(q) versus order q for the same signals. Figure 4a shows that 
solid lines are linear fits to the data points of Fq(s). The slopes 
of the lines for the orders q = -10, q = 0, and q = 10 are nearly 
constant (parallel lines). In other words, in this appointed scale 
range, the airflow signal has a monofractal scaling behavior . 
However, Figure 4b shows a multifractal scaling behavior of the 
tracheal sound signal. These results agree with those obtained 
from Figures 5a and b. in Figure 5a, the generalized Hurst ex-

Figure 2. Deviation of the Hurst exponent h(2) values between 
periods in each channel for Subject 22.

Figure 3. a, b. Variation of the Hurst exponent h(2) calculated for 
the a) airflow and b) mouth pressure signals for Subject 22
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ponent was clearly nearly independent from order q, which is 
the definition of monofractality. However, Figure 5b shows that 
the generalized Hurst exponent varied by order q, which is an 
indication of multifractality.

Table I shows the results for all channels. Furthermore, we ob-
served that similar results were obtained for all subjects and 
all periods. Thus, we confidently conclude that the multifrac-
tal behavior deviates only between the channels (signals) and 
does not change between the periods. However, the variations 
because of the pathological cases of the signals remain to be 
further analyzed.

Conclusion

In this study, to reveal the fractal scaling properties of the re-
spiratory sounds and signals, we successfully used MF-DFA 
proposed in the literature. The fractal scaling properties are as-
sociated with statistical properties of signals; hence, the results 
provided valuable information about statistical nature of sig-

nals. The respiratory system is well known to possess a fractal 
geometry, which facilitates signals having fractal scaling prop-
erties. However, a detailed monofractal vs multifractal analysis 
was performed, and the results demonstrated both respiratory 
sounds and signals are generally multifractal signals, except for 
the airflow and the lung volume. During respiratory tests, the 
probability density function of multifractal signals is scale vari-
ant, and this result is very significant because while diagnosing 
respiratory diseases, , airway resistance and lung compliance 
are estimated using acquired respiratory signals and lung mod-
els. This method of identifying respiratory parameters requires 
a stationary relationship between signals. However, both the 
multifractal property of the mouth pressure and the monofrac-
tal property of the airflow indicate that a statistically dynam-
ic relationship exists between signals. For this purpose, one 
should consider the productive connection between respira-
tory signals and respiratory system to search for parameters or 
features for diagnosis.

Figure 4. a, b. Fluctuation function Fq(s) with respect to time 
scale s on the double logarithmic scale for the a) airflow signal 
and b) tracheal sounds

Figure 5. a, b. Generalized Hurst exponent h(q) with respect to 
order q for the a) airflow signal and b) tracheal sounds
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