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ABSTRACT

In this paper, a graphical-based propo rtion al–in tegra l–der ivati ve (PID) tuning technique for time-delay systems is presented. The suggested tuning technique 
combines the stability boundary locus (SBL) method with the weighted geometrical center (WGC) concept. The plot of the stability region obtained by using real root 
boundary (RRB), infinite root boundary (IRB), and complex root boundary (CRB) in the parameter plane forms the basis of the proposed method. The tuning steps of the 
method can be expressed as follows. First, the stability region in ( ),k kd p -plane is obtained using the SBL for the fixed RRB line. Thus, the stability value range of the kd  
parameter is determined. Second, using these kd  values, the entire set of stability regions in ( ),k kp i -plane is obtained. These regions constitute a three-dimensional 
global stability region in ( ), ,k k kp i d  space. Finally, the WGC points of stability regions in each ( ),k kp i -plane are calculated. The center point having the best time 
domain performance among these WGC points is determined. This point gives the PID tuning parameters for the proposed method. The simulation results indicate 
that the presented tuning technique gives simple and reliable results and is useful in the stability analysis and the control of time-delay systems.
Index Terms—PID tuning, stabilization, time delay, weighted geometrical center
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I. INTRODUCTION

In the real world, time delay is a common type of behavior encountered in system dynamics. 
This phenomenon is an important problem to be considered in many physical, industrial, and 
engineering systems. The time delay has a notable and complex effect on the dynamics of the 
system, and this effect can adversely influence the time response of the system and may even 
lead to instability [1]. Recently, important studies have been carried out on the stability and con-
trol analysis of time-delay systems [2].

The propo rtion al–in tegra l–der ivati ve (PID) control is one of the most preferred control tech-
niques for time-delay systems by control system designers because its control system structure 
is simple and the number of controller parameters to be considered for the tuning process is 
only three [3]. Many tuning methods for the PID controllers have been developed for industrial 
purposes [4]. In order to obtain satisfactory control performance, various methods such as fuzzy 
logic-based tuning [5], linear programming technique [6], transient response control method [7], 
IMC (Internal Model Control)-based method [8], genetic algorithm-based method [9] have been 
reported in the last few decades. These studies can be basically classified under three categories 
as time domain methods, frequency domain methods, or optimal control methods. 

The concept of obtaining the stability region in the parameter space of PI and PID controller 
parameters has been one of the most studied topics for nearly 30 years. There are many stud-
ies on the PI and PID stabilization in the literature, for example, Hermite–Biehler Theorem [10], 
stability boundary locus (SBL) method [11], parameter space method [12, 13], D-Decomposition 
method [14, 15]. However, these methods give only stability region which includes all stabiliz-
ing controller parameters. On the other hand, some valuable studies are reported on which the 
controller parameter values can give a better time response than the other values in the obtained 
stability region. FTDP (Frequency and Time Domain Performances)-map method has been pro-
posed in [16] that provides the desired frequency and time domain properties in the stability 
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region. The centroid stable point method has been proposed for 
only a class of second-order systems in [17].

Recently, a new PI tuning method for the time-delay systems has 
been proposed using the weighted geometrical center (WGC) 
method, also known as Onat’s method, which uses the stability 
region graphically [18, 19]. The WGC method is based on the calcu-
lation of the WGC of the region of stabilizing controller parameters 
and has been used successfully in many studies [18–22]. However, 
these studies have only been reported for PI- and PD-based control-
lers. In this study, the WGC method has been extended to PID con-
trol of the time-delay systems. Although some preliminary results for 
WGC-based tuning of PID controllers have been published in [23], 
the optimality is not considered in this paper. However, in our paper, 
the WGC point which gives the best time response for the control 
system is obtained in the three-dimensional stability region.

In this paper, a simple and efficient PID tuning technique based on 
the WGC method is presented for the time-delay systems. In this 
technique, first, the PID stability region is obtained with the SBL 
method, and then optimal PID tuning is performed using the WGC 
method for the PID controller. One of the most important advan-
tages of the method is that it works for a wide range of time-delay 
systems such as stable, unstable, and integrator systems. In addition, 
the proposed method has some important advantages in terms 
of calculating the controller parameters without using complex 
graphical methods and quickly determining the optimum control-
ler parameter values inside the global stability region that results in 
good unit step response for time-delayed systems. 

II. PRELIMINARIES

A. Propo rtion al–In tegra l–Der ivati ve Control System
The PID control system is a unit feedback control system consisting 
of a plant and a PID controller to control the plant. Consider a gen-
eral PID control system shown in Fig. 1, in which r t� �  is the reference 
input, e t� �  is the error signal, u t� �  is the control signal, and y t� �  
is the output signal. The plant shown in the figure is a time-delay 
system and is defined by the transfer function given as

G s
N s
D s

e s� � � � �
� �

��  (1)

where N s� �  and D s� �  are the numerator and denominator polyno-
mials of the plant transfer function, respectively, and τ  is the time 
delay. The PID controller in Fig. 1 is in parallel structure and has the 
transfer function formulated as follows.

C s k
k
s

k sp
i

d� � � � �  (2)

where k p , ki , and kd  denote the proportional, integral, and deriva-
tive gains, respectively. The characteristic equation of the control 
system is

P s k k k G s C s sD s k s k s k N s ep i d d p i
s, , ,� � � � � � � � � � � � � �� � � � �1 2 � . (3)

B. Stability Boundary Locus Method
Conversion of the complex plane to the parameter space using the 
conformal mapping technique is one of the important techniques 
frequently used in control system design. In the SBL method, which is 
one of these techniques, the parameter space is divided into regions 
consisting of a fixed number of stable and unstable roots for a char-
acteristic polynomial, and the stability region that makes the control 
system stable is obtained. It is a graphical method and is especially 
used for the stabilization of control systems containing PID-based 
controllers [11]. The most important tools of the SBL method are sta-
bility boundaries. These boundaries isolate the stability region from 
the instability regions.

In a characteristic polynomial, the roots pass from the left half plane 
to the right half plane in the complex plane in three different ways, 
according to the change of the controller parameters. They define 
three different types of stability boundaries listed below [12, 13, 24]:

(1) Real Root Boundary (RRB): A root of the characteristic polyno-
mial crosses the imaginary axis of the complex plane on the ori-
gin through the real axis. This corresponds to crossing a stability 
boundary obtained as P s k k kp i d�� � �0 0, , ,  in the parameter 
space as a result of the mapping process. For the characteristic 
equation in (3), the RRB is obtained as

ki = 0  (4)

(2) Infinite Root Boundary (IRB): A root of the characteristic poly-
nomial leaves left or right half plane of the complex plane at 
infinity. This case matches up to crossing a stability boundary 
expressed as P s k k kp i d��� � �, , , 0  in the parameter space 
with the mapping. The IRB for the characteristic equation in (3) 
can be expressed as

IRB
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where nm  and d m  are the coefficients of the largest order terms of 
the numerator and denominator polynomials, respectively.
(3) Complex Root Boundary (CRB): A pair of complex roots of the 

characteristic polynomial crosses on the imaginary axis of the 
complex plane. This corresponds to crossing a stability bound-
ary obtained as P s j k k kp i d�� � ��, , , 0  in the parameter space 
as a result of the mapping process. The CRB is obtained by solv-
ing the system of linear equations obtained by substituting jω  
for s  in the characteristic equation in (3) and equating its real 
( PR ) and imaginary ( PI ) parts to zero, as seen in the following 
equations:

P P jPR I� � �� � � � � � � � � 0  (6)
Fig. 1. Block diagram of a general PID feedback control system.

doi: NanoEra



Electrica 2023; 23(2): 376-384
Çetintaş et al. A Simple Graphical-Based PID Tuning Method

378

where

P k N k N k N k N k N k NR p o i e d e p e i o d o� � � �� � � �� � � � � �� � � � � � �� �2 2 2cos sin �� �� �� 2Do   

 (7)

P k N k N k N k N k N k NI p e i o d o p o i e d e� � � �� � � ��� � � � �� � � � � � �� �2 2 2cos sin�� � ��De   

 (8)
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Finally, the three-variable system in (10) and (11) is converted to the 
two-variable systems, assuming one variable is constant, and a solu-
tion is made.

These stability boundaries drawn separately in k k kp i d, ,� � -space 
divide the whole space into sub-regions. For any sub-region, the 
characteristic polynomials formed by all k k kp i d, ,� �  triplets in this 

sub-region have the same number of stable and unstable poles. Each 
sub-region has its own unique feature in this way.

Remark 2.1: A sub-region is called a stability region if the character-
istic polynomials formed by all k k kp i d, ,� �  triplets in it always have 
stable poles. All sub-regions outside the stability region are called 
the instability region. Therefore, if a controller is to be selected for a 
system, it must be selected from within the stability region.

C. Weighted Geometrical Center Method
The WGC method is an important and graphical method proposed 
for selecting the controller with the best time response among all 
stable PI controllers in the stability region obtained by using the SBL 
method for a system [19].

The WGC method is a technique developed based on the SBL 
method. The main theme of the method is to obtain the WGC point 
of the frequency points forming the stability boundaries. In the SBL 
method, the CRB curve forming the stability region is obtained by 
giving values to ω  in G j�� � . This curve simply consists of points 
in the k kp i,� � -plane whose coordinates are defined as k kp1 1, i� � , 

k kp2 2, i� � ,…, k kpn , in� �  as seen in Fig. 2(a). Here n  is the number of 
k kp i2 2,� �  pairs that make up the CRB. The most important feature 

of these points on the curve is that the distances between them are 
not the same. As seen in the figure, while the points are more closely 
spaced at some ω  values, they diverge at some other ω  values. In 
addition, the RRB line, which is another stability boundary, is formed 
independently of the values of ω . Therefore, in the WGC method, 
the projections of the points on the CRB are obtained to take into 
account the effect of the RRB line, as shown in Fig. 2(b). Considering 
the points on CRB and RRB together, the WGC point of the stability 
region is easily obtained as follows:

k
n

kp

j

n

pj� �
�
�1

1

 (12)

k
n

ki

j

n

ij� �
�
�1

2
1

 (13)

Fig. 2. (A) The k kp i,� �  points constituting the CRB curve depending on ω values. (B) The coordinates of k kp i,� �  points constituting the CRB 
curve and their projections on the RRB line.
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where k pω  and kiω  correspond to the optimal PI parameters. 
Interested readers may refer to paper [11] for the SBL method and 
[18–22] for the WGC method. 

III. WEIGHTED GEOMETRICAL CENTER METHOD-BASED 
OPTIMAL PROPO RTION AL–IN TEGRA L–DER IVATI VE TUNING 
PROCEDURE

In this section, a design procedure for PID tuning using the WGC 
method is presented. The proposed method basically consists of four 
steps. In the first step, the CRB curve is calculated by using (10) and 
(11) as follows: 

k
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From (14)–(16), it is seen that ki  and kd  are dependent on each 
other and k p  is independent of these two parameters.

In the second step, the stability value range for the kd  parameter 
is determined by obtaining the two-dimensional stability region for 
ki = 0  value corresponding to the RRB in the ( , )k kp d  parameter 
plane. This value range plays a key role in the three-dimensional 
stability region in the next step. In this step, the CRB curve drawn 
in the ( , )k kp d -plane is constrained by the k Dp � � � �0  line because 
for the RRB value in (4), the controller turns to the PD controller and 
thus an auxiliary RRB arises. In the third step, for the stable values of 
kd , two-dimensional stability regions are obtained in the ( , )k kp i - 
plane. By plotting these regions together, a three-dimensional sta-
bility region is obtained in ( , , )k k kp i d -space. In the last step, the best 
( , , )k k kp i d  triples as the number of regions are obtained by using 
the WGC technique for the two-dimensional ( , )k kp i  stability regions 
obtained for each stable kd  value. These triplets give the best PID 
parameter value locally for the considered kd  values. Finally, these 
triplets are tested to obtain the best PID controller globally. Here, the 

most important factor affecting the result is the step size used for kd  
while obtaining the local best PID parameter triplets, and keeping 
the step size of kd  small provides a more precise result.

IV. SIMULATION EXAMPLES

A. Example 1
Consider the transfer function of the first-order plus time-delay sys-
tem has the form 

G s
s

e s� � �
�

�1
1

 (17)

Here, the aim is to obtain the k p , ki , and kd  parameters of the PID 
controller using the WGC method. The characteristic equation of the 
control system is determined as

� s s s k s k k s ep i d
s� � � � � � �� � �2 2  (18)

The RRB line is obtained as ki = 0  from (4) and the IRB line is found as 
kd � �1  from (5). For the CRB curve, the following parameter equa-
tions are obtained:

k p � �� � �sin cos  (19)

k ki d� � �� � � � �2 2cos sin  (20)

k kd i� � � �� �� � � � �2 2cos sin /  (21)

Figure 3 shows the stability boundaries k kd p,� � -plane for ki = 0 . 
The CRB line is constrained with k p � �1 line because for the value 
ki = 0 , the controller returns to the PD controller and in this case, an 
auxiliary RRB has arisen. As shown in Fig. 3, the parameter plane is 
divided into nine sub-regions, namely R R R R R R R R1 2 3 4 5 6 7 8, , , , , , , , and 
R 9 . If a test point is selected from each sub-region and the unit step 
responses of the control system for the test points are plotted, it is 
obtained that the R2  sub-region is the stable region. Therefore, con-
sidering the CRB and IRB limiting the R2  sub-region, it is determined 
that the stability value range of the kd  parameter is (−1, 1). However, 

Fig. 3. The stability boundaries in the k kd p,� � -plane for the RRB 
value ki = 0 .
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not all points in this range have equal stability. This is illustrated by 
the fact that the points seen in Fig. 4 that form the CRB curve in the 
R2  sub-region as a result of ω  changing from 1.35 rad/s to 3.1 rad/s 
in 0.05 intervals are not evenly spaced. The kd  values, which are 36 
in total, are determined from this figure.

After determining the stability limit range for kd , the stability regions 
are plotted in the k kp i,� � -plane for the 36 kd  values determined 
earlier. For example, the stability boundaries for the initial value of 
kd , kd 1 0 9418� � . , are shown in Fig. 5. It can be observed from this 
figure that the parameter plane is divided into four sub-regions, 
namely R1 , R2 , R3 , and R 4 . By choosing one arbitrary test point in 
each sub-region, the stability region which is the shaded sub-region 
R1  shown in Fig. 5 is determined. These 36 stability regions obtained 
in the k kp i,� � -plane form the global stability region in three-dimen-
sional k k kp i d, ,� � -space as shown in Fig. 6.

At this stage, the WGC point that gives a good transient response 
for the control system within the obtained three-dimensional stabil-
ity region will be obtained. For this, the WGC points of the 36 two-
dimensional stability regions obtained in the k kp i,� � -plane earlier 
are determined as given in Section III. For example, for kd 1 0 9418� � . ,  
the two-dimensional stability region obtained in the k kp i,� � -plane 
and its WGC point are shown in Fig. 7. This point is calculated as 
k pw � �0 212. , kiw = 0 118. , and kdw � �0 9418. . The same operations 
are performed for the other kd  values, respectively. 

Table I and Fig. 8(a) show the 4 WGC points and their unit step 
responses that give the best unit response among the 36 kd  
values. As can be seen from the figure, the best results are as fol-
lows. k kp i= =0 4212 0 4370. , .  for kd � �0 0385.  and k p = 0 3757. , 
ki = 0 4048.  for kd � �0 1062. . Here, the designer can take additional 
action to get a more accurate result. For this, kd 14 0 0385� � .  and 

Fig. 4. The k kd p,� �  points constituting the CRB curve in the 
parameter plane.

Fig. 5. For kd 1 0 9418� � . , (a) Stability boundaries. (b) Stability 
region in the k kp i,� � -plane.

Fig. 6. The global stability region in three-dimensional k k kp i d, ,� �
-space.

Fig. 7. The WGC point of stability region for kd 1 0 9418� � . .
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kd 13 0 1062� � . , which give the best two results, are divided into ten 
equal intervals and the same operations are repeated to obtain the 
best time response among them. A more precise result is obtained 
for kdw � �0 0722. , k pw = 0 3985. , and kiw = 0 4208. . The closed-loop 
response for a unit step reference input is given in Fig. 8(b). In Fig. 9, 
the three-dimensional global stability region and the obtained WGC 
point are illustrated in the k k kp i d, ,� �  parameter space.

To show the goodness of the time response given by the obtained 
PID parameters, a comparison is made with the results of Toscano 
[25]. The PID parameters of Toscano’s PID tuning method are 
k p = 0 846. , ki = 0 7007. , and kd = 0 2501. . The closed-loop unit step 
responses of two tuning methods are shown in Fig. 10. It can be seen 
from the figure that the time response obtained with the proposed 
method is much better than that obtained by Toscano's method. 

B. Example 2
Consider a second-order unstable system with time delay

G s
s s s

e s� � �
�� � �� � �� �

�1
5 1 2 1 0 5 1

0 5

.
.  (22)

TABLE I. FOUR WGC POINTS THAT GIVE THE BEST UNIT RESPONSE AMONG THE STABLE 36 kd  VALUES

Point Number kd kp ki Time Response Color in Fig. 8(a)

12 −0.1748 0.3292 0.3736 Blue

13 −0.1062 0.3757 0.4048 Red

14 −0.0385 0.4212 0.4370 Green

15 0.0282 0.4655 0.4703 Violet

WGC, weighted geometrical center.

Fig. 9. Three-dimensional global stability region and the obtained 
WGC point in the k k kp i d, ,� �  parameter space.

Fig. 8. (A) The step responses of the PID control systems for different WGC points (The color relations of the PID parameter values and the step 
responses are given in Table I). (B) Step response for k pw = 0 3985. , kiw = 0 4208. , and kdw � �0 0722.  obtained as the best PID tuning parameters.

Fig. 10. Comparisons of the closed-loop unit step responses.
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For this system, the RRB line is ki = 0  and there is no IRB line. By 
applying the procedure given in Section III, the three-dimensional 
global stability region and the calculated WGC point for this region 
are shown in Fig. 11. The PID tuning parameters for the proposed 
method are k pw = 3 9193. , kiw = 0 4286. , and kdw = 6 3809. . 

For comparison, the results for PID design methods proposed by 
Lee et al. [26], Huang and Chen [27], and Poulin and Pomerleau [28] 
are also given. The controller parameters are given by k p =7 144. , 
ki = 0 069. , kd =11 823. ; k p = 6 186. , ki = 0 863. , kd = 9 106. ; and 
k p = 3 05. , ki = 0 404. , kd = 6 314. , respectively. The response to 
a unit step input change for the proposed design and the design 
methods proposed by the others are illustrated in Fig. 12. This 

figure shows that the proposed methods give a better closed-loop 
response than the other methods.

V. CONCLUSIONS

In this paper, a graph-based PID tuning technique is presented using 
the SBL and the weighted geometrical center (WGC) method. The 
principle of the technique is to first determine the two-dimensional 
stability regions in the parameter plane, then calculate the WGC 
points of these stable regions. Finally, considering these center 
points for the three-dimensional global stability region, the PID 
tuning parameters with the best time response are obtained. This 
WGC point can be used as a design preference for the PID control-
ler because these parameters always ensure good time performance 
and guarantee closed-loop stabilization. Results indicate that system 
frequency response exhibits a satisfactory dynamical performance 
for WGC-based PID controller gains and the WGC method generates 
more attractive results as compared with other design approaches. 
One of the most important advantages of the proposed method 
is that it is applicable for all stable, unstable, and integrator time-
delayed systems. Additionally, the proposed method is graph-based 
and quickly determines the optimum controller parameter values 
within the stability region resulting in good unit step response for 
time-delayed systems without using any optimization techniques.
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