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I. INTRODUCTION

A dramatic increase in interest in renewable energy sources has been witnessed in recent years, 
driven by growing concerns about the impact of traditional fossil fuels such as coal, oil, and gas 
on the environment and the severity of climate change [1]. Solar energy stands out among these 
sustainable alternatives since it is abundant, cheap, clean, and everywhere [2]. Photovoltaic (PV) 
systems are an effective way to tap into this limitless energy source, and accurate modeling is 
crucial to the system’s success [3].

The modeling of PV systems commonly makes use of three well-known PV cell models: the single-
diode (SD), double-diode (DD), and more sophisticated three-diode (TD) models. On the other 
hand, these models include a number of concealed physical characteristics that are not included 
in the datasheets given by the manufacturer [4]. It is necessary to accurately determine these 
unknown characteristics for various reasons, including quality assurance, performance evalua-
tion, and the essential function of maximum power point tracking in PV systems [5].

When it comes to the efficient utilization of solar cells and modules and their incorporation into 
renewable energy systems, having a firm grasp of the criteria that determine their performance is 
absolutely necessary [6]. When seen in this light, methods of parameter estimation have evolved 
into indispensable instruments. There is a comprehensive evaluation of recent advancements 

WHAT IS ALREADY KNOWN ON THIS TOPIC?

• Accurate parameter extraction for PV models is 
essential for optimizing solar energy systems, with 
metaheuristic algorithms commonly employed 
for this purpose. However, existing methods like 
PSO and ABC often suffer from slow convergence, 
poor exploration-exploitation balance, and 
limited precision, especially for complex models 
such as the three-diode PV model.

WHAT THIS STUDY ADDS ON THIS TOPIC?

• This study introduces the SCHO for the first time 
in PV parameter extraction, achieving superior 
accuracy with consistently low RMSE values across 
single-, double-, and three-diode models, as well as 
PV module models. The results highlight its versatility 
and reliability in diverse PV modeling scenarios.

• By leveraging the unique properties of hyperbolic 
functions and balancing exploration and 
exploitation phases effectively, the SCHO addresses 
key limitations of existing methods. It ensures 
faster convergence, higher stability, and improved 
parameter optimization for complex PV systems, 
significantly advancing the field of solar energy 
research.
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in optimization strategies for extracting parameters in PV models 
that can be found in the published literature [7–15]. The studies 
employed various metaheuristic algorithms to tackle the intricate 
challenges associated with accurately estimating parameters cru-
cial for optimizing PV system efficiency. For example, the bald eagle 
search algorithm showcased superior accuracy in SD and DD models, 
emphasizing its effectiveness in identifying and optimizing PV solar 
cell parameters [16]. The circle search algorithm addressed the non-
linearity and complexity of the TD model, exhibiting robustness and 
speed in determining optimal parameters for PV modules [17]. The 
artificial hummingbird algorithm has emerged as one of the most 
effective approaches for parameter extraction in various PV models, 
consistently outperforming alternative methods in terms of preci-
sion and accuracy [18]. A significant contribution in this area came 
from the weighted mean of vectors technique, known as the INFO 
method, which demonstrated statistical superiority by providing 
exceptional accuracy and reliability when applied to a wide range 
of PV cells and modules [19]. The versatility of the INFO method 
became evident through its successful application to both SD and 
DD models, further solidifying its potential to drive advancements 
in solar energy systems by ensuring more efficient parameter extrac-
tion [20]. Furthermore, the dandelion optimizer, when integrated 
with the Newton-Raphson numerical approach, offered distinct 
advantages not only in terms of accuracy but also in dependability 
and convergence speed, proving its effectiveness in tackling com-
plex optimization challenges [21]. These developments highlight 
the continuous evolution of parameter extraction techniques, pav-
ing the way for more robust and efficient solutions in solar energy 
research and implementation.

These studies collectively offer crucial insights into the evolving 
landscape of optimization techniques for PV parameter extraction, 
significantly contributing to the development of more efficient and 
sustainable PV systems. Each method brings unique innovations 
and advantages, accelerating advancements in renewable energy 
research. However, despite their benefits, certain approaches face 
notable challenges, such as slow convergence and limited popula-
tion diversity, which can hinder performance under certain condi-
tions [22]. Moreover, the inherent randomness in metaheuristic 
algorithms can occasionally lead to suboptimal convergence rates 
and stability issues. A major limitation in the current body of research 
is the predominant focus on parameter estimation for SD and DD 
models, with minimal attention given to more complex models like 
the TD model [23].

In response to these gaps, this study takes on the critical challenge 
of PV model parameter estimation, introducing a novel and highly 
efficient methodology. Specifically, this paper proposes the sinh 
cosh optimization (SCHO) method [24], an innovative metaheuris-
tic designed for parameter estimation in PV models. To the best of 
our knowledge, this is the first research to explore and demonstrate 
the potential of the SCHO in the context of PV parameter extraction. 
The SCHO method offers several unique advantages that set it apart 
from conventional algorithms. First, by harnessing the distinctive 
mathematical properties of the hyperbolic sine and cosine functions, 
SCHO facilitates faster convergence toward optimal solutions, which 
is particularly advantageous in real-time applications where rapid 
parameter adjustment is essential. Additionally, the SCHO method 
incorporates a dynamic switching mechanism between explora-
tion and exploitation phases, ensuring a balanced approach that 
allows for thorough global search (exploration) while also refining 

local optima (exploitation). This feature helps to prevent premature 
convergence, a common issue in widely used techniques such as 
particle swarm optimization (PSO) and atom search optimization 
(ASO). Moreover, the SCHO consistently achieves lower root mean 
square error (RMSE) values with smaller standard deviations when 
compared to traditional algorithms, indicating higher accuracy and 
reliability. Another notable strength of SCHO is its adaptive weight-
ing mechanism, which introduces variability within the popula-
tion, thereby enhancing diversity and improving the algorithm’s 
global search capabilities. These features collectively position SCHO 
as a robust and effective solution for overcoming the limitations 
observed in previous PV parameter extraction methods.

This research focuses on the RTC France solar cell, examining its per-
formance across SD, DD, and TD models, as well as the Photowatt-
PWP201 PV module, which is included as an additional case study. 
These models are widely used benchmarks in PV research, offering 
well-documented performance data, which ensures their suitability 
for validating new optimization algorithms. The RTC France solar cell 
has been extensively used in the literature for its accuracy in rep-
resenting typical solar cell behavior, making it a reliable choice for 
comparison with other methods. Similarly, the Photowatt-PWP201 
module provides robust evaluation metrics for PV module modeling, 
particularly in multi-diode and module parameter estimation stud-
ies. These factors make them ideal for evaluating the effectiveness of 
the SCHO across diverse PV models.

Statistical and convergence analyses were implemented to guarantee 
that our findings were thoroughly assessed and interpreted. These 
analyses provided essential insights, enabling us to draw meaningful 
conclusions about the efficacy of the SCHO in optimizing a variety of 
solar cell models. The SCHO’s experimental results for various model 
optimizations indicate that parameter estimation is highly precise. 
The algorithm that has been proposed consistently obtains low RMSE 
values, which confirms its superior capacity to precisely estimate cur-
rent–voltage characteristics. Furthermore, the SCHO exhibits seam-
less and consistent convergence behavior. The method’s accuracy 
in modeling is demonstrated by the firm congruence between the 
experimental and estimated values, as indicated by the performance 
metrics. We also conducted a comprehensive statistical comparison 
of the SCHO’s performance with alternative methods [25–37]. This 
comparison further underscores the competitive advantage of the 
SCHO in terms of optimization of PV model parameters.

To summarize, this work introduces the SCHO method for the first 
time in literature as a potent and contemporary metaheuristic 
approach for PV models’ parameter estimation, addressing existing 
gaps in the optimization landscape. The application of the SCHO to 
the RTC France solar cell and Photowatt-PWP201 PV module show-
cases its effectiveness in navigating the intricate parameter space of 
diverse solar cell models, emphasizing its potential for advancing the 
field of renewable energy. The statistical and convergence analyses 
provide robust evidence of the SCHO’s superior performance, set-
ting it apart from alternative methods. This study contributes a novel 
methodology to the evolving field of PV parameter optimization, 
promising enhanced efficiency and sustainability in PV systems.

II. SINH COSH OPTIMIZER

An innovative new metaheuristic algorithm called SCHO uses the 
hyperbolic trigonometric functions of sinh and cosh [24] to find 
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the best solution. Exploration, exploitation, bounded search, and 
switching methods are the four most important parts of the SCHO. 
Like other metaheuristic algorithms, SCHO starts by picking a set of 
possible answers at random, as shown in (1).
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In (1), xi,j is the jth point of the ith solution, N is the number of possi-
ble solutions, dim is the size of the problem, and X is a set of random 
possible solutions found by running = rand (N, dim) × (ub − lb) + lb. 
In the latter definition, rand is a random number between 0 and 1, 
and ub and lb are the upper and lower limits, respectively. The SCHO 
exploration phase is made up of two parts, which are chosen by 
T = floor (tMax/ct), where tMax is the highest number of iterations and 
ct is the switching coefficient, which is set to 3.6 by default for SCHO. 
The following description is used for the first part of the exploration.
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Here, X i j
t
,� �
�1  and X i j

t
,� �  are the jth and ith positions of the ith solu-

tion in the next and current iterations, respectively. X best
j
� �
� �  is the 

jth position of the best solution found so far, and r1 and r2 are ran-
dom numbers in the range [0, 1]. In the first exploration phase, W1 
is the weighting coefficient of X i j

t
,� � . It can be written as W1 = r3 × 

α1 × (cosh r4 + 0.388 × sinh r4 − 1). In this case, r3 and r4 are random 
numbers between 0 and 1, and α1 = 3 × (−1.3 × (t/tMax) + 0.45). The 
following position update rule is used in the second part of the 
exploration.
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In the second exploration phase, W2 is the weighting coefficient of 
X i j

t
,� � . It is described as W2 = r6 × α2. In this case, r5 and r6 are random 

numbers between 0 and 1, and α2 = 2 × (−(t/tMax) + 0.5). The exploita-
tion phase also has two parts, just like the exploration phase. The 
following definition is used in the first step of exploitation.
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Here, r7 and r8 are random numbers between 0 and 1. In the first step 
of exploitation, W3 is the weighting coefficient of X i j

t
,� � . It can be 

written as W3 = r9 × α1 × (coshr10 + 0.388 × sinhr10). r9 and r10 are picked 
at random from the range [0, 1]. The following definition is used to 
do deep exploitation around the best solution found so far in the 
second exploitation step:
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where r11 and r12 are numbers picked at random from the range [0, 1]. 
This type of search technique is also used in SCHO. For this approach 
to work, the following form is used:

BS BS floor t BSk k Max k� � � ��� ��1 4 6( ) / .  (6)

where k is a positive number that starts at 1, and BSk+1 and BSk are the 
amounts of times the next and current bounded search strategies 
are run. To move from exploration to exploitation in SCHO, there is 
a switching process. The following definition is used to describe the 
switching mechanism employed in the SCHO method.
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where r13 are random numbers within [0, 1]. For A > 1, SCHO performs 
exploration and for A < 1, the exploitation is performed. In light of 
the description provided so far, Fig. 1 displays a detailed flowchart of 
the SCHO method.

III. SOLAR PHOTOVOLTAIC SYSTEM’S PROBLEM 
FORMULATION

A. Model 1: Single Diode
As a simplified but useful mathematical picture of how a PV cell 
works electrically, the SD model is useful. The idea behind this form 
is that a SD linked in series with a current source can well represent 
the PV cell. Even though it is very basic, the SD model does a good 
job of capturing the most important parts of the PV cell’s electrical 
reaction while still being computationally efficient. The link between 
a PV cell’s current and voltage is shown below in the SD model.
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In (8), I represents the PV cell’s output current, and V is the voltage 
across its terminals. The photocurrent generated by the cell when 
exposed to light is denoted as Iph, while Isd refers to the diode satu-
ration current. Rs and Rsh represent the series and shunt resistances 
of the cell, respectively. The diode ideality factor is given as n, and 
the thermal voltage Vt is defined as kT/q, where k is Boltzmann’s con-
stant, T is the temperature in Kelvin, and q is the elementary charge. 
Fig. 2 is a conceptual drawing of a solar PV cell using the SD model. It 
shows a similar circuit to help understand it better.

B. Model 2: Double Diode
The DD model is a more advanced way to describe PV cells because it 
includes more diodes to account for more complex electrical behav-
ior. This improved model adds an extra diode to deal with recombi-
nation losses in the PV cell. This makes the model more accurate and 
complex in representing how PV cells work in the real world. In the 
DD model, the following equation shows how the current and volt-
age of a PV cell are related:
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In this text, the main diode’s saturation current is represented by Isd1, 
and the extra diode’s saturation current is denoted by Isd2. The main 
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diode’s ideality factor is n1, and the extra diode’s ideality factor is n2. In 
Fig. 3, the DD model is used to show how a solar PV cell works in theory.

C. Model 3: Three Diode
While the SD and DD models give a better idea of how a PV cell works, 
the TD model provides a more detailed picture. This model shows 
that I = Iph − Id1 − Id2 − Id3 − Ish, where Id1 denotes the current through 
the ideal diode, Id2 represents the current through the recombina-
tion diode, and Id3 corresponds to the current flowing through the 
shunt diode. Given this configuration, the total current in the PV cell 
within the TD model can be determined by summing the currents 
from these three diodes.
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In here, the ideality factors of the diodes D1, D2, and D3 are given by 
n1, n2, and n3, respectively. Using the TD model, Fig. 4 shows the cor-
responding circuit of a solar PV cell.

D. Model 4: Photovoltaic Module
The PV module model illustrates the relationship between tempera-
ture, sunlight exposure, and the module’s electrical characteristics. 
This model assumes that the PV module can be represented by a 
SD connected in parallel with a current source. The circuit diagram 
corresponding to this PV module is depicted in Fig. 5. In this con-
figuration, Np and Ns represent the number of cells connected in par-
allel and series, respectively. Typically, Np = 1, as most solar cells are 
arranged in series. Based on this configuration, the following pro-
vides a mathematical representation of a PV module.
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Fig. 1. Flowchart of sinh cosh optimization.

Fig. 2. Equivalent circuit for single-diode model. Fig. 3. Equivalent circuit for double-diode model.
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IV. DEFINITION OF OPTIMIZATION PROBLEM AND 
IMPLEMENTATION OF SING COSH OPTIMIZER METHOD

The objective function is an integral component of the process of 
parameter estimation in PV cells. Its purpose is to evaluate the cor-
rectness of the estimated parameters by comparing the modeled 
current–voltage curve with the actual data that was measured. The 
RMSE is a measure that is frequently utilized for the purpose of mea-
suring the degree of goodness of fit. In accordance with (12), this 
metric provides a quantitative representation of the average size of 
the differences that exist between the estimated current (Iest) and the 
experimentally observed current (Iexp).

RMSE
N

I I
i

N

exp est� �� �
�
�1

1

2
 (12)

In this context, N denotes the complete set of data points. Root mean 
square error offers a thorough evaluation of the total discrepancy 
between the model and the observed data. In light of the foregoing 
explanation, Fig. 6 illustrates the schematic diagram of parameter 
estimation for PV models using the SCHO method.

V. ANALYSIS OF SIMULATION OUTCOMES AND DISCUSSION

This section presents the experimental results and statistical analy-
ses. The RTC France solar cell and the Photowatt-PWP201 PV mod-
ule are used as case studies. To ensure uniformity and objectivity, 
a set population size of 40 and a maximum of 500 iterations were 
applied to all trials. Each case study was also run 25 times to account 
for any differences that might have occurred during the optimiza-
tion process. We used the SCHO method to fine-tune the settings for 
improving the SD, DD, TD, and PV models. This allowed us see how 

well it worked with different types of solar cells. The parameter limits 
for the SD, DD, and TD models are provided in Table I, while Table II 
describes the limits for the PV model.

A. Simulation Results of Single-Diode Model
This section presents the experimental results of the SD model opti-
mization achieved using the SCHO. Table III provides a summary 
of the estimated parameters for the SD model, along with the cor-
responding statistical RMSE value. The results highlight the SCHO’s 
capability to deliver a low RMSE, demonstrating high accuracy in 
parameter estimation and precise modeling of the current–voltage 
characteristics for the SD model. Additionally, Figs. 7 and 8 showcase 

Fig. 4. Equivalent circuit for three-diode model.

Fig. 5. Equivalent circuit for photovoltaic module model.

Fig. 6. Schematic diagram of parameter estimation of photovoltaic 
models via sinh cosh optimizer method.

TABLE I. PARAMETER LIMITS OF SINGLE-DIODE, DOUBLE-DIODE, AND 
THREE-DIODE MODELS

Parameter Lower Limit Upper Limit

Iph (A) 0 1

Isd (µA) 0 1

Isd1, Isd2, Isd3 (µA) 0 1

RS (Ω) 0 0.5

Rsh (Ω) 0 100

n 1 2

n1, n2, n3 1 2
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the current-voltage and power–voltage curves for the SD model opti-
mized through SCHO. These figures clearly illustrate that the opti-
mized model effectively captures the solar cell’s behavior, as shown 
by the close match between the curves and the experimental data.

In terms of demonstrating the efficacy of the SCHO for the SD model 
optimization, a comparative assessment was also performed by 
using 13 different approaches reported for the SD modeling in the 
literature. These methods include teaching–learning-based artificial 
bee colony (TLABC) algorithm [28], slime mould algorithm (SMA) 
[34], inspired grey wolf (IGWO) [29], gradient-based (GBO) [32], PSO 
[37], improved learning search (ILSA) [26], generalized oppositional 
teaching learning (GOTLBO) [27], improved opposition-based whale 
(OBWOA) [30], comprehensive learning particle swarm (CLPSO) [36], 
sunflower (SFO) [31], spherical evolution (SE) [33], hybrid multi-
group stochastic cooperative particle swarm (HMSCPSO) [25], and 
ASO [35] algorithms.

The results in Table IV demonstrate that the SCHO method exhibits 
remarkable performance in the comparison of RMSE results with 13 
other optimization algorithms applied to the SD model. Sinh cosh 
optimizer consistently achieves a minimum, maximum, and mean 
RMSE of 9.8602E−04, showcasing remarkable stability and unifor-
mity in its outcomes. The exceptionally low standard deviation of 
7.1590E−18 further underscores the method’s precision, indicating 
almost negligible variation in results across multiple runs. In com-
parison to alternative algorithms, SCHO’s performance is not only 
comparable in terms of minimum and mean RMSE values but also 
stands out for its unparalleled consistency, as reflected in the sub-
stantially lower standard deviation.

The efficacy of the SCHO method is particularly noteworthy when 
considering its consistent and reliable performance in minimiz-
ing RMSE, positioning it as a highly promising and dependable 
approach for SD model optimization in contrast to the other algo-
rithms assessed in this study.

B. Simulation Results of Double-Diode Model
This section presents the experimental results of the DD model opti-
mization performed using the SCHO. Table V provides a summary 

of the estimated parameters for the DD model, along with the cor-
responding RMSE value. The results highlight the SCHO’s capability 
to achieve a low RMSE and deliver accurate parameter estimation, 
indicating precise modeling of the current–voltage characteristics 
for the DD model.

It is also important to note that Figs. 9 and  10 illustrate the current–
voltage and power–voltage curves of the DD model that has been 
tuned with SCHO. The improved model is able to correctly depict the 
behavior of the solar cell, as evidenced by the fact that the curves 
and the experimental data are so closely matched with one another. 
That the model is successful in accomplishing this goal is demon-
strated by these figures in a compelling manner.

To further demonstrate the efficacy of the SCHO for the DD model 
optimization, a comparative assessment was also performed by 
using 13 different approaches (listed in Table VI) reported for the DD 

TABLE II. PARAMETER LIMITS OF PHOTOVOLTAIC MODULE MODELS

Parameter Lower Limit Upper Limit

Iph (A) 0 2

Isd (µA) 0 50

Rs (Ω) 0 2

Rsh (Ω) 0 2000

n 1 50

TABLE III. ESTIMATED PARAMETERS OF SINGLE-DIODE MODEL WITH  SINH 
COSH OPTIMIZER METHOD

Iph (A) Isd (µA) Rs (Ω) Rsh (Ω) n RMSE

0.76078 0.32302 0.036377 53.719 1.4812 9.8602E−04

RMSE, root mean square error.

Fig. 7. Current–voltage curve characteristics of single-diode model.

Fig. 8. Power–voltage curve characteristics of single-diode model.
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modeling in the literature. The effectiveness of the SCHO method 
is evident in its application to the DD model optimization, as dem-
onstrated by the RMSE comparison with 13 other optimization 
algorithms. Sinh cosh optimizer consistently achieves a minimum, 
maximum, and mean RMSE of 9.8248E−04, underlining its robust 
and reliable performance.

The standard deviation, remarkably low at 5.9197E−12, emphasizes 
the method’s precision and stability across multiple runs. In contrast 
to alternative algorithms, SCHO’s performance is not only competi-
tive in terms of minimum and mean RMSE values but also stands out 
for its exceptionally low standard deviation. This suggests that SCHO 
provides not only accurate but also highly consistent results, mak-
ing it a standout choice for optimizing the DD model of a solar cell. 
The negligible variation in results positions SCHO as a promising and 
dependable approach for enhancing the accuracy of predictions in 
the context of the DD solar cell model compared to the other algo-
rithms considered in this study.

C. Simulation Results of Three-Diode Model
This section presents the experimental results of the TD model 
optimization using the SCHO. Table VII provides a summary of 

the estimated parameters for the TD model, along with the corre-
sponding RMSE value. The results highlight the SCHO’s capability 
to achieve a low RMSE and deliver accurate parameter estimation, 
indicating precise modeling of the current–voltage characteristics 
for the TD model.

Additionally, Figs. 11 and 12 show the current–voltage and power–
voltage curves for the TD model optimized with SCHO. Because of 
the strong agreement between the curves and the experimental 
data, these figures make it abundantly evident that the optimized 
model properly captures the behavior of the solar cell. This is shown 
by the fact that the curves represent the data.

To further demonstrate the efficacy of the SCHO for the TD model 
optimization, a comparative assessment was also performed by 
using 13 different approaches (listed in Table VIII) reported for 
the TD modeling in the literature. The effectiveness of the SCHO 
method is apparent in its application to the TD solar cell model, as 
demonstrated by the RMSE comparison with 13 other optimization 
algorithms. Sinh cosh optimizer consistently achieves a minimum, 
maximum, and mean RMSE of 9.8248E−04, indicating its robust and 
reliable performance in minimizing prediction errors for the TD solar 

TABLE IV. COMPARISON OF ROOT MEAN SQUARE ERROR RESULTS BETWEEN SINH COSH OPTIMIZER AND 13 DIFFERENT METHODS REPORTED FOR THE 
SINGLE-DIODE MODEL

Algorithm Minimum Maximum Mean Standard Deviation

HMSCPSO 9.8602E−04 9.8602E−04 9.8602E−04 5.7282E−15

PSO 1.4385E−03 2.0699E−01 1.8551E−02 3.9068E−02

CLPSO 9.8615E−04 1.1402E−03 1.0047E−03 3.6466E−05

ASO 1.2608E−03 1.4181E−02 3.0480E−03 3.2805E−03

SMA 1.2064E−03 3.8140E−03 1.9438E−03 5.5692E−04

SE 2.4378E−03 2.4430E−03 2.4396E−03 1.5243E−06

GBO 9.8602E−04 9.8602E−04 9.8602E−04 1.0895E−12

SFO 1.0027E−03 9.5160E−03 3.1403E−03 2.0117E−03

OBWOA 9.8960E−04 7.0588E−03 1.9502E−03 1.1035E−03

IGWO 1.6799E−03 4.1120E−02 6.6947E−03 7.4765E−03

TLABC 9.8608E−04 1.0452E−03 9.9642E−04 1.2797E−05

GOTLBO 9.8602E−04 9.8602E−04 9.8602E−04 7.8549E−12

ILSA 9.9977E−04 4.4647E−03 1.3851E−03 6.8799E−04

SCHO 9.8602E−04 9.8602E−04 9.8602E−04 7.1590E−18

ASO, atom search optimization; CLPSO, comprehensive learning particle swarm; GBO, gradient-based; GOTLBO, generalized oppositional teaching learning; 
HMSCPSO, hybrid multi-group stochastic cooperative particle swarm; IGWO, inspired grey wolf; ILSA, improved learning search; OBWOA, improved opposition-based 
whale optimization; PSO, particle swarm optimization; SE, spherical evolution; SFO, sunflower; SMA, slime mould algorithm; TLABC, teaching–learning-based artificial 
bee colony.

TABLE V. ESTIMATED PARAMETERS OF DOUBLE-DIODE MODEL WITH SINH COSH OPTIMIZER METHOD

Iph (A) Isd1 (µA) Isd2 (µA)  Rs (Ω) Rsh (Ω) n1 n2 RMSE

0.76078 0.22597 0.74935  0.03674 55.485 1.451 2 9.8248E−04

RMSE, root mean square error.
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Fig. 9. Current–voltage curve characteristics of double-diode 
model.

Fig. 10. Power–voltage curve characteristics of double-diode 
model.

TABLE VI. COMPARISON OF RMSE RESULTS BETWEEN SINH COSH OPTIMIZER AND 13 DIFFERENT METHODS REPORTED FOR DOUBLE-DIODE MODEL

Algorithm Minimum Maximum Mean Standard Deviation

HMSCPSO 9.8249E−04 9.8768E−04 9.8521E−04 1.2717E−06

PSO 9.8286E−04 4.3495E−02 1.4217E−02 1.7652E−02

CLPSO 9.8608E−04 1.7587E−03 1.0631E−03 1.5193E−04

ASO 9.9236E−04 1.1281E−02 3.3761E−03 2.3006E−03

SMA 1.0477E−03 4.5841E−03 2.0125E−03 6.1928E−04

SE 9.9891E−04 2.4435E−03 1.9864E−03 4.3562E−04

GBO 9.8250E−04 1.3397E−03 1.0093E−03 8.9548E−05

SFO 1.1743E−03 2.5992E−02 5.3534E−03 6.2657E−03

OBWOA 1.1088E−03 4.0192E−03 2.0414E−03 6.5149E−04

IGWO 1.9197E−03 4.2447E−02 6.0593E−03 7.3472E−03

TLABC 9.8644E−04 2.4480E−03 1.0897E−03 2.8773E−04

GOTLBO 9.8262E−04 9.8691E−04 9.8471E−04 1.2777E−06

ILSA 1.0051E−03 6.4631E−03 2.0371E−03 1.2283E−03

SCHO 9.8248E−04 9.8248E−04 9.8248E−04 5.9197E−12

ASO, atom search optimization; CLPSO, comprehensive learning particle swarm; GBO, gradient-based; GOTLBO, generalized oppositional teaching learning; 
HMSCPSO, hybrid multi-group stochastic cooperative particle swarm; IGWO, inspired grey wolf; ILSA, improved learning search; OBWOA, improved opposition-based 
whale; PSO, particle swarm optimization; SE, spherical evolution; SFO, sunflower; SME, slime mould algorithm; TLABC, teaching–learning-based artificial bee colony.

TABLE VII. ESTIMATED PARAMETERS OF THREE DIODE MODEL WITH SINH COSH OPTIMIZER METHOD

Iph (A) Isd1 (µA) Isd2 (µA) Isd3 (µA) Rs (Ω) Rsh (Ω) n1 n2 n3 RMSE

0.76078 0.22597 0.74935 5.2416E−13 0.03674 55.485 1.451 2 1.672 9.8248E−04

RMSE, root mean square error.
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cell model. The slightly higher standard deviation, at 2.5371E−09, 
still underscores the method’s precision and stability across multiple 
runs. In comparison to alternative algorithms, SCHO’s performance 
is competitive in terms of minimum and mean RMSE values, with 
the standard deviation remaining impressively low. This suggests 
that SCHO not only delivers accurate results but also maintains a 
high level of consistency, making it a strong contender for optimiz-
ing the TD model. The negligible variation in results further supports 

the reliability of SCHO in enhancing prediction accuracy for the TD 
model, positioning it as a promising and dependable optimization 
approach compared to the other algorithms considered in this study.

D. Statistical Performance Validation of Sinh Cosh Optimization 
Method
The statistical performance of the SCHO method is assessed across 
three distinct solar cell models. The analysis, presented in Table IX, 
showcases the remarkable efficacy of the SCHO method in minimizing 

Fig. 11. Current–voltage curve characteristics of three-diode 
model.

Fig. 12. Power–voltage curve characteristics of three-diode model.

TABLE VIII. COMPARISON OF ROOT MEAN SQUARE ERROR RESULTS BETWEEN SINH COSH OPTIMIZER AND 13 DIFFERENT METHODS REPORTED FOR 
THREE-DIODE MODEL

Algorithm Minimum Maximum Mean Standard Deviation

HMSCPSO 9.8249E−04 9.8875E−04 9.8449E−04 1.7012E−06

PSO 9.8867E−04 2.2286E−01 3.1565E−02 4.9226E−02

CLPSO 9.8718E−04 1.6584E−03 1.0626E−03 1.3945E−04

ASO 1.5422E−03 1.4815E−02 3.8224E−03 2.7252E−03

SMA 9.8790E−04 4.7632E−03 2.0641E−03 7.3098E−04

SE 1.0384E−03 2.5241E−03 1.7261E−03 4.7103E−04

GBO 9.8252E−04 1.3008E−03 1.0101E−03 6.5732E−05

SFO 1.0480E−03 9.3214E−03 3.7184E−03 2.0384E−03

OBWOA 1.0370E−03 3.7377E−03 2.4524E−03 8.0763E−04

IGWO 1.8593E−03 5.8416E−02 6.9433E−03 1.0136E−02

TLABC 9.8916E−04 2.3912E−03 1.1365E−03 2.9090E−04

GOTLBO 9.8290E−04 9.9154E−04 9.8513E−04 2.0857E−06

ILSA 1.0906E−03 2.9440E−02 3.7149E−03 5.1369E−03

SCHO 9.8248E−04 9.8249E−04 9.8248E−04 2.5371E−09

ASO, atom search optimization; CLPSO, comprehensive learning particle swarm; GBO, gradient-based; GOTLBO, generalized oppositional teaching learning; 
HMSCPSO, hybrid multi-group stochastic cooperative particle swarm; IGWO, inspired grey wolf; ILSA, improved learning search; OBWOA, improved opposition-based 
whale optimization; PSO, particle swarm optimization; SE, spherical evolution; SFO, sunflower; SMA, slime mould algorithm; TLABC, teaching–learning-based artificial 
bee colony.
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RMSE for each model type. For the SD model, SCHO consistently 
achieves a minimum, maximum, and mean RMSE of 9.8602E−04, 
underscoring its exceptional stability and precision, as evidenced by 
the remarkably low standard deviation of 7.1590E−18. In the context 
of the DD solar cell model, SCHO demonstrates a similarly impressive 
performance, maintaining a uniform minimum, maximum, and mean 
RMSE of 9.8248E−04. The standard deviation, standing at 5.9197E−12, 
highlights the method’s precision and reliability across multiple runs. 
Extending its effectiveness to the TD model, SCHO showcases con-
sistent performance with a minimum, maximum, and mean RMSE of 
9.8248E−04 to 9.8249E−04. The standard deviation, though slightly 
higher at 2.5371E−09, remains impressively low, emphasizing the 
method’s reliability and accuracy. The results from Table IX collec-
tively affirm the efficacy of the SCHO method in optimizing various 
solar cell models, indicating its robustness and precision across dif-
ferent complexities, from SD to TD models. The consistently low RMSE 
values and minimal standard deviations underscore the reliability 
and stability of SCHO, making it a promising optimization method for 
a diverse range of solar cell configurations.

E. Convergence Curves of Sinh Cosh Optimizer Method
The convergence performance of SCHO across the SD, DD, and TD 
models for RMSE optimization is evaluated in this section. The SCHO 
demonstrates an impressive ability to consistently converge toward 
the lowest RMSE values achieved across the SD, DD, and TD models. 
Fig. 13 depicts the convergence behavior of SCHO.

Notably, it demonstrates swift convergence toward the lowest RMSE 
value for each model, achieved in earlier iterations for DD and TD 

models compared to the SD model. Such behavior underscores 
SCHO’s efficiency in fine-tuning the DD and TD model parameters. 
This finding emphasizes the algorithm’s capacity to adjust its conver-
gence behavior based on the complexities of various models, ensur-
ing effective and efficient optimization.

F. Simulation Results of Photovoltaic Model
The experimental results of the PV model optimization of the 
Photowatt-PWP201 PV module obtained via utilization of the SCHO 
are presented in this section. Table X summarizes the estimated 
parameters of the PV model obtained via SCHO. The respective table 
additionally reports the statistical RMSE value as well. The results high-
light the SCHO’s capability to produce low RMSE values and ensure 
high accuracy in parameter estimation, demonstrating its precision in 
modeling the current–voltage characteristics of the PV model.

Furthermore, the current–voltage and power–voltage curves of the 
PV model that was optimized using the SCHO are presented here, 
as can be seen in Figs. 14 and 15. These figures provide evidence 

TABLE IX. STATISTICAL PERFORMANCE OF SINH COSH OPTIMIZER FOR SINGLE-DIODE, DOUBLE-DIODE, AND THREE-DIODE MODELS

Model Type Minimum Maximum Mean Standard Deviation

SD 9.8602E−04 9.8602E−04 9.8602E−04 7.1590E−18

DD 9.8248E−04 9.8248E−04 9.8248E−04 5.9197E−12

TD 9.8248E−04 9.8249E−04 9.8248E−04 2.5371E−09

DD, double diode; SD, single diode; TD, three diode.

Fig. 13. Change of root mean square error objective functions for 
single-diode, double-diode, and three-diode models.

TABLE X. ESTIMATED PARAMETERS OF photovoltaic MODULE MODEL WITH 
SINH COSH OPTIMIZER METHOD

Iph (A) Isd (µA) Rs (Ω) Rsh (Ω) n RMSE

1.0305 3.4823 1.2013 981.98 48.643 2.42507E−03

RMSE, room mean square error.

Fig. 14. Current–voltage curve characteristics of photovoltaic 
module model.
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that the model has been successfully optimized by proving that the 
optimized model accurately captures the behavior of the PV module 
to a satisfactory degree. The fact that the model has been effectively 
optimized is made plainly clear by this. The fact that the curves are 
so well-aligned with the experimental data is proof that the model 
has been tuned in the proper manner. A clear illustration of this is 
provided by the fact that the curves are in agreement with the data.

To further demonstrate the efficacy of the SCHO for the PV module 
model optimization, a comparative assessment was also performed by 
using 13 different approaches (listed in Table XI) reported for the PV mod-
ule modeling in the literature. The effectiveness of the SCHO method is 
apparent in its application to the PV module model, as demonstrated 
by the RMSE comparison with 13 other optimization algorithms. Sinh 
cosh optimizer consistently achieves a minimum, maximum, and mean 
RMSE of 2.42507E−03, indicating its robust and reliable performance in 
minimizing prediction errors for the PV module model.

Fig. 15. Power–voltage curve characteristics of photovoltaic 
module model.

TABLE XI. COMPARISON ROOT MEAN SQUARE ERROR RESULTS BETWEEN SINH COSH OPTIMIZER AND 13 METHODS FOR PHOTOVOLTAIC  MODULE MODEL 

Algorithm Minimum Maximum Mean Standard Deviation

HMSCPSO 2.4251E−03 2.4251E−03 2.4251E−03 1.0163E−13

PSO 2.5960E−03 3.1526E−01 9.5950E−02 1.1586E−01

CLPSO 2.4252E−03 2.4404E−03 2.4297E−03 4.2654E−06

ASO 3.0963E−02 8.5895E+00 1.8985E+00 2.2757E+00

SMA 2.5056E−03 2.5820E−02 3.3705E−03 4.2402E−03

SE 2.4318E−03 4.2870E−02 7.6165E−03 8.6671E−03

GBO 2.4251E−03 2.4251E−03 2.4251E−03 1.0812E−11

SFO 2.4426E−03 5.9764E−02 2.3963E−02 1.7439E−02

OBWOA 2.4326E−03 7.2608E−03 3.0451E−03 1.1361E−03

IGWO 2.6728E−03 2.7434E−01 8.5910E−02 1.2545E−01

TLABC 2.4252E−03 2.7563E−03 2.5305E−03 9.3960E−05

GOTLBO 2.4251E−03 2.7425E−01 2.0547E−02 6.8964E−02

ILSA 2.4308E−03 3.4786E−03 2.6102E−03 1.7788E−04

SCHO 2.42507E−03 2.42507E−03 2.42507E−03 1.4383E−15

ASO, atom search optimization; CLPSO, comprehensive learning particle swarm; GBO, gradient-based; GOTLBO, generalized oppositional teaching learning; 
HMSCPSO, hybrid multi-group stochastic cooperative particle swarm; IGWO, inspired grey wolf; ILSA, improved learning search; OBWOA, improved opposition-based 
whale optimization; PSO, particle swarm optimization; SE, spherical evolution; SFO, sunflower; SMA, slime mould algorithm; TLABC, teaching–learning-based artificial 
bee colony.

Fig. 16. Change of root mean square error objective function for 
photovoltaic module model.
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The convergence performance of SCHO across the PV module model 
for RMSE optimization is also evaluated in this study. Fig. 16 depicts 
the convergence behavior of SCHO. As demonstrated in the latter 
figure, SCHO exhibits a remarkable capability to converge toward 
the low RMSE value, underscoring SCHO’s efficiency in fine-tuning 
the parameters of the PV module model.

VI. CONCLUSION

Recognizing the critical importance of accurate modeling in opti-
mizing solar energy systems, this study has tackled the significant 
task of parameter estimation in PV models. Improving solar energy 
usage is highly dependent on accurately characterizing PV systems, 
which in turn relies on estimating hidden parameters in these mod-
els. To our knowledge, this is the first publication to provide the 
SCHO approach as a novel and potent metaheuristic tool for PV 
model parameter estimation. All of the study’s results point to the 
SCHO technique as an excellent way to get precise parameters for 
PV models. As a means of maintaining uniformity and impartiality, 
the research centered on the Photowatt-PWP201 PV module and the 
RTC France solar cell. Parameter tuning for the SD, DD, TD, and PV 
solar cell models was executed with the SCHO approach in a smooth 
manner by utilizing a common experimental framework. We used 
statistical analysis and examined convergence behavior to evaluate 
the data thoroughly. When compared to more conventional algo-
rithms such as PSO, ASO, and SMA, the experimental findings show 
that SCHO routinely achieves faster and more accurate convergence. 
For example, SCHO attains an RMSE of 9.8602E−04 for the SD model, 
which is much lower than other approaches’ standard deviations 
(7.1590E−18 vs. PSO’s 3.9068E−02), suggesting that SCHO performs 
more consistently across several trials. When compared to other 
approaches, SCHO’s smooth convergence curves across all models 
show that it can quickly and accurately fine-tune parameters, making 
it a promising contender for real-time optimization in solar systems.

Beyond the achievements presented in this work, the SCHO method 
holds significant potential for future applications. Its ability to rap-
idly converge and produce low-error estimates makes it a promising 
candidate for real-time parameter tuning in adaptive solar energy 
systems. Additionally, the method could be integrated into hybrid 
renewable energy systems, where multiple energy sources need opti-
mization in dynamic environments. Moreover, the SCHO’s robustness 
in different PV models indicates its broader applicability across vari-
ous renewable energy domains, including wind energy systems and 
battery storage optimizations, where accurate parameter estimation 
is critical. Future work could explore extending the SCHO method to 
handle multi-objective optimization problems [38–41], allowing for 
the simultaneous optimization of efficiency, cost, and sustainability.
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