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In Section II, it is mentioned that the total power loss is 238.5 W. 
The summation of TECL obtained with fine mesh and TECL of 
the coils is 233.06 W. This value is nearly 2% discrepant from the 
experimental data. Accordingly, simulations and experiments 
show good agreement in the electrical domain. The temperature 
difference between the CFD analysis and the first experiment set 

is 17.8% in maximum. In the second set, higher temperatures were 
measured except for the third measurement point. Therefore, the 
temperature difference between the CFD analysis and the second 
experiment set is 20.6% in maximum. In the conference proceed-
ing [14], heating caused by windings of the CTs was omitted and 
the temperature difference between experiment and simulation 

Fig. 13. Velocity distribution of the computational model (mid-section view).

Fig. 14. Velocity gradient in the boundary layer.
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was about 26%. Implementing these heat sources to the system 
had a positive effect on the results. The calculated temperature 
values are in better agreement with the temperatures measured 
in the experiments, especially near the CTs. The main reason for 

the discrepancy between the temperature rise experiment sets 
is the lack of using the same ambient temperature. On the other 
hand, the measurement accuracy of the experimental setup 
should be considered.

Fig. 15. Air temperature distribution of the computational model.

TABLE VI. COMPARISON OF THE CALCULATED TEMPERATURES WITH DIFFERENT MESH DENSITIES

Mesh C M F

Number of elements 1 616 319 2 289 390 3 305 701

Number of nodes 436 434 546 378 711 786

Measurement Point Temperature (°C) Maximum Error 
Percentage

Measurement Point Temperature (°C) Maximum Error 
Percentage

C M F C M F

TCR1
52.6 52.6 52.6 0 TCR5

55.2 55.6 56.0 1.43

TCS1
52.4 52.4 52.4 0 TCS5

55.9 56.3 56.5 1.06

TCT1
55.4 55.4 55.4 0 TCT5

55.1 55.5 55.8 1.25

TCR2
59 59 58.9 0.17 TCR6

55.1 55.5 55.9 1.43

TCS2
59 58.9 58.7 0.51 TCS6

55.8 56.2 56.5 1.24

TCT2
59.5 59.5 59.3 0.34 TCT6

55 55.4 55.7 1.26

TCR3
60.2 60.2 60.2 0 TCR7

55.1 55.4 55.8 1.25

TCS3
60.3 60.2 59.9 0.67 TCS7

55.8 56.1 56.4 1.06

TCT3
60 60 59.9 0.17 TCT7

55 55.3 55.7 1.26

TCR4
59.9 60.2 60.1 0.33 TCR8

55.5 55.7 56.4 1.6

TCS 4
60.2 60.3 60.0 0.5 TCS8

55.6 55.8 56.3 1.24

TCT4
59.6 59.8 59.8 0.33 TCT8

55.5 55.7 56.2 1.25

C, coarse; M, medium; F, fine.



Electrica 2023; 23(1): 107-120
Şeker et al. Coupled Simulations for a Simplified Switchgear

119

V. CONCLUSIONS

Analyses were performed in one-way coupled fashion. Namely, tem-
perature dependency of electrical properties is neglected. Therefore, 
some of the power losses are still absent in the analysis results. Future 
work would be the two-way coupled simulation of the present compu-
tational model. Neglecting temperature changes causes smaller skin 
depth and bigger resistivity. While the former has a reducing effect 
on the power loss and hence temperature, the latter has an increas-
ing effect on them. Increase in resistivity has a more significant effect 
on power losses than the skin depth. Hence, with a two-way coupled 
model, TECL can be expected to be greater than the current EMAG 
analysis results. Moreover, temperature values might be expected 
closer to experimental results due to the increase in the temperatures.
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