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ABSTRACT

One of the di!culties in studying "uorescence imaging of biological structures is the presence of noise corruption. Even though hardware- and software-related 
technologies have undergone continual improvement, the unavoidable e#ect of Poisson–Gaussian mixture type is generally encountered in "uorescence microscopy 
images. This noise should be mitigated to allow the extraction of valuable information from "uorescence images for various types of biological analysis. Thus, this study 
introduces a new and e!cient learning-based denoizing approach for "uorescence microscopy. The proposed approach is based mainly on linear transformations 
between noise-free and noisy submanifold structures of patch spaces, bene$ting from linear neighbor embeddings of local image patches. According to visual and 
statistical results, the developed algorithm called "neighbor linear-embedding denoizing" algorithm has a highly competitive and generally superior performance in 
comparison with the other algorithms used for "uorescence microscopy image denoizing in the literature.
Index Terms—Denoizing, "uorescence microscopy, linear embedding, neighbor linear embedding.
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I. INTRODUCTION

Using light microscopes, fluorescence microscopy is one of the most feasible techniques for 
analyzing very small-scale biological specimens. It provides imaging, detection, analysis, and 
quantification of biological structures, including molecules within subcellular parts; however, 
the captured images are often corrupted by noise, generally caused by environmental factors 
and/or imaging equipment. As in all imaging systems, noise corruption is the main reason for 
quality degradation in the captured images. Even though the exact noise type and level cannot 
always be estimated, it is known that Poisson–Gaussian mixture generally exists in fluorescence 
microscopy systems [1, 2]. This noise model for fluorescence microscopy images consists of two 
types of noise: Poisson noise, which results from signal-dependent uncertainty such as shot 
noise, and Gaussian noise, which results from signal-independent uncertainty such as thermal 
noise. To reduce the noise level, one can increase the excitation power of the laser or lamp, as 
well as the imaging duration [3, 4]. However, this needs great care to avoid damaging the bio-
logical structures and to prevent saturation of the fluorescence. Additionally, in real-time and 
dynamic cases, it is important to capture the images within milliseconds to avoid any imaging-
related damage caused by prolonged exposure. Therefore, image denoizing techniques provide 
viable alternative solutions which are unaffected by these drawbacks associated with exposure 
time and experimental settings. Poisson–Gaussian denoizing can improve the quality and clarity 
of fluorescence microscopy images and are particularly valuable in applications needing high-
quality images, such as cell biology and neuroscience.

In [4], the fluorescence microscopy denoizing (FMD) dataset is used for analyzing conventional 
image-processing techniques and deep-learning denoizing models. The FMD dataset con-
tains real fluorescence images, which are corrupted with Poisson–Gaussian noise of 1) confocal 
microscopy, which uses laser light to stimulate a specimen within a narrow plane, 2) two-photon 
microscopy, which uses double light wavelengths to excite the fluorescence, and (3) widefield 
microscopy that captures images of samples under a specific wavelength illumination. In this 
study, variance stabilizing transformation (VST) [2] is utilized as the initial step to represent 
Poisson–Gaussian noise under the assumption that it has a unitary variance, similar to Gaussian 
noise. Subsequently, several image denoizing algorithms are applied to eliminate the unified 
Gaussian noise. These algorithms include non-local means (NLM) [5], which is grounded on a 
non-local weighted averaging of pixels in the image, block-matching and 3D filtering (BM3D) 
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[6], which relies on processing similar 2D patches as 3D patch arrays 
in the transform domain via sparsity constraints, K singular value 
decomposition (K-SVD) [7], which builds upon dictionary learning 
schemes via redundant and sparse representations, expected patch 
log likelihood (EPLL) [8], which considers a patch-based framework 
based on maximum a posteriori estimation on image patches, and 
weighted nuclear norm minimization (WNNM) [9], which proposes 
an iterative algorithm by exploiting image non-local self-similarities. 
In addition to these methods, Poisson unbiased risk estimate–linear 
expansion of thresholds (PURE-LET) [10] can be applied as a trans-
form-domain thresholding algorithm designed specifically for the 
mixed Poisson–Gaussian noise. Hence, VST is not combined with 
the PURE-LET algorithm. In addition, state-of-the-art deep-learning 
models have been applied on the same dataset, such as denoizing 
convolutional neural network (DnCNN) [11], which aims at denoizing 
unknown noise levels through residual learning and Noise2Noise 
[12], which has the advantage of being able to function without 
clean images for training. Despite the statistical and visual success 
of traditional denoizing techniques, deep-learning methods demon-
strate superiority due to their ability to learn intricate patterns and 
representations from the training data. However, it is important to 
note here that the choice of a denoizing method strictly depends 
on the specific problem and the data at hand, and, in some cases, 
conventional methods may be preferable.

This study elaborates a novel patch-based image denoizing tech-
nique for images degraded by the mixed Poisson–Gaussian noise in 
fluorescence microscopy [13]. The proposed technique, called NLED, 
builds upon relationships between clean (noise-free) and noisy 
patches through intrinsic geometric linear transformations of image 
patch spaces. The experimental results demonstrate that NLED out-
performs several other denoizing methods, including NLM, BM3D, 
K-SVD, EPLL, WNNM, and PURE-LET, when applied either on its own 
or in combination with VST. Neighbor linear-embedding denoizing 
is therefore an effective alternative to the existing denoizing algo-
rithms in the literature. This paper is organized as follows. The devel-
oped method is technically explained in Section II. The experimental 
setup and statistical and visual results are presented in Section III. 
Finally, a brief conclusion and possible future directions are dis-
cussed in Section IV.

II. NEIGHBOR LINEAR-EMBEDDING DENOIZING 

A. Background
The ultimate objective of a denoizing procedure is to effectively 
remove the corrupted noise from an image and to estimate the 
noise-free image as precisely as possible. Fundamentally, the aim is 
to optimize the intensity-based minimization in (1) as,

min F|| ˆ ||X X− 2  (1)

where X  and X̂  represent the true noise-free image and the pre-
dicted image, respectively, and F stands for the Frobenius norm. In 
general, the clean image X  is not readily available but a noisy ver-
sion Y  of X  is observed.

The optimization defined in (1) is extremely difficult to solve 
because of the enormous number of pixels as unknown variables. 
Hence, there are approximate solutions which reduce the prob-
lem to the dimensionality of local image patches, e.g., NLM, BM3D, 
and K-SVD. Such algorithms reveal the meaningful connections 

between noisy image patches and their local neighbors or between 
paired noise-free and noisy sets of image patches. Additionally, 
these relationships are generally constrained with a sparsity con-
straint to ensure that the noise is suppressed. Finally, the processed 
image patches usually overlap with each other to provide local 
smoothness via averaging in the overlapped regions and hence 
increase the denoizing performance and prevent blocking or seam-
ing artifacts.

B. Neighbor Linear-Embedding Denoizing

1) Training Phase:
Neighbor linear-embedding denoizing is a patch-based denoizing 
technique that aims to disclose intrinsic geometric connections 
between locally linear manifolds [14] of noise-free and noisy patch 
spaces via linear transformations. Assume that noise-free and noisy 
sets of images are available for training, the initial step is to calculate 
the intrinsic properties of the noisy manifold structure from noisy 
image patches according to (2) as,

argmin s t
ik

i
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ik
tr T

i iik
!
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2

2
1 0 1. . 1  (2)

where y i
tr  and !y i

tr  stand for the ith noisy patch for training, i = 1...I, 
and its kth similar neighbor (K-NN) in the same image by minimiz-
ing the Euclidean distance, k = 1...K, respectively. The size of all 
image patches is ( n n× )-pixels, which are stacked as column-vec-
tors of size n2 1× . 1 expresses a K-dimensional column-vector of 
ones, and ββi  is a K-dimensional weight vector, i.e., column-vector 
of optimum reconstruction weights βik . The calculated reconstruc-
tion weights in βi, ∀i, describe the local geometric properties of the 
noisy manifold structure. A matrix B of size K ×  I is constructed 
from !!i i," .

In (2), the optimization is solved with two constraints. The first 
constraint, 1T i!! "1 , assures the estimation of y i

tr  to be in the sub-
space spanned by its K-NN. The second, 0 1! !""i , enforces the 
approximation of y i

tr  to lie in a restricted boundary specified by 
the utilized K-NN patches. It is worth noting here that there is an 
additional, but implicit, sparsity notion in the optimization due to 
the usage of K number of patches, which enables maximum noise 
rejection.

The second step is to structure the geometry of the co-located clean 
patch space through the chosen noisy neighbors with respect to (3) 
as,

argmin s t
ik

i
tr

k

ik
tr T

i iik
!

!x y" # $ % %& !
2

2
1 0 1. . 1 ! !  (3)

where xi
tr  denotes the ith clean patch (co-located with yi

tr ) in the 
training noise-free image. ααi  is the K-dimensional column-vector 
of optimum reconstruction weights αik . Here, the reconstruction 
weights in !!i i," , serve to structure the local geometry of the clean 
manifold with respect to noisy local neighborhood. A matrix A of size 
K ×  I is constructed from !!i i," .

Finally, a linear transformation matrix T relating the linearized noisy 
and noise-free patch spaces is obtained by solving a straightfor-
ward least-squares optimization as T = AB†, where B† designates the 
pseudo-inverse of B.
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2) Test Phase:
After obtaining the transformation T from the training dataset, it is 
applied to each noisy patch y j j,∀ , of a given noisy test image Y as 
follows. First, K-NN set of patches { !y jk } for y j  is extracted from Y 
and the optimum weight vector β j  is calculated via (2). Second, this 
vector is transformed to !! ""j j# T  to predict the intrinsic manifold 
structure of the noise-free patch space. Last, the denoized output 
x̂ j  is calculated in (4) as,

ˆ .x yj

k

jk jk! "# !  (4)

A final denoized image X̂  is generated by spatially relocating the 
estimated patches ˆ ,x j j∀ , in X̂ . There are overlaps between these 
patches, and the multiple-predicted pixel values are uniformly aver-
aged in the overlapping regions. The proposed NLED algorithm is 
detailed in Algorithm 1.

C. Variance Stabilizing Transformation + Neighbor Linear-
Embedding Denoizing
Neighbor linear-embedding denoizing is combined with Anscombe 
VST resulting in a version called VST+NLED. The VST+NLED algorithm 
is given in Algorithm 2.

Algorithm 1: Neighbor linear-embedding denoizing algorithm

Training Phase

Input: Coupled set of noisy and clean images

Output: Transformation matrix T

 for each coupled patch pair yi
tr  and xi

tr  do

  Find K-NN set for yi
tr  

  Optimize (2) to obtain ββi

  Optimize (3) to obtain ai

End

Construct structure matrices A and B

Calculate T = AB†

Test Phase

Input: Noisy test image Y, and T

Output: Denoized image X̂

Extract all patches y j  of Y

 for each y j  do

  Find K-NN set for y j

  Optimize Eq. (2) to obtain ββ j

  Apply the transformation a j j! T""

  Estimate x̂ j  via (4)

end

Reconstruct ˆ ˆX x! " #j  via averaging

III. EXPERIMENTAL SETUP AND RESULTS

A. Dataset
This study utilizes the FMD dataset (publicly available online [15]), 
which comprises real fluorescence microscopy images contami-
nated by Poisson–Gaussian noise. The dataset includes 12 subjects, 
and each subject has 20 field of views (FOVs) with 50 raw images, 
resulting in a total of 12 000 images. These images feature various 
biological samples such as cells, zebrafish, and mouse brain tissues 
captured by different types of microscopes, including commer-
cial confocal, two-photon, and widefield microscopes. To produce 
ground truth images, the raw images for each FOV are simply aver-
aged. Additionally, noisy images with different levels of noise are 
obtained by averaging different numbers of raw images (2, 4, 8, 16), 
resulting in a total of 60 000 noisy images.

For training, three distinct datasets are extracted from the FMD 
dataset. The first dataset, called MICE, comprises 12 two-photon 
microscopy mouse brain images chosen from the first frames of the 
first 12 FOVs. The second dataset, called ZEBRA, consists of 12 con-
focal microscopy zebrafish embryo images selected from the first 
frames of the first 12 FOVs. The third dataset, named MICE+ZEBRA, 
contains a mix of six two-photon and six confocal microscopy 
images from the first frames of their first six FOVs, respectively. 
Additionally, to assess and compare the denoizing performance, 
a mixed test dataset was generated, consisting of 48 images ran-
domly selected from the 19th FOV of all 12 subjects, with four 
frames per image. This dataset comprises confocal microscopy, 
which includes Bovine Pulmonary Artery Endothelial Cells (BPAE) 
(nuclei, F-actin, and Mito), zebrafish, and mouse brain samples, 
two-photon microscopy, which includes BPAE (nuclei, F-actin, and 
Mito) and mouse brain samples, and widefield microscopy, which 
includes BPAE (nuclei, F-actin, Mito) samples. Note here that the 
BPAE (nuclei, F-actin, and Mito) image samples are not included in 
any training sets.

Algorithm 2: VST + NLED algorithm

Training Phase

Input: Coupled set of noisy and clean images

Output: Transformation matrix T

Noisy images ←  VST (noisy images)

 for each coupled patch pair yi
tr  and xi

tr  do

  Find K-NN set for yi
tr  

  Optimize (2) to obtain ββi

  Optimize (3) to obtain ai

End

Construct structure matrices A and B

Calculate T = AB†

Test Phase
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TABLE I. MULTI-PASS NLED DENOIZING PERFORMANCE ON THE MIXED TEST SET

Mixed Set Noisy Input Pass-1 Pass-2 Pass-3

Method Training dataset PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

NLED MICE 27.22/0.5442 32.33/0.8595 32.82/0.8742 32.83/0.8777

NLED ZEBRA 27.22/0.5442 32.40/0.8655 32.65/0.8812 32.49/0.8839

NLED MICE+ZEBRA 27.22/0.5442 32.39/0.8639 32.72/0.8797 32.63/0.8834

VST+NLED MICE 27.22/0.5442 32.39/0.8608 32.87/0.8758 32.90/0.8794

VST+NLED ZEBRA 27.22/0.5442 32.46/0.8673 32.69/0.8829 32.50/0.8853

VST+NLED MICE+ZEBRA 27.22/0.5442 32.45/0.8656 32.78/0.8807 32.68/0.8845

NLED, neighbor linear-embedding denoizing; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure; VST, variance stabilizing transformation.

TABLE II. MULTI-PASS NLED DENOIZING PERFORMANCE ON TWO-PHOTON MICROSCOPY IMAGES

Two-photon Noisy Input Pass-1 Pass-2 Pass-3

Sample Method Training Dataset PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

BPAE (nuclei) NLED MICE 24.24/0.7166 29.79/0.9239 30.56/0.9559 30.62/0.9608

NLED ZEBRA 24.24/0.7166 29.86/0.9275 30.42/0.9555 30.33/0.9575

NLED MICE+ZEBRA 24.24/0.7166 29.84/0.9264 30.47/0.9557 30.44/0.9587

VST+NLED MICE 24.24/0.7166 29.83/0.9248 30.61/0.9569 30.68/0.9619

VST+NLED ZEBRA 24.24/0.7166 29.91/0.9290 30.46/0.9566 30.36/0.9582

VST+NLED MICE+ZEBRA 24.24/0.7166 29.89/0.9278 30.52/0.9569 30.49/0.9598

BPAE (F-actin) NLED MICE 25.30/0.7727 31.31/0.8719 31.69/0.8567 31.57/0.8489

NLED ZEBRA 25.30/0.7727 31.28/0.8691 31.33/0.8458 30.94/0.8269

NLED MICE+ZEBRA 25.30/0.7727 31.30/0.8700 31.45/0.8494 31.15/0.8348

VST+NLED MICE 25.30/0.7727 31.37/0.8722 31.76/0.8569 31.63/0.8491

VST+NLED ZEBRA 25.30/0.7727 31.35/0.8691 31.36/0.8447 30.95/0.8247

VST+NLED MICE+ZEBRA 25.30/0.7727 31.36/0.8700 31.51/0.8494 31.22/0.8351

BPAE (Mito) NLED MICE 30.85/0.8771 36.44/0.9351 36.77/0.9279 36.60/0.9230

NLED ZEBRA 30.85/0.8771 36.35/0.9325 36.28/0.9197 35.84/0.9090

NLED MICE+ZEBRA 30.85/0.8771 36.38/0.9333 36.44/0.9224 36.09/0.9138

VST+NLED MICE 30.85/0.8771 36.57/0.9366 36.93/0.9295 36.75/0.9246

VST+NLED ZEBRA 30.85/0.8771 36.50/0.9340 36.39/0.9207 35.92/0.9092

VST+NLED MICE+ZEBRA 30.85/0.8771 36.53/0.9348 36.59/0.9240 36.23/0.9153

Mouse brain NLED MICE 24.87/0.6650 31.86/0.9100 33.33/0.9555 33.41/0.9624

NLED ZEBRA 24.87/0.6650 31.85/0.9146 32.62/0.9548 32.15/0.9574

NLED MICE+ZEBRA 24.87/0.6650 31.86/0.9132 32.86/0.9552 32.56/0.9593

VST+NLED MICE 24.87/0.6650 31.88/0.9104 33.36/0.9558 33.44/0.9626

VST+NLED ZEBRA 24.87/0.6650 31.88/0.9155 32.59/0.9551 32.07/0.9571

VST+NLED MICE+ZEBRA 24.87/0.6650 31.90/0.9141 32.92/0.9557 32.63/0.9597

NLED, neighbor linear-embedding denoizing; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure; VST, variance stabilizing transformation.
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Input: Noisy test image Y, and T

Output: Denoized image X̂

Y Y! " #VST

Extract all patches y j  of Y

TABLE III. MULTI-PASS NLED DENOIZING PERFORMANCE ON CONFOCAL MICROSCOPY IMAGES

Confocal Noisy Input Pass-1 Pass-2 Pass-3

Sample Method Training Dataset PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

BPAE (nuclei) NLED MICE 31.99/0.9534 37.40/0.9802 37.40/0.9795 37.30/0.9786

NLED ZEBRA 31.99/0.9534 37.22/0.9786 36.63/0.9746 36.09/0.9713

NLED MICE+ZEBRA 31.99/0.9534 37.29/0.9791 36.89/0.9762 36.49/0.9738

VST+NLED MICE 31.99/0.9534 37.45/0.9822 37.49/0.9831 37.40/0.9828

VST+NLED ZEBRA 31.99/0.9534 37.28/0.9810 36.66/0.9781 36.09/0.9748

VST+NLED MICE+ZEBRA 31.99/0.9534 37.34/0.9813 37.03/0.9802 36.64/0.9781

BPAE (F-actin) NLED MICE 28.43/0.8952 32.29/0.9180 32.04/0.9058 31.93/0.9027

NLED ZEBRA 28.43/0.8952 31.96/0.9115 31.16/0.8861 30.62/0.8679

NLED MICE+ZEBRA 28.43/0.8952 32.07/0.9136 31.44/0.8927 31.03/0.8801

VST+NLED MICE 28.43/0.8952 32.36/0.9187 32.09/0.9062 31.99/0.9032

VST+NLED ZEBRA 28.43/0.8952 32.00/0.9115 31.15/0.8848 30.58/0.8650

VST+NLED MICE+ZEBRA 28.43/0.8952 32.11/0.9137 31.54/0.8941 31.13/0.8817

BPAE (Mito) NLED MICE 33.00/0.9529 36.69/0.9610 35.97/0.9530 35.62/0.9488

NLED ZEBRA 33.00/0.9529 36.23/0.9549 34.85/0.9365 34.04/0.9219

NLED MICE+ZEBRA 33.00/0.9529 36.38/0.9569 35.19/0.9419 34.51/0.9311

VST+NLED MICE 33.00/0.9529 36.76/0.9633 36.02/0.9555 35.67/0.9514

VST+NLED ZEBRA 33.00/0.9529 36.26/0.9573 34.80/0.9381 33.95/0.9224

VST+NLED MICE+ZEBRA 33.00/0.9529 36.42/0.9591 35.28/0.9455 34.60/0.9347

Zebra$sh 
embryo

NLED MICE 22.86/0.7504 28.89/0.8773 29.61/0.8827 29.60/0.8810

NLED ZEBRA 22.86/0.7504 28.77/0.8714 29.01/0.8639 28.72/0.8546

NLED MICE+ZEBRA 22.86/0.7504 28.82/0.8738 29.20/0.8700 29.00/0.8631

VST+NLED MICE 22.86/0.7504 28.97/0.8808 29.70/0.8873 29.70/0.8863

VST+NLED ZEBRA 22.86/0.7504 28.82/0.8740 29.01/0.8656 28.69/0.8557

VST+NLED MICE+ZEBRA 22.86/0.7504 28.88/0.8766 29.24/0.8733 29.05/0.8668

Mouse brain NLED MICE 29.36/0.9000 36.01/0.9709 36.36/0.9765 36.14/0.9764

NLED ZEBRA 29.36/0.9000 35.85/0.9704 35.49/0.9730 34.74/0.9700

NLED MICE+ZEBRA 29.36/0.9000 35.90/0.9706 35.76/0.9742 35.18/0.9722

VST+NLED MICE 29.36/0.9000 36.14/0.9721 36.50/0.9779 36.27/0.9778

VST+NLED ZEBRA 29.36/0.9000 35.96/0.9718 35.52/0.9743 34.72/0.9710

VST+NLED MICE+ZEBRA 29.36/0.9000 36.02/0.9720 35.92/0.9758 35.29/0.9738

NLED, neighbor linear-embedding denoizing; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure; VST, variance stabilizing transformation.
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 for each y j  do

  Find K-NN set for y j

  Optimize (2) to obtain ββ j

 Apply the transformation a j j! T""

  Estimate x̂ j  via (4)

End

Reconstruct ˆ ˆX x! " #j  via averaging

NLED, neighbor linear-embedding denoizing; VST, variance 
stabilizing transformation.

B. Experimental Setup
To ensure scale invariance, a multiscale model of NLED is trained 
using the three training datasets. This is achieved by obtaining res-
caled versions of coupled clean and noisy images, which are downs-
ampled with factors of 0.9, 0.8, 0.75, 0.5, and 0.25. These rescaled 
images are included in the patch-pair extraction process during the 
training phase.

A refinement approach is proposed to improve the current 
denoizing solution and account for the possibility of suboptimal 

optimizations and the final patch-averaging operation. As a straight-
forward extension, the main algorithm of NLED in Algorithm 1 and 
VST+NLED in Algorithm 2 are adapted into a multi-pass scheme. 
In this scheme, the denoizing outputs obtained from the previous 
pass are used as the inputs for the following pass, and the same 
algorithm is applied in each. This method involves multiple passes 
to refine the learned transformations during both training and test 
phases. This iterative process aims to improve the denoizing solu-
tion and reduce suboptimal optimizations and patch-averaging 
errors. It is worth noting that VST is only employed in the first pass 
of Algorithm 2, while subsequent passes use the outputs of the 
previous pass as inputs.

C. Experimental Results and Discussion
Statistical and visual comparisons are given in this section to evalu-
ate the performance of the proposed denoizing algorithm. All exper-
iments are carried out with patch size of 9 9×  pixels and the number 
of neighbors K =16 . The parameters are analyzed in terms of the 
content of the training dataset, the number of passes, and the effect 
of the additional VST algorithm. Table I reports the statistical results 
of NLED and VST+NLED on the mixed test dataset in terms of peak 
signal-to-noise ratio (PSNR) and structural similarity index measure 
(SSIM). These statistics show that VST makes a contribution to the 
obtained results, but it is less significant than the content of the 
training dataset and the multi-pass strategy. In terms of PSNR, the 
best test performance is achieved with VST+NLED using the MICE 
training set.

TABLE IV. MULTI-PASS NLED DENOIZING PERFORMANCE ON WIDEFIELD MICROSCOPY IMAGES

Wide"eld Noisy Input Pass-1 Pass-2 Pass-3

Sample Method Training Dataset PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

BPAE (nuclei) NLED MICE 25.58/0.4702 29.36/0.6412 30.17/0.6819 30.48/0.6985

NLED ZEBRA 25.58/0.4702 30.11/0.6743 31.54/0.7439 32.38/0.7809

NLED MICE+ZEBRA 25.58/0.4702 29.90/0.6648 31.17/0.7269 31.81/0.7591

VST+NLED MICE 25.58/0.4702 29.36/0.6420 30.18/0.6833 30.48/0.6995

VST+NLED ZEBRA 25.58/0.4702 30.17/0.6776 31.62/0.7487 32.38/0.7865

VST+NLED MICE+ZEBRA 25.58/0.4702 29.95/0.6678 31.11/0.7250 31.75/0.7570

BPAE (F-actin) NLED MICE 23.88/0.4747 28.19/0.6512 29.37/0.7022 29.83/0.7230

NLED ZEBRA 23.88/0.4747 28.87/0.6788 30.71/0.7552 31.63/0.7925

NLED MICE+ZEBRA 23.88/0.4747 28.67/0.6708 30.36/0.7410 31.20/0.7754

VST+NLED MICE 23.88/0.4747 28.21/0.6520 29.40/0.7036 29.86/0.7240

VST+NLED ZEBRA 23.88/0.4747 28.94/0.6819 30.83/0.7598 31.76/0.7971

VST+NLED MICE+ZEBRA 23.88/0.4747 28.75/0.6738 30.33/0.7398 31.16/0.7739

BPAE (Mito) NLED MICE 26.23/0.5114 29.76/0.6735 30.56/0.7127 30.88/0.7287

NLED ZEBRA 26.23/0.5114 30.43/0.7019 31.77/0.7648 32.46/0.7974

NLED MICE+ZEBRA 26.23/0.5114 30.24/0.6937 31.45/0.7507 32.06/0.7796

VST+NLED MICE 26.23/0.5114 29.77/0.6742 30.58/0.7139 30.89/0.7295

VST+NLED ZEBRA 26.23/0.5114 30.48/0.7046 31.86/0.7689 32.57/0.8022

VST+NLED MICE+ZEBRA 26.23/0.5114 30.29/0.6963 31.41/0.7492 32.02/0.7781

NLED, neighbor linear-embedding denoizing; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure; VST, variance stabilizing transformation.
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Additionally, Tables II–IV give more detailed statistical performance 
comparisons for individual biological samples of specific types 
of microscopy images. As can be clearly seen from these tables, 
VST+NLED (slightly) improves the statistics when compared to NLED 
alone. Table II demonstrates statistical comparisons for two-photon 
microscopy images. In this setup, VST+NLED using MICE is the most 
successful approach for all biological samples of two-photon images.

Similarly, Table III summarizes statistical results for confocal micros-
copy images. Of all biological samples, the superior results are 
obtained with VST+NLED and the MICE training set. Furthermore, 
according to Table IV, widefield microscopy images can be success-
fully denoized by VST+NLED with ZEBRA because of the similarity 
between confocal and widefield microscopy techniques. Note here 
that the widefield microscopy images are not included in any train-
ing sets. Also, the multi-pass approach proved to be very effective in 
most experiments.

A statistical comparison with the other benchmark algorithms in 
the literature is given in Table V. Variance stabilizing transforma-
tion + neighbor linear-embedding denoizing clearly outperforms 
VST+NLM, VST+BM3D, VST+K-SVD, VST+KSVD(D) (with an over-com-
plete Discrete cosine transform [DCT] dictionary), VST+KSVD(G) (with 
a global trained dictionary), VST+EPLL, VST+WNNM, and PURE-LET 
denoizing systems not only statistically but also visually, as seen in 
Fig. 1 and Fig. 2. Fig. 1 illustrates an example visual comparison of the 
denoized zebrafish image from confocal microscopy and Fig. 2 dem-
onstrates the image denoizing results of the colored widefield micros-
copy. It can be concluded that the developed NLED (and VST+NLED) 
method has superior statistics in comparison with the other traditional 
methods, while its performance is potentially competitive against 
deep-learning architectures, e.g., DnCNN and Noise2Noise.

TABLE V. STATISTICAL COMPARISON WITH THE BENCHMARK METHODS

Method PSNR SSIM

Noisy Input 27.22 0.5442

VST+NLM 31.25 0.7503

VST+BM3D 32.71 0.7922

VST+K-SVD 32.02 0.7746

VST+K-SVD(D) (DCT dictionary) 31.77 0.7712

VST+K-SVD(G) (global dictionary) 31.98 0.7752

VST+EPLL 32.61 0.7876

VST+WNNM 32.52 0.7880

PURE-LET 31.95 0.7664

DnCNN 34.88 0.9063

Noise2Noise 35.40 0.9187

Proposed NLED-(MICE) 32.83 0.8777

Proposed NLED-(ZEBRA) 32.49 0.8839

Proposed NLED-(MICE+ZEBRA) 32.63 0.8834

Proposed VST+NLED-(MICE) 32.90 0.8794

Proposed VST+NLED-(ZEBRA) 32.50 0.8853

Proposed VST+NLED-(MICE+ZEBRA) 32.68 0.8845

BM3D, block-matching and 3D $ltering; DnCNN, denoizing convolutional neural 
network; EPLL, expected patch log likelihood; NLED, neighbor linear-
embedding denoizing; NLM, non-local means; PURE-LET, Poisson unbiased risk 
estimate–linear expansion of thresholds; VST, variance stabilizing 
transformation; WNNM, weighted nuclear norm minimization.

Fig. 1. Visual comparisons of the denoized zebra$sh image from confocal microscopy. (Top-two-rows left- to-right) Noisy input, ground truth, 
VST+NLM, VST+BM3D, VST+K-SVD, VST+K-SVD(D), and VST+K-SVD(G). (Bottom-two-rows left-to-right) VST+EPLL, VST+WNNM, PURE-LET, DnCNN, 
Noise2Noise, and VST+NLED.
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IV. CONCLUSION

This study introduces a new and effective method to remove Poisson–
Gaussian noise from fluorescence microscopy images using a patch-
based approach called NLED. The technique utilizes neighbor linear 
embeddings to understand the relationship between the geometric 
properties of clean and noisy patch spaces. In the study, NLED was 
proven to produce denoizing results often superior to similar bench-
mark studies in the field. Although not a deep-learning method 
itself, if it were redesigned in a layered structure, it has the potential 
to be a strong competitor to those methods. Future research should 
focus on extending NLED to the area of deep structures.
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