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ABSTRACT

In this study, a deep learning model was utilized to generate voxel-represented three-dimensional models of 
some objects using silhouette images of size 128 × 128 captured from four different angles. The proposed model 
is trained using the ShapeNet dataset. The deep learning model, along with the proposed error function, has 
been favored to reduce the number of parameters and capture features of different dimensions. A total of 34 691 
different data were obtained in seven categories. The performance metrics of the proposed model have been 
compared with other studies in the literature using the Intersection over Union (IoU) metric. The comparison 
reveals that the proposed method achieves an IoU score of 0.5283, which outperforms both the 1 image and 5 
image input versions of both McRecon and (Perspective Transformer Nets) PTN methods in categories other than 
the chair category.
Index Terms— Deep learning, machine learning, three-dimensional (3D) reconstruction

I. INTRODUCTION

Currently, three-dimensional (3D) models are used in areas including but not limited to digital 
twins, game development, simulation, and the Metaverse [1, 2]. Beyond entertainment and vir-
tual realms, these models play a crucial role in the development of industrial automation and 
robotic systems [2, 3], in medical imaging for better diagnoses and planning surgical procedures 
[4], and in the cartography industry to generate more realistic and accurate maps [5]. Considering 
all these applications, it has become beneficial to create 3D representations of real-world objects.

With the current advancements in computational power, using artificial intelligence algorithms 
is becoming increasingly practical. In particular, deep learning methods have proven to be highly 
effective in handling intricate tasks involving patterns, such as language translation, object rec-
ognition, and object detection. The advancement in deep learning is directly proportional to the 
availability of big data. This is because the structures of deep learning models inherently involve 
millions and, in some cases, billions of parameters. The process of fine-tuning these exten-
sive numbers of parameters is typically carried out using a substantial amount of data. (Visual 
Geometry Group) VGG [6] and residual network (ResNet) [7] are among the most widely used 
deep learning models developed for object recognition problems, and they have been shown to 
be capable of addressing different problems, such as object detection and segmentation, using 
the transfer learning method [8]. These models can serve as feature extraction layers for new 
deep learning models.

Three-dimensional reconstruction is the process of creating a 3D model of an object or scene 
using a series of 2D images or measurements. Manually developing 3D computer models is time-
consuming. Although novel methods have emerged for generating 3D models from 2D photo-
graphs of real-world objects using modern computer methods, producing 3D models using 2D 
photographs remains a significant challenge. Today, researchers employ both computer vision 
and deep learning-based approaches [9–13] to generate 3D models from 2D images.

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?

• 3D models are used in various 
fields, including digital twins, game 
development, simulation, the Metaverse, 
industrial automation, robotic systems, 
medical imaging, and cartography.

• Deep learning methods are effective for 
pattern-recognition tasks.

• 3D reconstruction uses 2D images to 
create 3D models.

• Both single and multiple 2D images are 
used for 3D reconstruction.

• Common 3D model representations 
include point clouds and voxels.

WHAT THIS STUDY ADDS ON THIS 
TOPIC?

• A deep learning model generates voxel-
represented 3D models from 2D silhouette 
images.
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One of the metrics to measure the quality of 3D reconstruction is called “IoU” or “Intersection 
over Union.” The IoU compares the predicted 3D object’s shape to the ground truth shape. A 
higher IoU value (closer to 1) indicates better accuracy, as it shows that the prediction overlaps 
well with the actual 3D shape. An IoU of 1 means perfect overlap, while an IoU of 0 means 
no overlap at all. The state of the art has quite a bit of room for improvement, as achieving 
high IoU values is still a challenge in many 3D reconstruction tasks. Factors such as noise in 
input data, complex object geometries, partial occlusions, and inaccuracies in the reconstruc-
tion algorithm can lead to lower IoU values. In this work, we aimed to improve the IoU by 
developing a more robust 3D reconstruction algorithm that addresses some of these common 
challenges.

A significant amount of research has been done to create 3D models from 2D images using deep 
learning. Some use a single image as input [9, 12, 14–17] while others utilize multiple images 
as inputs. These studies were typically conducted using categorically supervised methods. 
Additionally, the McRecon method proposed by Gwak et al. [15] along with the PTN method sug-
gested by Yan et al. [16] successfully generated categorical, supervised voxel-based 3D models 
using the ShapeNet [18] dataset.

In the studies conducted so far, two primary forms of representation have been favored in deep 
learning-based approaches to 3D modeling: point cloud representation, as seen in Fig. 1, and 
voxel representation, as seen in Fig. 2. Additionally, researchers have also employed octree rep-
resentation, as seen in Fig. 3, which indicates the coordinates of 3D models using octrees. An 
octree is a tree data structure used to partition a 3D space into smaller regions, often for efficient 
storage, retrieval, or processing of spatial data. Also, mesh representation, seen in Fig. 4, is used to 
represent 3D shapes, which creates 3D models using polygons. However, point cloud and voxel 
representations are generally preferred over mesh and octree representations. Moreover, there 
is a larger dataset available for point cloud and voxel representations than for mesh and octree 
representations.

A. Voxel Representation
A voxel, short for volumetric pixel or volume element, is a unit of representation in a 3D space, 
analogous to a 2D pixel in an image. Each voxel represents a value on a regular grid in 3D 
space and typically corresponds to a small cube or rectangular prism. Voxel-based 3D model 
representation of a 3D image can be seen in Fig. 2. Voxel-based 3D model representation is 

Fig. 1. Point cloud representation. This figure illustrates how 3D models can be represented as a set of points in space.

Fig. 2. Mesh representation. This figure shows a 3D model created using polygons.

• The model uses an Encoder-Decoder 
structure with Inception and ResNet 
modules.

• A Categorical Mean Cross Entropy (CMCE) 
error function is proposed.

• The model's performance is evaluated 
using the Intersection over Union (IoU) 
metric.

• The model demonstrates improved 3D 
model generation across several object 
categories.
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characterized by representing models with more data compared 
to other forms of representation [19]. In addition, voxels represent 
points in 3D graphics, and each voxel can be independently modi-
fied and managed.

For this representation, Chang et al. [18] have created the ShapeNet 
and ShapeNetCore datasets. The ShapeNet dataset contains a total 
of 43 784 data points across 14 categories, while the ShapeNetCore 
dataset, a subset of ShapeNet, includes 51 300 3D models across 55 
categories. In the ShapeNet dataset, there are 137 × 137-sized RGB 
images rendered from 24 different perspectives for each 3D voxel 
model. For this work, the proposed deep learning model is trained 
using the ShapeNet dataset.

B. Residual Network Approach
In deep learning, the training process encounters a degrada-
tion problem when establishing very deep architectures. As the 
network deepens, it is expected that, if trained with a sufficient 
amount of data, the performance of a shallower network would be 
lower than that of a deeper one. However, in reality, due to the deg-
radation problem, a shallower network can exhibit higher perfor-
mance compared to a deeper one as the network depth increases. 
To address this issue, He et al. [7] proposed the ResNet approach. 
In the ResNet approach, a layer establishes a direct connection by 
skipping intermediate layers (e.g., connecting the fifth layer directly 
with the third layer) with the layers that precede it. This process 
prevents the degradation problem and enables deep networks to 
operate more efficiently.

C. Network in Network Approach and Inception Module
In image classification problems, the area covered by pixels belong-
ing to a class in the input data can vary, with some inputs having 
more coverage than others. Therefore, adjusting the kernel size 
of filters optimally during the convolution operation is crucial for 

feature extraction, considering the difference in the area covered 
by class-related information in the input data. For large features, 
a larger kernel size should be used, while for smaller features, con-
volution should be performed with filters having a smaller kernel 
size. However, filters with large kernel sizes can be computation-
ally expensive. Lin et al. [20] proposed reducing the computational  
cost of large-sized kernel filters by first applying convolution  
with 1 × 1 × n kernel filters, where n is the number of filters, and 
then using k × 1 × m kernel filters. This approach allows the input 
channels to reach the desired dimensions with lower computa-
tional costs through the initial 1 × 1 kernel convolution operation. 
On the other hand, Krizhevsky et  al. [9] introduced the Inception 
module, which involves performing convolution with 1 × 1 kernel 
filters followed by using filters of different sizes at the same level 
for feature extraction. This enables feature extraction with multiple 
kernel sizes at the same layer level and leads to a significant reduc-
tion in the number of parameters. The first version of the Inception 
module is depicted in Fig. 5.

This study describes the creation of 3D models represented by voxels 
using deep learning, utilizing 2D images of size 128 × 128 captured 
from four different perspectives. This paper is organized as follows: 
Section II provides information about the dataset used in the study 
and describes the deep learning model developed for 3D recon-
struction; Section III presents the results of the study; and Section IV 
concludes the study.

II. MATERIALS AND METHODS

A. Dataset
We used the ShapeNet dataset [18] for training the deep learning 
model developed for 3D reconstruction. The ShapeNet dataset 
includes 24 RGB images of size 137 × 137 taken from 24 different 
angles for each data point, along with corresponding voxel-based 

Fig. 3. This figure depicts how octrees can be used to represent the coordinates of three-dimensional models.

Fig. 4. Three-dimensional model represented using voxels, which are essentially 3D pixels. Voxels are represented as cubes and can be modified 
individually.
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3D models. A voxel-based 3D model from the ShapeNet dataset is 
illustrated in Fig. 6, and the set of 24 2D RGB images corresponding 
to this 3D model is shown in Fig. 7.

During the preparation of the training data, only images captured 
from four angles out of the 24 angles available in the dataset were 
used, along with the corresponding voxel-based 3D models. The set 
of four images used for training data was selected sequentially, start-
ing at a random sample, from the 24 images captured from differ-
ent angles. The main reasons for selecting four angles out of the 24 
angles are, first, our method is independent of the category (plane, 
car, etc.) and, second, most details on the objects in the ShapeNet 
dataset can be represented with at least four images.

B. Preprocessing
For the selected training dataset, each image captured from four 
different angles, which is sufficient to represent the objects, was 
first converted from RGB to grayscale using the International ITU-R 
BT.601-7 (03/2011) standard given in (1):

Grayscale R G B R G B, , . . .� � � � � � � �0 299 0 587 0 114  (1)

In (1), R, G, and B are the pixel values of the Red, Green, and Blue 
channels, respectively. After this, silhouette images of the pic-
tures were obtained using the thresholding method on the  
grayscale-converted images. For every image, the threshold value is 
chosen as the mean intensity value of that image. Subsequently, the 
137 × 137-sized images were reduced to 128 × 128 in dimension. 
The reason for this is that the pretrained models we used only work  
with images sized 128 × 128. Finally, the silhouette images of the 
pictures taken from four different angles were stacked on top of 
each other as different channels. The resulting image has a size of 
128 × 128 × 4. The data preprocessing steps are illustrated in Fig. 8.  
The final image was normalized by dividing it by 255, bringing the 

pixel values of the images from the range of 0–255 to the range  
of 0–1. After this process, the data preprocessing steps are finished.

C. 3D Reconstruction
For the deep learning model for 3D reconstruction, three subnet-
work modules were developed: Inception DownSampling 2D (Fig. 9), 
Inception ResNet 2D (Fig. 10), and Inception UpSampling 3D (Fig. 11).

Fig. 6. This figure shows an example of a voxel-based three-
dimensional model from the ShapeNet dataset, used for training in 
this study.

Fig. 5. Preprocessing steps. This figure illustrates the steps used to prepare two-dimensional images for input into the three-
dimensionalreconstruction model, including conversion to grayscale, generating silhouette images, resizing, stacking, and normalization.
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Fig. 7. A set of 24 two-dimensional RGB images corresponding to a three-dimensional model. This figure displays the 24 different two-
dimensional images of a three-dimensional model in the ShapeNet dataset, taken from 24 different angles. The study uses four of these images 
as input for its three-dimensional reconstruction model.

Fig. 8. Inception V1 module, which uses different filter sizes at the same level for feature extraction in a neural network.
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In the proposed deep neural network model shown in Fig. 12, an 
Encoder–Decoder approach has been adopted to enhance the 
prominent features in 2D images and generate coordinate data in 
the third dimension (3D reconstruction) using the accentuated fea-
tures. Moreover, within the submodules of the proposed deep learn-
ing model, the inception approach has been favored to reduce the 
number of parameters and capture features of different dimensions. 
Additionally, to mitigate the issue of gradient vanishing (degrada-
tion) in deep networks, the ResNet approach has been used in the 
“Encoder” part of the network. In the “Decoder” part of the network, 
the transposed convolution operation has been preferred for the 
UpSampling process. The subnetwork modules developed for 3D 
reconstruction in the subject of this study, along with the proposed 
deep learning model, contain a total of 2 529 282 parameters. The 
training of the developed deep learning model used categories 
from the ShapeNet [18] dataset, each containing 2000 or more data. 
Following this selection process, a total of 34 691 different data 
were obtained across seven categories. About 60% (20 814) of the 

collected data were used for training, 20% (6938) for validation, and 
the remaining 20% (6939) were used as test data. The created data-
set was used in a categorically unsupervised manner.

After preparation of the dataset, the proposed deep neural network 
model was trained with a batch size of 8 for 60 epochs. For train-
ing, the RMSprop algorithm with a 10−4 learning rate was used  
for the optimizer.

There are existing studies in the realm of deep learning that address 
the problem of 3D reconstruction using both single-view images 
[12, 14–16] and multiple-view images [15, 16]. However, these stud-
ies have been developed using categorically supervised methods. 
Additionally, proposed methods such as McRecon by Gwak et  al. 
[15] and PTN by Yan et al. [16] can generate voxel-based 3D model 
outputs using the ShapeNet dataset. Both PTN and McRecon meth-
ods have versions that use either five images or one image as input. 
In both PTN and McRecon methods, versions that use five images 

Fig. 9. Proposed model. This figure presents the overall architecture of the deep learning model developed for three-dimensional reconstruction 
in this study. The model utilizes an Encoder–Decoder approach with Inception and ResNet module.
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as input tend to produce better outputs compared to versions that 
use one image as input. The success of the generated outputs is dis-
cussed in detail in Section IV.

D. Inception DownSampling Two-Dimensional Module
The Inception DownSampling 2D network module Fig. 9 has been 
developed to extract features by reducing the dimensions of the 
height and width axes of 2D inputs and increasing the number of 
channels. In the Inception DownSampling 2D network module, ini-
tially, as proposed in the original Inception method in the study by 
ref. [21], a 1 × 1 kernel convolution operation is applied, followed by 
convolution and Max Pooling layers using 3 × 1 and 1 × 3, 5 × 1, and 
1 × 5 kernels at the same layer levels.

In the Inception DownSampling 2D network module, both Max 
Pooling layers and 1 × 1 kernel convolution operations with a 2 × 2 
stride have been employed to achieve DownSampling. Subsequently, 
the obtained filters are concatenated and sequentially pass through 

batch normalization and ReLU activation function layers. In each 
Inception DownSampling 2D network module, the goal is to reduce 
the dimensions of the input from the previous layer by 2 × 2, with 
minimal parameters and the maximum number of filters in various 
kernel sizes.

In the output of the Inception DownSampling 2D network  
module, both the dimensions of the input from the previous layer 
are halved, and the downsampled inputs are intended to extract 
features of different sizes through convolution operations using 
kernels of different sizes.

E. Inception ResNet Two-Dimensional Module
The Inception ResNet 2D network module Fig. 10 has been devel-
oped to extract features using skip connections from 2D inputs. 
Similar to the Inception DownSampling 2D network module, the 
Inception ResNet 2D network module uses the Inception approach 
but does not include a Max Pooling layer. In this module, the input 

Fig. 10. Inception DownSampling two-dimensional module. This figure details the subnetwork module that extracts features by reducing the 
dimensions of the two-dimensional inputs using convolution and max pooling.
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data from the previous layer establishes a connection with the 
output of the module through a skip connection method before 
being fed into the ReLu activation function [22] to produce the 
final output. The skip connection aims to minimize the vanishing 
gradient problem and reinforce the recall of features obtained 
from filter banks in previous layers, making their impact evident 
in the final output. No dimension reduction or UpSampling is 
performed in this network module. The objectives include reduc-
ing the vanishing gradient problem and extracting features of 
different sizes through convolution operations using kernels  
of different sizes.

F. Inception UpSampling Three-Dimensional Module
The Inception UpSampling 3D network module Fig. 11 has been 
developed to increase the dimensions of the height and width axes 
of 3D inputs. Similar to the Inception DownSampling 2D network 
module, dimension manipulation operations are achieved in the 
Inception UpSampling 3D network module using both strides and 
an UpSampling layer. For the dimension enlargement process in 
this module, an UpSampling layer and 3D-transposed convolution 

operations with a 2 × 2 × 2 stride are employed. Following these 
operations, 3D-transposed convolution operations are performed 
at the same layer level using kernel sizes of 3 × 1 × 1, 1 × 3 × 1, 1 
× 1 × 3, and 5 × 1 × 1, 1 × 5 × 1, 1 × 1 × 5. Subsequently, similar to 
the Inception DownSampling 2D module, filter concatenation, batch 
normalization, and ReLu layers are applied to generate the output. In 
this network module, the dimensions of the input from the previous 
layer are doubled. The objective of this module is to both double the 
dimensions of the input from the previous layer and extract features 
of different sizes through convolution operations using kernels of 
various sizes applied to the doubled inputs.

G. Loss Function
During the training process, an approach resembling a segmen-
tation problem was initially adopted for the 3D reconstruction 
problem. In this approach, within the 3D coordinate system {x, 
y, z}, coordinates corresponding to the voxels where an object is 
located were assigned a value of 1, while coordinates correspond-
ing to the background where no object exists were assigned a 
value of 0.

Fig. 11. Inception ResNet two-dimensional module. This figure shows the subnetwork module that uses skip connections to extract features 
from two-dimensional inputs, helping to minimize the vanishing gradient problem.
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At this stage, the data have sparse characteristics, which means that 
the number of 0 values in the acquired data is significantly higher 
than the number of 1 values. For example, if a small object is in a 
dark background, at the end of thresholding, the resulting image will 
have too many 0 values compared to 1 values. In such a case, clas-
sical error functions like mean squared error and CE, when applied 
to imbalanced label data, result in a greater impact of the dominant 
label value on the error function. To overcome this issue, we pro-
pose the Categorical Mean Cross Entropy (CMCE) error function. The 
CMCE error function is developed to address the issue of imbalanced 
distribution between the data in the 0 category and the data in the 1 
category within a voxel model. Essentially, the category labels were 
normalized separately for 0 and 1 values, and the mean cross entropy 
error was calculated for each category. The final CMCE error function 
was derived by summing up the mean cross entropy errors obtained 
for the 0 and 1 values as given in (2). In this equation, n0 and n1 are 
the number of 0 values and 1 values in the image, respectively. yi0  
and yi1  are the ground truths for ith pixel among the pixels that have 
0 values and ith pixel among the pixels that have 1 values, respec-
tively. yi0

�  and yi1
�  are the outputs of the model in a similar manner.

CMCE
y y
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y y

n
i

n

i i
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i i
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Fig. 12. Inception UpSampling three-dimensional module. This figure shows the subnetwork module that increases the dimensions of three-
dimensional inputs using transposed convolution and UpSampling.

Fig. 13. Categorical mean cross entropy loss during training. This 
figure shows the training and validation loss curves of the proposed 
model using the CMCE loss function over 60 epochs. The best results 
were achieved at epoch 32, with overfitting observed in later epochs.



Electrica 2025; 25: 1-14
Dağtekin et al. 3D Model Generation from 2D Image Sequences

10

III. RESULTS

In this section, the performance metrics of the proposed method 
have been examined categorically using the IoU metric given in (3). 
Additionally, the performance of the suggested CMCE loss function 
has been compared with the commonly used Cross Entropy (CE) loss 
function based on the IoU metric. The performance metrics of the 
proposed method have been compared with other studies in the 
literature using the IoU metric [15, 16], and the unique aspects of 
the proposed method have been discussed. Finally, the voxel-rep-
resented 3D models generated by the proposed model have been 
compared with reference models using sample input data.

IOU
Volume of the Intersection

Volume of theUnion
=  (3)

As a result of this study, the learning curve obtained from training the 
proposed deep learning model with the CMCE loss function is shown 
in Fig. 13. At the end of the training process, CMCE losses of 0.2382 

for the training dataset and 0.4333 for the validation dataset were 
achieved. However, as observed in Fig. 13, the most successful step 
in training is step 32, and overfitting is observed in subsequent steps. 
Therefore, the training of the proposed model was terminated at step 
60. Additionally, to ensure capturing the step where the validation 
dataset performs the best during training, a subroutine was devel-
oped and integrated into the training procedure. With this subroutine, 
the step with the lowest CMCE loss in the validation dataset was iden-
tified and saved. This enabled recording the most efficient step, and 
the model file containing the weights obtained at this step was used 
in subsequent computations. In the model saved at step 32, where the 
validation dataset performed the best, CMCE losses of 0.2939 for the 
training dataset and 0.3449 for the validation dataset were obtained.

To evaluate the performance of the proposed deep learning model, 
the IoU performance metric given in (3) has been used. The IoU per-
formance metric calculates the ratio of the intersection area of the 
obtained output overlaid with the reference image to the union area 
of the two sets, resulting in a performance metric that produces a 
result within the range of 0–1. The category-specific IoU values calcu-
lated using the IoU performance metric for the deep learning model 
obtained in this work are presented in Table I. In this table, the best 
results in each category is shown with bold characters. According to 
the results, the best result is achieved with the Car category, reach-
ing an IoU value of 0.7597, while the worst result is observed in the 
Lamp category with an IoU value of 0.3949. The average IoU value for 
all seven categories is calculated as 0.5283. Furthermore, in Table II, 
the performances of the proposed deep learning model trained with 
the CMCE loss function and the same deep learning model trained 
with the CE loss function using identical data are compared categori-
cally in terms of the IoU metric. In this table, the best results in each 
category is shown with bold characters. The comparison reveals that 
in six out of the seven categories, the model obtained through the 
training of the proposed deep learning model with the CMCE loss 
function tends to be more successful in terms of IoU values when 
compared to the model obtained with the CE loss function. The 
model trained exclusively with the CE loss function has been deter-
mined to outperform the model trained with the CMCE loss function 
in terms of IoU values only for the “Weapon” category. Furthermore, 
when considering the average IoU values across all test data, it has 
been demonstrated that the model trained with the CMCE loss func-
tion exhibits a higher average IoU value compared to the model 
trained with the CE loss function.

TABLE I. INTERSECTION OVER UNION PERFORMANCE COMPARISON BY 
ERROR FUNCTION

Category

IoU Error

CMCE CE

Car 0.7597 0.7124

Plane 0.4637 0.4383

Couch 0.6011 0.5167

Chair 0.4291 0.3953

Table 0.4791 0.3979

Lamp 0.3949 0.3656

Weapon 0.4440 0.4598

Average 0.5283 0.4815

CE, cross entropy; CMCE, Categorical Mean Cross Entropy; IoU, intersection over 
union.
Bold in this table, the best results in each category is shown with bold characters.

TABLE II. COMPARISON OF INTERSECTION OVER UNION VALUES OF METHODS

Method Number of Images

Category

AverageCar Plane Couch Chair Table

PTN [16] 1 0.4437 0.3352 0.3309 0.2241 0.1977 0.2931

McRecon [15] 1 0.5622 0.3727 0.3791 0.3503 0.3532 0.4036

PTN [16] 5 0.6593 0.4422 0.5188 0.3736 0.3356 0.4572

McRecon [15] 5 0.6142 0.4523 0.5458 0.4365 0.4204 0.4849

Proposed model + CE 4 0.7124 0.4383 0.5167 0.3953 0.3979 0.4621

Proposed model + CMCE 4 0.7597 0.4637 0.6011 0.4291 0.4711 0.5449

CE, cross entropy; CMCE, Categorical Mean Cross Entropy.
Bold in this table, the best results in each category is shown with bold characters.
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Fig. 14. Sample of generated three-dimensional voxel models. This figure displays sample three-dimensional voxel models generated by the 
proposed deep learning model compared with reference three-dimensional voxel models.
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The comparison of the category-specific IoU values for both the ver-
sion trained with the CE loss function and the version trained with the 
CMCE loss function of the proposed method is presented in Table II. 
The evaluation involves a comparison with the PTN [16] method devel-
oped using input of 1 image and 5 images, as well as the McRecon 
[15] method. In Table II, the IoU performance values reported by Yan 
et al. [12] for the PTN and McRecon methods were used. The obtained 
results highlight the outcome of the most successful method in each 
category in the table. In this comparison, the metric results of the IoU 
performance are shown, and the set of common categories used in 
the training of the PTN and McRecon methods on the ShapeNet data-
set is specified. In the context of these common category sets, it is 
observed that the proposed method outperforms both the 1 image 
and 5 image input versions of both McRecon and PTN methods in 
categories other than the chair category, achieving higher IoU values.

The proposed method not only attains the highest IoU value solely 
in the chair category but also demonstrates the second highest IoU 
value in the chair category when considering the version of the 
proposed model trained with the CMCE loss function. Furthermore, 
when focusing on the common category sets and calculating the 
average IoU values, the version of the proposed deep learning 
model trained with the CMCE loss function consistently achieves a 
higher average IoU value compared to other methods, as illustrated 
in Table II.

The comparison of the 3D voxel models generated in the categories 
of airplane, car, lamp, weapon, coach, table, and chair using the devel-
oped CMCE loss function within the scope of this study, trained with 
the proposed deep learning model, with the reference 3D Voxel mod-
els is illustrated in Fig. 14. The 3D voxel models generated in com-
parison with the reference 3D voxel models shown in Fig. 14 were 
opened in a computer environment, and screenshots were taken.

IV. CONCLUSION

We have developed a deep learning model along with a proposed 
error function to generate voxel-represented 3D models from silhou-
ette images captured from four different perspectives. The average 
IoU value achieved was 0.5449. After preprocessing the example 2D 
images, as shown in Fig. 8, and feeding them into the input layer of 
the trained deep learning model, voxel-represented 3D models were 
generated, as shown in Fig. 14.

The 3D models were created using images captured from four differ-
ent perspectives. While some studies in the literature [12, 14–16] have 
been able to produce 3D models using only a single image, these 
methods have performed poorly in terms of IoU values. Additionally, 
they used supervised methods in terms of categorization. Therefore, 
it is recommended that unsupervised deep learning studies be con-
ducted using three or more images for categorical exploration.

The development of unsupervised deep learning models for cate-
gorization is expected to significantly reduce the reliance of these 
models on predefined categories in the training dataset, such as 
airplanes and cars. Consequently, these models will be capable of 
generating 3D models for objects that have never been encoun-
tered before, resulting in a more comprehensive and efficient deep-
learning model. Therefore, the advancement of unsupervised deep 
learning models for categorization is essential for future research 
and industrial applications.

We propose a method that utilizes voxel representation to produce 
3D models in this work. However, for industries such as gaming, 
graphics, and architecture to fully benefit from deep learning-based 
approaches and to offer more practical solutions, future research 
should focus on developing 3D models with smoother and more 
realistic mesh representations. The method proposed in this study 
does not address these aspects, indicating the need for further 
refinement in future research.
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