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ABSTRACT

Electric vehicle charging stations (EVCSs) in the distribution system are attracting more attention these days. 
Several technical and economic issues are associated with their management and the overall power drawn 
from the grid. Reactive power compensation has also been identified as a key operational consideration when 
using such systems. While utility-based reactive power units can be operated within the system, reactive power 
compensating units commissioned by EVCS owners can help address issues such as expanded line loading 
capacity, reserved capacity, installed capacity, and increased line losses. While optimization methods such as 
genetic algorithms and particle swarm optimization have been proposed, their practical implementation in large-
scale systems remains underexplored. As the number of EVCSs in the distribution network grows, the number 
of compensating units involved will increase, necessitating advanced optimization techniques to determine 
the appropriate rating for each EVCS at the charging station. The Firefly Algorithm, developed using MATLAB 
software, is employed to tackle this optimization problem. This work presents five cases that provide a line-by-line 
update on the proposed approach for identifying the role of reactive power compensating units in conjunction 
with EVCSs. The results are validated using the IEEE 14-bus and 30-bus systems. By addressing reactive power 
compensation challenges, the study contributes to reducing energy losses and ensuring a stable power supply. 
These advancements support the broader goal of sustainable energy transition and the widespread adoption of 
electric vehicles (EVs), ultimately fostering environmental conservation and energy equity.
Index Terms— Distribution system, electric vehicle charging station (EVCS) management, Firefly Algorithm (FA), 
reactive power compensation, voltage indices

I. INTRODUCTION

Electric vehicle charging stations (EVCSs) in existing distribution systems are an emerging area 
of research due to their various technical, financial, and social challenges [1–5]. Many researchers 
have focused on aspects related to utility benefits or requirements [6–8]. However, end users are 
also a critical component of such systems, as they are the ultimate beneficiaries and key stake-
holders [9]. Therefore, EVCSs must align their daily operations with the needs of both utilities  
and end users.

Among the several technical issues, the reactive power demand of EVCS for customers and 
charging station loads is a significant research area [10,11]. Reactive power independent EVCS 
could help in meeting both requirements and reducing the financial burden on the grid. In tra-
ditional power system structures, distribution networks were electrified by central power plants. 
However, the integration of renewable energy resources is transforming conventional distribu-
tion systems into modern power systems.

The incorporation of renewable-based power stations into existing distribution networks high-
lights the role of renewable-based distributed generators (DGs) in radial distribution systems 
(RDSs) to accommodate load expansions. Several machine learning-based studies are available 
that demonstrate the methods for integrating DGs into the network. Methods for optimal DG 
placement to minimize power losses are proposed in ref. [12]. Whale optimization, considering 

WHAT IS ALREADY KNOWN ON THIS 
TOPIC:
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• Reactive power compensating devices 
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power compensating units directly at EVCS 
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placement, validated through IEEE 14-bus 
and 30-bus systems, ultimately improving 
voltage profiles and enhancing grid capacity.
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techno-economic analysis for DG placement, is presented in ref. 
[13]. Suresh et al. proposed optimal allocation using the Dragonfly 
algorithm to maximize benefits in distribution networks [14]. Ali 
suggested a method using a Genetic Algorithm with various cost 
parameters [15]. The placement of EVCS in RDS is also relevant to 
load expansion research. Public–private partnerships for EVCS com-
missioning in distribution networks can be indulged through proper 
location selection and identification. Transient search optimization 
for this purpose is developed in ref. [16]. Electric vehicle charging sta-
tions designed for commercial use, where multiple electric vehicle 
(EV) units can be charged simultaneously, are discussed in ref. [17]. 
Load profiles are intermittent and subject to both real and reac-
tive power demands from the grid. Voltage sensitivity factor (VSF) 
and voltage stability indices (VSIs) are used for estimating the dis-
tribution network conditions for forecasting load burden scenarios 
and their impacts. To mitigate these load demands, reactive power 
sources must be added to RDS to avoid overloading the grid. Several 
reactive power compensators, such as fixed capacitor banks, mov-
able capacitor banks, SVC, and DSTATCOM, have been proposed for 
RDS in various papers [18–20].

According to CIGRE (The International Council on Large Electric 
Systems) and North American Electric Reliability Corporation (NREC) 
standards, reactive power management should be addressed as 
a local issue and considered a routine operational service type. 
Reactive power compensation could also be integrated with EVCS as 
a mandatory service, with customers potentially paying a modified 
tariff that includes the costs associated with reactive power setups 
at EVCS. To offset this tariff increase, the savings from reduced grid 
demand due to local reactive power management at EVCS could be 
passed on to customers. Most of the available studies focus either on 
load flow analysis for reactive power procurement and electric vehi-
cle placement or on grid-isolated microgrid models with reactive 

power compensation analysis. However, very few works analyze 
radial distribution networks connected to EVCSs with STATCOM as 
a reactive power compensator. Additionally, the optimization of 
STATCOM reactive power is typically performed using classical tun-
ing methods. This paper proposes the Firefly Algorithm (FA) as an 
advanced, machine-learning-based tuning method, offering several 
advantages over classical approaches, as highlighted in the litera-
ture. The major contributions of this paper are as follows: 1) develop-
ment of a MATLAB code to estimate power losses, voltage indices, 
and voltage profiles using the backward-forward sweep method for 
load flow analysis, 2) utilization of an iterative approach that incor-
porates all constraints to determine the optimal placement of dis-
tributed generation in a radial distribution system, 3) application of 
an error minimization technique with MATLAB iterations to identify 
the requirements for utility-based reactive power compensation, 
and 4) employment of the FA for optimization to determine the 
appropriate rating for reactive power units at each EVCS in a radial 
distribution system.

Therefore, this paper presents a Firefly-based machine learning algo-
rithm to identify the required reactive power sources at proposed 
EVCSs to maintain voltage profiles within acceptable limits at each 
bus. Voltage indices and voltage profiles on RDS are used to develop 
an optimization function, which is utilized for the iterative processes 
involved in this proposed Firefly-based machine learning algorithm. 
The results, in terms of voltage profile (with and without reactive 
power requirements), are compared across various scenarios: inde-
pendent RDS, RDS with proposed DG at the most sensitive bus, RDS 
with DG and proposed EVCSs at designated buses, RDS with com-
pensating unit at DG bus and EVCSs at designated buses, and RDS 
with proposed DG and EVCSs with distributed reactive power com-
pensating sources at each EVCS. The comparison also includes the 
reactive power requirements for these different setups.

Fig. 1. Distributed generator size and location investigation using all constraints simultaneously.
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II. INVESTIGATION FOR THE MOST SENSITIVE BUSES

In RDS, the overall network performance can be evaluated through 
the performance of the most sensitive bus. The load flow studies 
for the existing network can be done using the backward–forward 
sweep method [21]. Load flow analysis includes constraints like the 
real and reactive power balance equations as in (1) and (2):
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j

n

j ij i j ij i j� � � �� � � �� ��� ��
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Pgi and Qgi club the DGs and reactive power compensators’ power 
generations and Pli and Qli club the several loads, particularly EVCS 
load too. The total real and reactive power losses in the distribution 
system can also be expressed as equality constraints:
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The study also includes inequality constraints to establish the oper-
ating boundaries for the network. This includes generation limits 
as in (5) and (6), voltage and load angle limits as in (7) and (8), and 
power factor limits as in (9).

Pg Pg Pgi i
min

i
max��� ��,  (5)

Qg Qg Qgi i
min

i
max��� ��,  (6)

V V Vi i
min

i
max��� ��,  (7)

Fig. 2. Investigation of most vulnerable line in RDS using Fast Voltage Stability Index, voltage Stability Index, and Line Quality Factorsimultaneously 
in IEEE 30 Bus radial distribution systems.

TABLE I. INDICES PERFORMANCE AROUND MOST SENSITIVE LINE OF  
IEEE 30 BUS WITH DIFFERENT RATING DISTRIBUTED GENERATOR  
PLACEMENT SCHEME

S. No.

VSI with 
DG at 
Bus 8

VSI  
with DG 

at Bus 13

FVSI  
with DG 
at Bus 8

FVSI  
with DG 

at Bus 13

LQF  
with DG 
at Bus 8

LQF 
with 

DG at 
Bus 13

1. 0.1868 0.2200 0.6648 0.6222 0.6218 0.7190

2. 0.1635 0.2196 0.6312 0.6212 0.6205 0.7177

3. 0.1534 0.2174 0.6138 0.6148 0.6138 0.7093

4. 0.1632 0.2194 0.6300 0.6207 0.6193 0.7170

5. 0.1841 0.2172 0.6545 0.6143 0.6127 0.7086

6. 0.2182 0.2197 0.7123 0.6215 0.6171 0.7180

7. 0.2545 0.2170 0.7764 0.6139 0.6107 0.7081

8. 0.2925 0.2191 0.8536 0.6197 0.6020 0.7158

9. 0.3396 0.2164 0.9767 0.6122 0.6076 0.7059

10. 0.3810 0.2185 1.0908 0.6181 0.6003 0.7136

DG, distributed generator; FVSI, Fast Voltage Stability Index; LQF, Line Quality 
Factor; VSI, Voltage Stability Index.
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By obtaining the bus parameters through a load flow study, the most 
vulnerable bus using stability indices can be identified and DG can 
be placed on it to improve the system performance in terms of volt-
age and power loss profiles. Voltage Stability Index (VSI), Fast Voltage 
Stability Index (FVSI), and Line Quality Factor (LQF) are identified as 
some indices for the same in ref. [22].

Fast Voltage Stability Index, LQF, and VSI can be formulated with load 
flow study parameters. The critical loading can be allowed until the 
threshold values of VSI, LQF, and FVSI equal to unity. However, the 
complement values, i.e., close to 0, of these three are more prefer-
able for a stable distribution system.
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Line losses and voltage profile are also considered using the least 
error iteration concept in the same work for identifying the most 
appropriate DG size and its location in RDS. The selection of DG size 
at the most sensitive bus using all these constraints together can be 
explained as the intersection of all these satisfying condition sets 
together, as shown in Fig. 1.

Mathematically, these satisfying conditions for voltage and indices 
sets are

Vj ��� ��0 9 1 1. , .  (13)

FVSI j ��� ��0 1 0, .  (14)

VSI j ��� ��0 1 0, .  (15)

LQFj ��� ��0 1 0, .  (16)

III. ROLE OF REACTIVE POWER AT BUSES WITH ELECTRIC 
VEHICLE CHARGING STATIONS

Voltage profile at each bus can be maintained by provid-
ing adequate reactive power compensators. In available stud-
ies, it is suggested that the utility must provide leading reactive 
power sources to maintain the voltage profile and impose pen-
alties on end users who are drawing power below the specified  
power factor.

An iterative procedure to maintain the voltage profile by provid-
ing adequate reactive power at the DG bus is suggested in ref. [23]. 
Reactive power in samples can be examined using the backward–
forward sweep method in load flow studies [21, 24, 25]. For defined 
iterative samples of reactive power with 0 as the minimum value 
sample and slack bus reactive power amount as the maximum value 
sample, the RDS can be examined and evaluated for the best pos-
sible sample of reactive power with the DG bus. Mathematically, 
reactive power at each iteration would be

Qcom Qcom
k

k
Qcom Qcomk min max min� �

� �� �
�� �  (17)

The optimization problem with a single variable of reactive power 
requirement at DG bus can be mathematically optimized using a 
single variable optimization problem. The fitness function for this 
can be expressed for ΔV as the change in voltage at each bus with 
reference case values as

� �
�

�
�
�

�

�
�
�

�
�min

j

n

V
1

�  (18)

Fig. 3. Investigation of distributed generator size in RDS using all constraints simultaneously on IEEE 30 Bus radial distribution systems.
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To reduce the reserved capacity and installed capacity, and even 
to suppress the overburden on distribution lines, reactive power 
management at charging stations is suggested. Distribution sys-
tems with number of EVCS should maintain their reactive power on 
their own by mounting additional reactive power units at respec-
tive charging stations. However, this reactive power management 
at each station is complex because of the multi-variable optimi-
zation involved through load flow studies and hence requires a 
machine learning optimization problem to tackle such mathemati-
cal problems.

IV. SCOPE AND ROLE FOR FIREFLY ALGORITHM IN  
PROPOSED WORK

As described in the previous section, machine learning optimi-
zation is developed to investigate the accurate rating of reactive 
power compensating units at every EVCS so that the overall bur-
dens on the distribution network can be suppressed. This will also 
assist commercial EVCS investors in making their energy consump-
tion tariffs free from low power factor penalties. For N number of 
EVCSs in RDS, the rating of respective N number of reactive power 
compensators can be optimized using an optimization technique. 
Though traditional optimization techniques such as linear and 
mixed-integer, convex, quadratic, and non-linear programming are 
also suggested in many papers, these approaches become more 
complex and give local optimum and time-consuming results in 
multi-variable-based optimizations.

A nature-inspired Metaheuristic Approach can be used to achieve 
globally optimum, more accurate, and fast results. A swarm intel-
ligence FA is developed for this multi-variable optimization 
problem. Fireflies, as nature-inspired species, produce short and 
rhythmic brightness through bioluminescence [26, 27]. The FA is 
applied due to its superior ability to handle complex, nonlinear 
optimization problems. Compared to classical optimization meth-
ods, which includes integral square error, integral absolute time 
error, integral square time error, and integral absolute error meth-
ods, FA has faster convergence, reduced computational complex-
ity, and robustness in finding global optima in multidimensional 
search spaces. These features make it particularly suitable for 
optimizing reactive power compensation and other parameters in 
EVCS networks. This phenomenon can be correlated with the illu-
mination concept of light waves. At any instant t, the movement 
of a firefly at location x attracted to another firefly at location y  
is determined by

d d e d dx
t

x
t r

y
t

x
t

i
txy� �� � �� � �1

0
2

� ��   (19)

Parameter � �
0

2

e d dr
y
t

x
txy� �� �  evaluates the attraction-related cor-

relation between the two species, and the randomization effect in 
species movement is evaluated using the term αi

t . The proposed 
algorithm works to identify the optimum rating of every reactive 
power compensator associated with each EVCS. Pseudo-code for 
developing the algorithm for this proposed work is as follows:

Step 1: Identify the number and rating of EVCS connected with RDS.

Step 2: Formulate the corresponding reactive power compensation 
rating.

Q Q Q QN�� �1 2, ,.. Step 3: Initialize the reference value for all Qs.

Step 4: Select the inequality constraints with every Q.

Q Q Qmin max�� �

Step 5: Develop a fitness function.

� �
�
�

j

n

V
1

� Step 6: Initialize population number.

Step 7: Start with this population number and rank all fireflies.

Step 8: Find the best solution if the criterion is satisfied and stop.

Step 9: Else, return to step 6 for the next population number through 
the iteration process.

V. METHODOLOGY DISCUSSION WITH IEEE 30 BUS RADIAL 
DISTRIBUTION SYSTEMS

The proposed work is established for the standard IEEE 14 and 30 Bus 
systems. The standard bus data carries parameters in sequence as bus 
no, voltage, load angle, real power generation, reactive power gener-
ation, real load power, reactive load power, max reactive power limit, 
minimum reactive power limit, and finally bus type. Similarly, the 
standard line data carries parameters in sequence as from bus num-
ber to bus number, resistance of line, reactance of line, susceptance 
at line end, and finally transformer tap position. The work is carried 
out in sequence and is presented in their corresponding subsection.

A. Coding and Testing of Backward–Forward Sweep Method
For the real and reactive power balance equations with equality 
and inequality constraints as presented by the mathematical equa-
tions in preceding sections, a load flow study is developed using 
the backward–forward sweep method. This generates the reference 
data of the RDS system. The study is done for IEEE 14 as well as 30 
Bus RDS. However, this section mainly focuses on the IEEE 30 Bus 
system. The results of the IEEE 14 Bus RDS are also presented in the 
next section.

B. Identification of Most Vulnerable Bus in Radial  
Distribution Systems
With the data obtained in Subsection V(A), FVSI, LQF, and VSI indi-
ces are used to identify the most vulnerable bus of the system. 
Mathematical expressions for these indices have already been dis-
cussed in the last section.

IEEE 30 bus RDS system has 41 lines. Each line’s performance 
based on these indices is shown in Fig. 2. It can be observed that 

TABLE II. PROPOSED ELECTRIC VEHICLE CHARGING STATIONS FOR TESTING 
THE PROPOSED METHODOLOGY WITH IEEE 30 BUS SYSTEM

S. No. Bus No. EVCS Rating (MW)

1 3 21

2 13 17

3 15 18

4 27 25

EVCS, electric vehicle charging station.
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Line 2, which is connected with Bus 8 and 13, is showing all indices 
close to unity and so requires more attention. However, DG can be 
installed with either of the buses connected with this Line 2. The 
next step is to find the more vulnerable bus between these two 
buses, 8 and 13.

As these indices provide information about the lines connected 
between different buses. Therefore, the appropriate bus for DG 
commissioning can be identified through a reverse evaluation. 
For this, slack bus real power data is divided into ten samples, and 
DG equivalent to these ratings is placed on Bus 8. Data for FVSI, 
VSI, and LQF are collected for all ten samples. The same is done for 
Bus 13. The performance of Bus 8 and 13 is compared, as shown 
in Table I.

From the data tabulated in Table I, it can be observed that Bus 8 is 
more sensitive for DG placement schemes, and so, Bus 8 must be 
considered more sensitive than Bus 13 in the IEEE 30 Bus RDS.

C. Estimation of Distributed Generator Rating for Radial 
Distribution Systems
In IEEE 30 Bus RDS, Bus 8 has been identified for placing DG, and 
now this section deals with the size calculation of DG. Another 
iterative procedure is developed using MATLAB codes, which takes 
samples from 0 to the highest value, equal to the slack bus real 
power value. For all samples, six parameters are evaluated as pre-
sented in Fig. 1. The most favorable sample satisfying all the con-
straints together is chosen. Real power calculated using load flow 
analysis is found to be approximately 239 MW at the slack bus and 

Fig. 4. Algorithm for identifying utility-based reactive power compensating unit at distributed generator Bus.

Fig. 5. Flowchart to describe the Firefly algorithm adopted for estimating the reactive power compensating units by the electric vehicle charging 
stations owner at their specific buses in radial distribution system.
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so 240 samples are chosen for the iteration purpose of tentative 
DG size. Fig. 3 represents voltage, FVSI, LQF, VSI, and losses samples 
through the iterative procedure [22]. It has been discussed that 
DG would be selected based on the conditions satisfying all the 

constraints together, and so, 90 MW DG is proposed by this analysis 
at the eighth Bus.

D. Electric Vehicle Charging Stations Placements in Radial 
Distribution Systems
The placement of EVCS in RDS depends on several technical and 
financial considerations. Several studies have been conducted to 
identify the EVCS size and locations. In this work, it is assumed that a 
number of EVCS are placed on RDS so that multi-variable optimiza-
tion can be tested and validated. The bus number selections may 
also have a separate scope of research; however, this work is being 
limited by the selection of buses for EVCS placements. Therefore, 
four random EVCS are placed at bus numbers 3, 13, 15, and 27 to test 
the proposed methodology. Table II gives the EVCS rating consid-
ered to test the proposed model. It is also important to mentioned 
here that all EVCS are assumed to be operated with 0.9 lagging 
power factor.

E. Reactive Power Management with Distributed Generator
As proposed in refs. [9, 17, 28, 29], reactive power can be managed at 
the DG bus location and EVCS may be charged as a commercial load. 
In the case of reactive power demand, EVCS owner may be penalized 

TABLE III. THE PARAMETERS SETTING USED FOR FIREFLY ALGORITHM

Parameters Values

Maximum iteration 20

Population size (number of fireflies) 25

Mutation coefficient (α) 0.01

Least attractive factor (β0) 2

Light absorption coefficient (γ) 1

Randomness reduction factor (∈) 0.98

Equality and inequality constraints As in Fig. 1

Fitness function As in (18)

Fig. 6. Convergence curve for optimizing fitness function with multivariable constraints at IEEE 30 Bus radial distribution system.

Fig. 7. Voltage profiles at each Bus of IEEE 30 Bus radial distribution system in all five cases.
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to recover this additional MVA required due to a poor lagging power 
factor load. The rating of the centralized reactive power compensa-
tion unit held by utility can be evaluated using an iterative process 
that keeps the voltage profile near the reference case, as discussed 
in Section V(A). The algorithm, as shown in Fig. 4, adopted for this 
iterative process is based on the least voltage deviation from the  
reference case.

This proposed iterative procedure evaluates the size of the reac-
tive power compensator that would be the optimum solution for  
placing it at the DG Bus. In this IEEE 30 Bus system, a DG of 90 MW 
with a 0.9 lagging power factor at Bus number 8 and four EVCS, as 
mentioned in Table II, evaluates reactive power compensating units 
of 18.6614 MVAR at Bus 8 (with the DG set of 90 MW and 0.9 lagging 
power factor).

F. Reactive Power Management at Electric Vehicle Charging 
Stations Bus as Proposed Study
In Section V(E), reactive power management is discussed at DG 
Bus, which would be governed by the utility. Though the utility is 
charging for surplus MVA asked by the EVCS owner, this solution 
still has gaps in securing reserve capacity, additional generating 
unit installation, and losses in the line. As all international regu-
latory bodies are at the same level of concern for reactive power 
management that it must be resolved at the local end. So reactive 
power compensators are mandatorily suggested with the EVCS 
unit. These reactive power compensators will not only manage the 
reactive power at the EVCS but also work to balance the voltage in 
the RDS. As the number of reactive power compensators increases 
in RDS, the iteration process suggested in Subsection V(E) may 
not be effective, and so, natural-inspired machine learning opti-
mization technique may work satisfactorily for this case. The FA is 
proposed for this work. The FA has already been explained con-
ceptually in Section IV. This section describes how this algorithm 
is developed for the proposed work. The flowchart for the same is  
presented in Fig. 5.

With the parameters set as in Table III with IEEE 30 Bus RDS, DG and 
EVCSs conditions the same as described in the Subsections V(C) and 
V(D), this algorithm optimizes the fitness function. The convergence 
curve demonstrating the fitness of FA is presented in Fig. 6. The reac-
tive power units proposed for this EVCS loading on RDS are 36.9278 
MVAR, 11.7519 MVAR, 0 MVAR, and 0 MVAR at bus numbers 3, 13, 
5, and 27, respectively. It can also be observed that reactive power 
compensating units may not be necessary if rating and bus condi-
tions are under the scope of stability.

G. Voltage Profile Comparisons for All the Cases
From Subsections V(A) to V(F), different cases have been discussed. 
Now all the cases are being brought together in this section to ana-
lyze the working of our proposed structure. All the cases are reca-
pitulated here below:

Case 1: IEEE standard n-Bus RDS profile.

Case 2: IEEE standard n-bus with DG placement.

Case 3: IEEE standard n-bus with DG and EVCSs placement.

Case 4: IEEE standard n-bus with DG and EVCSs placement having 
utility-based compensation at same bus of DG.

Case 5: IEEE standard n-bus with DG and EVCSs placement, having 
EVCSs’ owner-based compensation at same bus of EVCS.

All five cases profiles are compared on the same window to 
understand the system performance in each case and therefore, 
the voltage profile improvement with the final proposed Case 5.  
Fig. 7 gives the voltage comparison for each case. The Case 1 volt-
age profile (in the black line) is the base value voltage profile. The 
Case 2 voltage profile (in the blue line) shows the maximum DG 

TABLE IV. MAGNITUDE OF VOLTAGE PROFILES AT EACH BUS OF IEEE 30 
BUS RADIAL DISTRIBUTION SYSTEMS IN ALL FIVE CASES

Voltage Profile at Each Bus in Different Cases

Bus Case 1 Case 2 Case 3 Case 4 Case 5

1 1.0600 1.0600 1.0600 1.0600 1.0600

2 1.0450 1.0450 1.0450 1.0450 1.0450

3 1.0400 1.0600 1.0400 1.0200 1.0300

4 1.0320 1.0520 1.0520 1.0320 1.0220

5 1.0100 1.0100 1.0100 1.0100 1.0100

6 1.0410 1.0610 1.0410 1.0210 1.0110

7 1.0058 1.0612 1.0461 1.0151 1.0208

8 0.9798 1.0651 1.0451 1.0012 1.0177

9 1.0338 1.0673 1.0407 1.0154 1.0067

10 1.0784 1.1160 1.0923 1.0640 1.0697

11 1.0392 1.0638 1.0424 1.0293 1.0221

12 1.0212 1.0373 1.0254 1.0157 1.0162

13 1.0342 1.0612 1.0412 1.0249 1.0260

14 1.0155 1.0544 1.0220 0.9940 0.9815

15 1.0065 1.0526 1.0128 0.9826 0.9643

16 1.0028 1.0596 1.0357 1.0024 1.0044

17 0.9809 1.0584 1.0371 0.9961 1.0083

18 0.9843 1.0451 1.0119 0.9763 0.9702

19 0.9744 1.0438 1.0145 0.9759 0.9771

20 0.9749 1.0484 1.0214 0.9815 0.9864

21 0.9723 1.0550 1.0336 0.9904 1.0049

22 0.9746 1.0561 1.0343 0.9916 1.0055

23 0.9944 1.0486 1.0142 0.9807 0.9722

24 0.9871 1.0515 1.0245 0.9868 0.9916

25 1.0383 1.0858 1.0609 1.0288 1.0342

26 1.0209 1.0693 1.0439 1.0113 1.0169

27 1.0448 1.0655 1.0413 1.0305 1.0173

28 1.0418 1.0701 1.0494 1.0308 1.0341

29 1.0597 1.0980 1.0738 1.0450 1.0508

30 1.0489 1.0876 1.0631 1.0340 1.0398
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rating that can be imposed on the IEEE 30 Bus system by follow-
ing the Fig. 1 limits always. It can be observed that the voltage at 
almost each bus is within the voltage deviation range of ±10%. 
The Case 3 voltage profile (in the magenta line) represents the 
voltage drop due to the proposed additional EVCS at four buses 
in the distribution system. However, the voltage is still away from 
the standard voltage performance as given in Case 1. For Case 4, 
gives the utility established procedure as discussed in Subsection 
V(E) and the voltage profile (in the green line) can be seen, which 
is very close to the Case 1 profile. However, the owner-based reac-
tive power compensation has more versatile usefulness compared 
to utility-based reactive power compensation and hence case 5 
voltage profile (in the red line) is presented finally, which gives 
voltage levels very close to the standard voltage profile of Case 

1. Therefore, the nature-inspired FA for reactive power compensa-
tion units’ installation along with EVCS bus validation is proven 
through this work. Table IV also provides the numerical data of Fig. 
7 for readers’ better understanding and conceptualizations.

VI. RESULTS VALIDATION WITH ANOTHER IEEE 14 BUS RADIAL 
DISTRIBUTION SYSTEMS

The results obtained in Section V are tested and trained using the 
proposed methodology on the IEEE 30-Bus RDS. To further validate 
the findings, the IEEE 14-Bus system RDS is also analyzed, and the 
results for each case are presented to reaffirm the effectiveness of 
the proposed approach.

IEEE 14 Bus system standard data is used as Case 1. To obtain the most 
suitable bus for DG location, the same procedure as in Subsection 
V(B) is adopted and it confirms that the IEEE 14 Bus system has 20 
lines, and Line number 11, which is connected with Buses 4 and 9, 
is most vulnerable. This result is investigated with voltage in dices as 
shown in Fig. 8. Now, out of these two buses, the next problem state-
ment is to identify one bus for DG placement. For this same iterative 
procedure discussed in Subsection V(B) tests bus performance with 
different DG ratings on each bus and concludes that Bus 9 as most 
vulnerable bus of the RDS, and DG must be installed on it. Table V 
also validates to this.

The next Subsection V(C) describes the procedure for estimating DG 
rating. In the IEEE 10 Bus RDS, by following the same procedure, Fig. 
9 is developed, which identifies the 58 MW DG should be placed at 
Bus number 9 in this case.

In the next step, EVCSs are commissioned on the IEEE 14 Bus sys-
tem. Four random EVCS are placed at bus numbers 3, 5, 7, and 11 
to test the proposed methodology. Table II gives the EVCS rating 
considered to test the proposed model. It is also important to men-
tioned here that all EVCS are assumed to be operated with 0.9 lag-
ging power factor.

With DG and EVCS installation on RDS, the voltage profile will be 
affected, and therefore reactive power compensation is mandatory 
to supersede the effect of these variations. In Case 4, a utility-based 

Fig. 8. Investigation of most vulnerable line in radial distribution system using Fast Voltage Stability Index, Voltage Stability Index, and Line 
Quality Factor simultaneously in IEEE 14 Bus radial distribution system.

TABLE V. INDICES PERFORMANCE AROUND MOST SENSITIVE LINE OF IEEE 
14 BUS RADIAL DISTRIBUTION SYSTEM WITH DIFFERENT RATING 
DISTRIBUTED GENERATOR PLACEMENT SCHEME

S. 
No.

VSI with 
DG at 
Bus 4

VSI with 
DG at 
Bus 9

FVSI 
with DG 
at Bus 4

FVSI 
with DG 
at Bus 9

LQF with 
DG at Bus 

4

LQF with 
DG at 
Bus 9

11. 0.1726 0.1304 0.3385 0.3381 0.4290 0.3775

12. 0.1718 0.0969 0.3371 0.3363 0.4268 0.3456

13. 0.1711 0.0837 0.3357 0.3347 0.4247 0.3347

14. 0.1704 0.0986 0.3343 0.3332 0.4226 0.3443

15. 0.1698 0.1318 0.3330 0.3318 0.4206 0.3738

16. 0.1691 0.1729 0.3317 0.3306 0.4186 0.4228

17. 0.1685 0.2171 0.3305 0.3294 0.4167 0.4909

18. 0.1679 0.2629 0.3293 0.3284 0.4149 0.5778

19. 0.1673 0.3075 0.3281 0.3254 0.4131 0.6772

20. 0.1657 0.3541 0.3250 0.3246 0.4084 0.7997

DG, distributed generator; FVSI, Fast Voltage Stability Index; LQF, Line Quality 
Factor; VSI, Voltage Stability Index.
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Fig. 9. Investigation of distributed generator size in radial distribution system using all constraints simultaneously at IEEE 14 Bus radial  
distribution system.

Fig. 10. Convergence curve for optimizing fitness function with multivariable constraints at IEEE 14 Bus radial distribution system.

Fig. 11. Voltage profiles at each Bus of the IEEE 14 Bus radial distribution system in all five cases.
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reactive power unit of 12.5548 MVAR would be required. However, 
through the proposed work with the same parameters setting for 
the FA as shown in Table III, the reactive power units are proposed. 
For this EVCS loading on RDS, reactive power compensating units of 
11.1283 MVAR would be required at Bus 5 only. Here, it validates that 
reactive power compensating units may not be necessary if rating 
and bus conditions are under the scope of stability. The convergence 
curve demonstrating the fitness of FA is also presented in Fig. 10 for 
the IEEE 14 Bus RDS, and Fig. 11 represents the voltage profiles com-
parison for the IEEE 14 RDS with all five cases. The results validate the 
proposed work technically for both the RDS Bus structure.

VII. CONCLUSION

The load demand on the national grid is increasing exponentially, 
and the integration of EVCSs further contributes to this surge. To alle-
viate the pressure on the existing grid, various measures are being 
implemented at different levels, including reactive power manage-
ment at the local end. This study demonstrates that procuring reac-
tive power at the EVCS owner’s end is more effective than relying 
solely on utility-based solutions. Additionally, machine learning-
based approaches may play a very important role in deciding the 
optimal value of reactive power compensation. The FA is proposed 
for the same in the paper, including the important voltage indices for 
implanting the charging station at the most suitable location.

The proposed approach is tested and validated using the IEEE 14-bus 
and IEEE 30-bus RDS. In the IEEE 14-bus system, the 9th bus was 
identified as the most vulnerable, and a 58 MW distributed genera-
tion (DG) unit was commissioned. Similarly, in the IEEE 30-bus sys-
tem, the 8th bus was identified as the most vulnerable, and a 90 MW 
DG unit was installed. Four EVCSs were located at buses 3, 5, 7, and 
11 in the IEEE 14-bus system and at buses 3, 13, 15, and 27 in the IEEE 
30-bus system.

To improve the voltage profile, reactive power compensating units 
were analyzed both with a centrally located DG and individually at 
the EVCS buses. The results indicate that the voltage profile improves 
more significantly when the compensating units are placed directly 
at the EVCS locations. These findings were consistently validated 
across both test systems. By managing reactive power (MVAR) locally 
through each EVCS, this approach not only enhances reactive power 
management at the local level but also increases the overall power 
capability of the grid, thereby helping to meet demand more effec-
tively at the utility level.

This study may be further expanded to explore new algorithms for 
determining reactive power compensation alongside the estab-
lishment of charging stations. It can also be extended to include a 

Simulink model-based integrated study for the same proposals, such 
as controller tuning, ancillary service provisions, and power pricing.
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