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ABSTRACT

In order to accurately detect the faults of electrical automation equipment, this paper proposes a data-based neural network to diagnose the faults of electrical 
automation equipment. This study investigates various (Radio Access Network, RAN) architectures such as cloud-RAN, heterogeneous cloud-RAN, and fog-RAN. These 
architectures are examined in various contexts, including system efficiency, spectrum and energy efficiency, fronthaul capacity, latency, resource sharing and allocation, 
etc. A neural network structure based on the (back propagation) model is used to perform forward computation on the sampled raw data, error Calculations and 
errors are backpropagated. On this basis, the self-adaptive learning fault detection algorithm is used to realize the self-adaptive fault detection of automatic electrical 
equipment. In addition to being able to accurately determine the known state of the device, the algorithm is also able to self-study the state of a non-training sample 
set, allowing the detection of device failures through adaptation. The experimental results show that the method is reliable, the error detection rate is greater than 
0.95, and it has good anti-noise performance.
Index Terms—Adaptive learning, electrical automation, fault detection, neural network
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I. INTRODUCTION

At present, the troubleshooting automation of the electrical system is poor, which basically 
depends on manual monitoring, manual patrol inspection, and manual maintenance, which will 
waste a lot of human resources, and sometimes it is necessary to cut off a subsystem for offline 
patrol inspection in the process of patrol inspection. Due to the post-maintenance and the need 
for manual experience in the troubleshooting process, the fault recovery time is long. At the 
same time, due to the increasing complexity of the electrical system, the effect of relying on 
manual inspection for maintenance is poor [1]. Therefore, it is necessary to continuously improve 
the reliability of the electrical system under complex and harsh conditions. Only by mastering the 
best intelligent diagnosis means can we ensure that the electrical system operates in a stable and 
economic state and ensure the normal progress of production activities and personal safety to 
the greatest extent [2]. With the progress of society and the development of science and technol-
ogy, automatic electrical equipment is constantly improving, and electrical automation equip-
ment has gradually replaced manpower as the main control component of enterprise operating 
equipment. However, due to the influence of external environmental factors, electrical automa-
tion equipment often has some faults during the operation process, resulting in the equipment 
not running normally. Therefore, the maintenance personnel needs to detect the electrical auto-
mation equipment in real time, find out the failure of the electrical automation equipment in 
time, and repair it to ensure the normal operation of the electrical automation equipment.

The application of electrical automation equipment has brought great economic benefits to 
society, and its own development is also very rapid. At present, it is clear that the level of use 
of electrical automation equipment in the industrial sector is more important and its scope is 
expanding. Currently, traditional methods for detecting faults in electrical automation equip-
ment include manual inspection and shutdown testing. In the actual operation process, there will 
be some problems, such as a limited amount of collected information and large error in detection 
results. As a professional technology capable of early warning and judging faults, fault diagnosis 
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technology has made great progress in the fields of machinery and 
power system and has also obtained many valuable research results 
[3, 4]. Along with social progress and technological development, 
automatic electrical equipment is constantly improving. Electrical 
automation equipment has gradually replaced manpower and 
became the main control part of enterprise operation equipment. 
However, due to external environmental factors, the electrical auto-
mation equipment may have some defects during operation and the 
equipment may not be operating properly. Electrical automation 
technology is a new technical means in the field of electrical infor-
mation, which is closely related to the modern industrial field and 
people's life.[5]. Figure 1 shows the remote control and fault diag-
nostics of electrical automation equipment.

II. LITERATURE REVIEW

In recent years, more and more scientists are researching detection 
methods and are achieving good results. McDonald and Moyes use 
the expert system for fault diagnosis. The expert system has strong 
reasoning and interpretation ability, but the construction and 
organization calibration of its knowledge base need high require-
ments and logic, which is difficult to meet in the actual system [6]. 
Whittington and Flynn proposed using an artificial neural network 
for fault diagnosis. The neural network has strong learning and gen-
eralization ability, and the calculation between neurons is carried 
out in parallel, so it has good real-time performance. However, neu-
ral network algorithm needs a lot of data support, and it is difficult 
to guarantee the effect in the face of enlightening problems [7]. Lee 
and others used the partial discharge method and vibration analysis 
method to carry out state detection and fault diagnosis of the power 
plant, and comprehensively obtained the operation state of the 
starting power plant. The improvement of power plant automation 
makes artificial intelligence methods, modern statistical reasoning 
methods, and machine learning methods play a leading role in intel-
ligent power plant condition monitoring [8]. Kim used the method 
of fuzzy set to eliminate the problems of uncertain and incomplete 
information in the process of fault diagnosis [9]. Jaoura and others 
proposed a rigid tank way fault detection method based on wavelet 
packet and back propagation (BP) neural network. First, two typi-
cal tank channel faults, step protrusion fault and tank channel joint 
fault, are simulated, and the vibration acceleration signal of the lift-
ing container is collected. Wavelet packet decomposition is used 
to analyze the energy of the collected signals and extract the fault 
characteristic parameters. The fault characteristic parameters are 
used as the input of the BP neural network, and new test samples are 

selected to output the fault diagnosis results. However, this method 
has the problem of low reliability of fault detection [10]. Antos and 
others proposed a fault detection method of chemical equipment 
based on fuzzy dynamic fault tree. In this method, the fuzzy dynamic 
fault tree is decomposed into fuzzy static subtree and fuzzy dynamic 
subtree, and a quantitative calculation model based on minimum 
cut set and minimum cut order is constructed. At the same time, the 
concept of weak triangular norm is introduced to reduce the inac-
curate calculation results caused by the diffusion of data fuzziness, 
so as to realize equipment fault detection. However, this method has 
the problem of low fault detection rate, and the practical applica-
tion effect is not good [11]. A method for fault detection of chemi-
cal equipment based on fuzzy dynamic fault tree was proposed. The 
fuzzy dynamic fault tree is decomposed into fuzzy static subtree and 
fuzzy dynamic subtree, and a quantitative calculation model based 
on minimum cut set and minimum cut order is constructed. At the 
same time, a weak triangle is introduced. The concept of the norm 
is used to reduce the phenomenon of inaccurate calculation results 
caused by the diffusion of data ambiguity, thereby realizing equip-
ment fault detection. However, this method has the problem of low 
fault detection rate, and the practical application effect is not good. 
In order to solve the problems existing in traditional fault detection 
methods, a fault detection method for electrical automation equip-
ment based on the neural network is proposed. Based on this study, 
this paper proposes a method for detecting faults in a data network-
based electrical automation remote device. The breakdown of elec-
trical automation equipment is divided into five types, the output 
voltage and input current of the load terminal of the electrical auto-
mation equipment are selected at the sampling point, and the initial 
data are collected at the sampling points. The neural network struc-
ture based on the BP model is adopted to carry out forward calcula-
tion, error calculation, and error reverse transmission of the sampled 
original data. The fault detection algorithm of adaptive learning is 
used to realize the adaptive detection of the fault of automatic elec-
trical equipment. The algorithm not only accurately determines the 
known state of the equipment but also allows you to independently 
study the state of the non-training sampling package and detect the 
adaptability of the equipment.

III. RESEARCH METHODS

A. Fault Detection Algorithm of Electrical Automation Equipment

1) Original Data Acquisition
According to the intelligent fault diagnosis model of electrical auto-
mation equipment constructed earlier, discrete fault signals are 
extracted based on neural network. Considering that the specific 
fault of the electrical automation equipment cannot be directly 
judged according to any single fault parameter in the electrical 
automation equipment, it is necessary to uniformly convert the fault 
parameters of the electrical automation equipment into discrete 
fault signals and then perform effective extraction on this basis. 
Take, for example, a three-phase bridge-controlled rectifier circuit 
in an electrical automation device, the original data of electrical 
automation equipment are collected. First, the faults are classified. 
According to previous experience, in the main circuit of electrical 
automation three-phase bridge controllable rectifier, it is rare for 
three and more thyristors to fail at the same time, and the protec-
tion circuit turns the circuit short-circuit fault into short-circuit fault. 
Therefore, it is mainly necessary to study the short-circuit fault of one 
or two thyristors in the circuit [12, 13]. The faults of a three-phase 

Fig. 1. Remote monitoring and fault diagnosis analysis of electrical 
automation equipment.
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bridge-controlled rectifier circuit in electrical automation can be 
divided into five types. The first is the normal working state, the sec-
ond is that only one thyristor fails, the third is that two thyristors fail, 
and the fifth is that two cross thyristors fail. Second, set the simu-
lation parameters and trigger pulse. The pulse duty cycle is about 
26%. The trigger angles can be 0°, 30°, 60°, 90°, 120°, and 180°. Set 
the thyristor parameters, set the resistance to 0.15 Ω, the induc-
tance to 1.1 μH, the buffer voltage to 0.11 μH, set the three-phase 
AC power supply, set the voltage frequency of each phase to 51 Hz, 
the phase angle mutual check to 120°, the sampling period is 100 
s, and the sampling time is controlled at 0–51 ms. Finally, the sam-
pling point is selected. The output voltage and input current contain 
extremely rich fault information, and these fault information can be 
easily detected. Therefore, the output voltage and input current of 
the load end are selected as the sampling point [14]. For numerical 
features, if the difference between the two eigenvalues is small, the 
two features can be considered to be very similar, but for categorical 
eigenvalues, there is no way to say whether they are similar because 
they must be different, they must not be the same. Since nominal 
features cannot be calculated mathematically, we can binarize them 
into numerical features. In the same way, numerical features can also 
be turned into categorical features through discretization. For exam-
ple, if the petal length is greater than a certain value, it is category 
0, and vice versa. But obviously, some data details are lost this way.

2) Neural Network Structure Based on BP Mode
 The faults of electrical automation equipment are divided into five 
categories, and the output voltage and input current of the electri-
cal automation equipment are selected as sampling points, and the 
original data are collected at the sampling points; the neural net-
work structure based on the BP model is used to carry out forward 
calculation on the sampling original data, error calculation, and error 
reverse transfer. On this basis, the adaptive learning fault detection 
algorithm is used to realize the self-adaptive detection of the fault of 
the automatic electrical equipment. The state type of the sample set 
is learned autonomously, which realizes the self-adaptive detection 
of equipment faults. The BP neural network mainly adopts a smooth 
activation function; it has only one input layer and one output layer. 
The adjacent two layers are connected through the weight coeffi-
cient. The processing information in BP neural network flows forward 
with the layer, but the process of learning the weight coefficient is 
opposite to the process of information flow. The process of learning 
the weight factor is the opposite of the information flow process. 
When learning the weight factor, the weight factor is improved from 
front to back according to the error between the actual output and 
the optimal output. The BP network is the most popular and most 
widely used network among the multilayer transmission neural 
networks. The BP algorithm is represented by a three-layer conduc-
tive neural network [15]. The learning process of the neural network 
consists of three parts: forward calculation process, error calculation, 
and error reverse transmission. Taking the three-layer structure as an 
example, the above process is carried out.

1.  Forward calculation process. In this process, the sampling point 
selection data are input into the neural network, and the origi-
nal data O X n Nn n� � �� �1 2, , ,  of the load end output voltage 
and input end current of the three-phase bridge controllable 
rectifier collected from the sampling point is regarded as the 
output of each node of the input layer. The hidden layer input is 

expressed as I W O aj
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In the formula, the number of training samples is expressed as 
N, the number of output neurons is expressed as M, and the 
mean square error of the k-th training sample is expressed as Ek. 
When the network inputs the k-th sample, the error of output 
neuron m is expressed as ekm, and the judgment parameter of 
the training end is expressed as E [16].

2. Error reverse transfer. In the process of error reverse transmis-
sion, there is an obvious relationship between the adjustment 
of inter-network weight coefficient and the number of input 
training samples. Each time the parameters of training sam-
ples are input, the inter-network weight coefficient is adjusted 
accordingly. The adjustment process is carried out in the reverse 
direction, from output to input [17]. Calculate the weight coef-
ficient between output and hidden layers through (4):

V i V i Oj n j n n n, ,�� � � � � �1 � �  (4)

where �n n n p m p mO O d O� �� � �� �1 , , , then calculate the weight factor 
between the input layer and the hidden layer using (5);

W k W k Oi j i j n n, ,�� � � � � �1 � �  (5)

The numerical gain coefficient is expressed as η and the inertia coef-
ficient is expressed as δ. The learning convergence speed is adjusted 
by two coefficients. Generally, the two coefficients range from 0 to 
1. The neural network structure is designed through the BP model, 
in order to effectively identify whether there is a fault in electrical 
automation equipment.

3) Fault Detection Algorithm Based on Adaptive Learning
To achieve the purpose of adaptive fault detection of electrical 
automation equipment, a fault detection algorithm with adaptive 
learning is proposed, which has the advantage of learning the char-
acteristics of new state types. The detailed process is as follows: the 
concept of credibility is introduced into the establishment of the 
neural network structure based on the BP model, and the possible 
faults in electrical automation equipment are identified according 
to certain judgment rules by identifying the credibility of results 
[18]. Take the data selected from the sampling point as the training 
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sample, input the training sample into the neural network, correct 
the weight coefficient and threshold that have been calculated, 
and accurately identify the fault in the electrical automation equip-
ment. Assuming that the i-th output vector is expressed as Si

’ , then 
S b j zi i j
’

,
’ , , , ,�� � � �1 2 , where the total number of output vectors is 

expressed as z, and assuming that the reliability is expressed as θ, 
there is the following formula (6):
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Set a credibility threshold Ɛ, determine whether an output belongs 
to a certain state through the credibility threshold and determine 
the credibility threshold Ɛ through the state algorithm error and 
the similarity between samples. According to the known reliability, 
evaluating the reliability of neural network output results is helpful 
to detect the faults of electrical automation equipment [19]. In the 
fault detection of electrical automation equipment, there are five 
types of fault feature quantities. The five types of feature quanti-
ties are used as the input vector of the neural network. The whole 
fault detection process is mainly to select the equipment state fea-
ture vector and classify it in the fault feature vector space, so as to 
realize the purpose of detecting the fault of electrical automation 
equipment. The characteristic quantities of these five fault types and 
their corresponding state codes are used as training samples, and 
the fault detection algorithm of adaptive learning is implemented 
to independently learn the state types of non-training sample sets, 
update the reliability threshold in the learning process, and have the 
accurate detection function of new states of automation equipment 
[20]. According to the extracted discrete fault signals, the intelligent 
fault diagnosis and positioning of electrical automation equipment 
are carried out, and the intelligent and effective fault diagnosis of 
electrical automation equipment is realized. First, obtain the target 
value of the corresponding fault point according to the failure mode, 
then use the neural network technology to select the transfer func-
tion of the middle layer and the number of neurons as the control 
core of the neuron, and finally, use the neural network algorithm 
to calculate the fault diagnosis amplitude to analyze the fault data. 
Taking the fault diagnosis amplitude as the basis for intelligent fault 
diagnosis of electrical automation equipment.

IV. RESULT ANALYSIS

Experiments are needed to test the effectiveness of the proposed 
neural network-based electrical automation device fault detection 
method. Since the number of input level nodes in a BP network 
depends on the number of input data, the number of input level 

nodes is 4 and the number of output level nodes is 4 [21]. The num-
ber of hidden layer nodes is not constant and can be adjusted if nec-
essary. The number of hidden layer nodes is given by (8):

n n n� � �1 0 �  (8)

Because learning the BP neural network often requires repeated 
training, the error value gradually becomes zero, so as to achieve 
the prediction effect. Due to the different weight coefficient compo-
nents of the BP neural network, the results will have errors. Therefore, 
it is necessary to train it, and the output is as follows (9):

u W X W X W X W Xi i n n� � � � ���1 1 2 2  (9)

where X Xn1, ,…  are the sample input signals, X i  is the sample out-
put signal, W Wn1, ,…  are the weight coefficients, and the final output 
result is the training sample network weight coefficient.

A. Network Training Results
Figure 2 shows the training sample network weight coefficient, 
actual deviation training results, and error elimination process when 
using this method to detect the three-phase bridge controllable rec-
tifier of a certain type of electrical automation equipment. Figure 2(a) 
is used to describe the weight coefficient and deviation training, and 
Fig. 2(b) is used to describe the error elimination.

It is obvious from Fig. 2(a) that the weight coefficient is inversely 
proportional to the deviation. With the decrease in the weight coef-
ficient, the detection deviation gradually increases. When the weight 
coefficient is 0.11, the deviation is zero. Therefore, in order to reduce 
the detection deviation, an appropriate weight coefficient should be 
selected. In Fig. 2(b), when the number of training steps is close to 
300 steps, the error is almost zero, that is, the error accuracy meets 
the requirements. Moreover, with the reduction of error, there are 
more training steps, so when the error meets the detection require-
ments, the error accuracy should be reduced, so as to shorten the 
number of training steps and reduce the detection time. It can be 
seen from Fig. 2 that the method in this paper uses the neural net-
work to detect electrical automation equipment, which has a high 
nonlinear fitting ability. Although there are many training samples 
and many types of electrical automation equipment faults, the over-
all detection process has good error elimination efficiency. When 
considering the elimination of detection errors and deviations, the 
detection time and detection accuracy should be considered, and 
the appropriate weight coefficient and training steps should be 
selected to improve the detection efficiency and shorten the detec-
tion time [22, 23, 24].

B. Voltage Fault Detection Effect
Set the voltage sample vector at the load end of the experimental 
three-phase bridge-controlled rectifier device as k K K K  1 2 3     to form 
the sample characteristic vector. After normalizing the vector, select 
six kinds of fault voltage samples output by the thyristor load end as 
the detection samples, namely GZ1, GZ2, GZ3, GZ4, GZ5, and GZ6. 
This method is used for voltage fault learning and detection. The 
results are presented in Table I.

The status codes 1–7 in Table I verify that the detection results of this 
method for known faults are good, and 8 is an unknown input vector 
to be detected. It can be seen that the reliability of 1–7 input vec-
tors is higher than 0.97, that is, they have high reliability; Assuming 
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a confidence threshold of 0.65, it can be seen that the output result 
of the input vector to be identified in the table is the output result 
of state code 3, and the confidence is 0.53, which is less than the 
confidence threshold of 0.65, indicating that the detection result 
is inaccurate. It is necessary to update the weight coefficient and 
threshold, re-detect it, and re-detect it to obtain the detection result 
of the sample vector to be tested [25, 26] (Table II).

It can be seen from Table II that after resetting the weight coefficient 
and threshold, the reliability of the sample to be identified is 0.99, 
which is greater than the reliability threshold of 0.65. The output 
result of the vector of the sample to be identified has high reliability, 
which shows that this method can accurately identify new samples 
and effectively detect the voltage fault at the load end of the new 
three-phase bridge controllable rectifier.

C. Current Fault Detection Effect
Input the test sample into the fault detection method and compare 
the test result with the actual fault vector. If the test result exists in 
the fault vector, the equipment fault corresponding to the test result 
is the test fault. If the test result is not in the fault vector, the test 
result is wrong. Eight operating conditions of the load end current 
of the experimental three-phase bridge controllable rectifier are 
selected as the test samples, and the fault detection results of this 
method are obtained (Table III) [27].

It can be seen from the table that the detection efficiency of the cur-
rent fault at the load end of the three-phase bridge controllable rec-
tifier diagnosed by this method is more than 0.95, which has a high 
detection efficiency, which is more consistent with the actual fault, 
indicating that this method can accurately detect the current fault at 
the load end of the three-phase bridge controllable rectifier. As can 
be seen from Table III, for distribution network fault identification, 
the wavelet packet method shows a certain identification speed and 
generalization ability, but its accuracy is low when identifying short 
circuit fault. The fuzzy diagnosis method shows a strong generaliza-
tion ability and accuracy, which is also corresponding to its principle. 
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Fig. 2. Training results of neural network. (a) Weight coefficient and 
deviation training. (b) Error elimination.

TABLE I. VOLTAGE FAULT LEARNING SAMPLES AND TEST RESULTS

K1 K2 K3

Status Code Fault Sample Network Input Network Output Reliability

1 Normal 0.77 0 0.45 1 0.99

2 GZ1 fault 1 0 1 2 0.98

3 GZ2 fault 0.88 0 0.87 3 0.98

4 GZ3 fault 0.77 0 0.11 4 0.99

5 GZ4 fault 0.81 0 0.74 5 0.98

6 GZ5 fault 0.84 1 0.73 6 0.97

7 GZ6 fault 0.73 0 0.71 7 0.98

8 Sample to be identified 0.97 0 -0.34 3 0.53

TABLE II. RETEST RESULTS OF SAMPLE VECTOR TO BE TESTED

Network Output Reliability

8 8 0.99
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However, the algorithm itself is slow, and we can see that the cal-
culation speed of the wavelet packet method and fuzzy diagnosis 
method is far behind the method in this paper.

D. Equipment Operation Status Analysis
By comparing the methods in this paper, wavelet packet method and 
fuzzy diagnosis method [28], it is analyzed that after three methods 
are used to detect the fault of the experimental three-phase bridge 
controllable rectifier, the device operates in normal state, high tem-
perature state, and low temperature state. The results are shown in 
Table IV [29].

It can be seen from Table IV that this paper method was used to 
detect faults in three-phase bridge-controlled rectifiers, the opera-
tion time of the device under high temperature is only 4.95 Ms. 
The operation time in low temperature state and normal tempera-
ture state is much lower than that of the other two methods, which 
shows that the operation efficiency of the device can be significantly 
improved after using this method to detect the fault of three-phase 
bridge controllable rectifier.

E. Detection Rate Analysis
Compare the detection rates of the three methods under differ-
ent interference signal-to-noise ratios. The comparison results are 
shown in Fig. 3 [30].

According to the analysis of Table IV, when the interference signal-
to-noise ratio is 2 dB, the maximum detection time of this method is 
6.51 ms, when the external signal-to-noise ratio is 39 dB, the short-
est detection time for this document method is 4.23 ms. Under vari-
ous interference-to-noise ratios, the detection time of the wavelet 
packet method is between 28.58 ms and 35.25 ms and that of fuzzy 
diagnosis method is between 15.28 ms and 23.17 ms. Comparing the 
detection time of the three methods, it can be seen that this method 
has the highest detection rate and the best prediction performance 
and can effectively realize the high-efficiency detection of electrical 
automation equipment faults. The fault detection algorithm of adap-
tive learning is adopted to realize the adaptive detection of auto-
matic electrical equipment faults. The reliability and detection rate 
of the detected faults are both higher than 5%, so the algorithm can 
not only accurately detect the known state of the equipment, but 
also self-learning the state type of the non-training sample set, real-
izing the adaptive detection of equipment faults, and the method 
has good anti-noise performance.

TABLE III. FAULT DETECTION RESULTS

Test Sample

1 2 3 4 5 6 7 8

Detection output 0 0.99 0 0 0 0 0 0.97

0 0 0.95 0 0 0 0 0.96

0 0 0 0.97 0 0 0 0

0 0 0 0 0.94 0 0 0

0 0 0 0 0 0.99 0 0

0 0 0 0 0 0 0.98 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Detection result Normal HN1 fault HN2 fault HN3 fault HN4 fault HN5 fault HN6 fault HN1 and HN2 fault

TABLE IV. OPERATION STATUS ANALYSIS RESULTS

Running Time/ms

Normal 
State

High-Temperature 
State

Low-Temperature 
State

Paper 
method

Start 3.25 2.09 2.64

In operation 5.01 4.95 4.35

End 2.09 2.24 1.97

Wavelet 
packet 
method

Start 11.36 10.28 10.88

In operation 13.24 12.95 12.47

End 10.02 10.57 9.94

Fuzzy 
diagnosis 
method

Start 23.25 21.55 22.52

In operation 28.71 27.43 27.32

End 22.92 22.58 21.55
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V. CONCLUSION

With the continuous development of automation technology, elec-
trical automation is widely used in industrial enterprises. How to 
efficiently and accurately detect the faults in electrical automation 
equipment has become a research hotspot. The designed fault intel-
ligent diagnosis technology can not only complete the tasks that the 
traditional fault intelligent diagnosis technology cannot complete 
but also provide academic significance for the design of the fault 
intelligent diagnosis technology of electrical automation equip-
ment with the fault diagnosis model as the core. In the experimental 
part, through the network training results, it can be seen that when 
detecting the fault of electrical automation equipment, this method 
should consider eliminating the detection error and deviation, com-
bined with the detection time and the required accuracy, select 
the appropriate weight coefficient and training steps, and shorten 
the detection time while improving the detection efficiency. At the 
same time, this method can accurately detect the voltage and cur-
rent faults at the load end of the thyristor, has high adaptive learn-
ing ability, can accurately identify new faults, and has high reliability. 
Combined with the earlier analysis, this method has the best per-
formance in detecting the fault of electrical automation equipment.
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