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ABSTRACT

This study presents a comparative analysis of five metaheuristic algorithms for optimizing Proportional Integral 
Derivative (PID) controller parameters in a vehicle cruise control system. The selected algorithms include the Rain 
Optimization Algorithm (ROA), Student Psychology-Based Optimization (SPBO), Sine Cosine Algorithm (SCA), 
Gradient-Based Optimization (GBO), and Grey Wolf Optimization (GWO). The PID parameters are optimized using 
four common performance criteria: Integral Time Absolute Error (ITAE), Integral Absolute Error (IAE), Integral Square 
Error (ISE), and Integral Time Square Error (ITSE). Unlike conventional tuning methods, metaheuristic approaches 
provide more flexible and adaptive parameter selection, enhancing the control system's robustness. The study 
analyses the algorithms under several internal and external disturbances, including road incline, passenger mass, 
and measurement noise. The findings demonstrate that no singular algorithm is universally superior; instead, 
efficacy is contingent upon the particular system conditions and control objectives. The Sine Conine Algorithm 
(SCA) has superior overall performance under typical settings, while GWO attains the quickest response time for 
slope fluctuations. Conversely, ROA reduces overshoot, rendering it appropriate for applications that necessitate 
stability. Additionally, the proposed methods are compared with the classical Ziegler-Nichols tuning approach, 
demonstrating the advantages of metaheuristic algorithms in terms of reduced overshoot, faster settling time, 
and improved robustness. The findings indicate that the SCA with the ITAE criterion yields superior performance 
under varying disturbance conditions. However, the fastest system response under different slope conditions is 
achieved with the parameter values determined by the GWO employing the ITSE criterion. The system model 
is designed in a MATLAB environment and the detailed comparative results are provided in figures and tables.
Index Terms— Metaheuristic algorithms, PID optimization, rain optimization algorithm, vehicle cruise control

I. INTRODUCTION

The introduction of autonomous driving technology has brought about a significant improve-
ment in the vehicle cruise control (VCC) system, which is a standard element in modern vehi-
cle types such as gasoline, diesel, and electric vehicles. Modern cruise control systems have 
developed to include advanced sensors, actuators, and control algorithms, allowing vehicles to 
autonomously adjust speed and maintain safe distances from other vehicles on the road. It was 
originally designed as a mechanism to maintain a constant speed set by the driver [1]. In this 
context, cruise control systems stand out as a critical technology that allows drivers to effec-
tively control vehicle speed, thereby improving driver safety and the safety of other road users. 
These systems are intelligent control systems that allow drivers to travel at a certain speed, and 
at the same time, maintain this speed by automatically intervening [2–5]. It is also desirable for 
the speed transitions to be smooth and for the speed to remain at the desired reference during 
normal travel. To perform a smart and safe cruise control operation in line with the desired objec-
tives, one must design a suitable controller. Some advanced control methods, such as model pre-
dictive control [6–10], robust and optimal control [11, 12], fuzzy logic [13, 14], and learning-based 
[15, 16] control methods have been implemented in the literature. In addition to these advanced 
control methods, classical PID control still maintains its importance thanks to its easier applicabil-
ity. However, achieving optimal performance from PID controllers often requires careful tuning 

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?
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depends on the optimization algorithm 
used for tuning the controller parameters. 
Traditional PID tuning methods, such as 
Ziegler-Nichols, often suffer from slow 
response times, excessive overshoot, and 
limited stability, particularly in nonlinear 
and dynamic systems. Metaheuristic 
algorithms have been widely applied 
to improve PID tuning, providing more 
flexible and adaptive parameter selection, 
but their effectiveness varies depending on 
system conditions and disturbances.

Content of this journal is licensed 
under a Creative Commons
Attribution-NonCommercial 4.0 
International License.

mailto:yahya@ktu.edu.tr
http://orcid.org/0009-0000-4105-6017
http://orcid.org/0000-0002-8679-4088
http://orcid.org/0000-0002-5145-9351
http://orcid.org/0009-0008-9424-7210


Electrica 2025; 25: 1-16
Heybetli et al. CAMPIDVCC

2

of their parameters. Although manual tuning is straightforward to understand, it is rather arbi-
trary and may not necessarily produce the best controller performance, particularly for complex 
or nonlinear systems. The Ziegler-Nichols method has drawbacks, most notably a tendency to 
lead to increased overshoot, rise time, and settling time when the system is operating, especially 
when dealing with nonlinear systems that have a variety of parameters, a large amount of inertia, 
and a significant amount of delay. Due to the inherent nonlinearity of the controlled system, 
these constraints can impact system performance and result in poor responses at the output 
[17–21]. In recent years, metaheuristic algorithms have been successfully applied to adjust the 
PID controller parameters in various control systems, including industrial processes, robotics, and 
mechatronic systems. These algorithms search for optimal PID parameters by iteratively evalu-
ating the performance of different parameter combinations using a fitness function [22]. With 
these developments, significant progress has been made in PID controller (and its derivatives) 
based vehicle speed control systems by applying metaheuristic algorithms [23–35].

In [23], the authors propose an optimal tuning method for a Proportional-Integral-Derivative-
Accelerated controller for the VCC system using the modified bat algorithm (MBA), a power-
ful metaheuristic optimization technique. [24] proposes the design and implementation of an 
optimized PID controller for an adaptive cruise control system. Different objective functions, 
including ITE, ITAE, and ITSE, are employed for optimizing the controller using Particle Swarm 
Optimization (PSO) and teacher-learning-based optimization algorithms (TLBO). A linearized 
model of the vehicle system, including external disturbances such as road incline and air fric-
tion, is considered in the design of a mathematical model of the VCC system. A PSO-based opti-
mizer for the third-order vehicle mathematical model is proposed in [25], aquila optimizer via 
chaotic local search, and modified opposition-based learning strategies (CmOBL-AO). A PIDD2 
(proportional-integral-derivative plus second-order derivative) controller for a linearized model 
of the VCC system is proposed in [26], the weighted mean of vectors (INFO) algorithm-based 
PIλDND2N2 (a derivative of the PID controller) controller is proposed in [27] prioritizing road safety. 
For a simple vehicle model with only throttle pedal action, genetic algorithm (GA), memetic algo-
rithm, and mesh adaptive direct search methods are used to optimize the PID controller in [30]. 
The performances are compared considering overshoot, settling time, and steady-state error. [31] 
explores the efficacy of a PID controller optimized by GA for automobile cruise control systems, 
considering the high non-linearity of the system. The study evaluates transient and steady-state 
performance metrics, revealing that the GA-tuned PID controller exhibits the shortest rise time. 
An Ant Lion Optimizer (ALO) tuned PID controller for the first time for an automobile VCC was 
introduced to enhance the robustness of the system. This emphasizes the exploration capabili-
ties of the ALO algorithm in searching the potential regions of the parameter space, considering 
road incline and air resistance as external disturbances in [32].

Vehicle dynamics and parameters must be precisely understood for automobile VCC systems 
to operate at an accurate speed. Using data-driven techniques like system identification and 
machine learning algorithms, researchers have developed methods for parameter estimation 
and vehicle model acknowledgment. These methods make it possible to create precise vehicle 
models that can enhance the efficiency of speed control in a variety of vehicle types. Furthermore, 
to guarantee that the VCC system operates satisfactorily, the controller design process must con-
sider both internal and external disturbances [36, 37].

Upon reviewing the literature, it becomes evident that linear vehicle dynamics are frequently 
employed in the construction of metaheuristic algorithm-based PID controllers. It has been 
found that research using these dynamics lacks an examination of how different types of dis-
turbances affect controller performance [23–25, 29, 31]. While these controllers only have a 
restricted set of parameter values, it is considered that they are not robust, and that vehicle 
speed control is going to fail as intended when dealing with various disturbance types. Based 
on these findings, the performance of the PID controller in this study is optimized by consider-
ing both internal disturbances that represent errors, such as measurement and modeling, and 
external disturbances like passenger weight and road incline. The contribution of this study can 
be summarized as follows:

A key novelty of this study is the application of three relatively unexplored metaheuristic algo-
rithms, Student PsychologyBased Optimization (SPBO), Rain Optimization Algorithm (ROA), 
and Sine Cosine Algorithm (SCA), for PID parameter tuning in VCC systems. To the best of the 
authors’ knowledge, these algorithms have not been previously utilized in this context. While 

WHAT DOES THIS STUDY ADD ON 
THIS TOPIC?

• This study presents a comparative 
analysis of five metaheuristic algorithms 
(ROA, SPBO, SCA, GBO, and GWO) for PID 
parameter optimization in a VCC system. 
The study evaluates the robustness of 
these algorithms under various internal 
(sensor noise) and external (road 
incline, passenger weight) disturbances, 
providing insights into their adaptability 
to real-world driving conditions. The 
results demonstrate that while no single 
algorithm is universally superior, the 
Sine Cosine Algorithm (SCA) achieves the 
best overall performance under normal 
conditions, while Grey Wolf Optimization 
(GWO) provides the fastest response time 
for slope variations. This study contributes 
to the field by offering a comprehensive 
comparison of optimization techniques, 
guiding the selection of suitable 
algorithms for robust and efficient vehicle 
speed control.
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conventional methods such as GA and PSO have been extensively 
studied in PID tuning, this study investigates alternative opti-
mization techniques that offer diverse search mechanisms and 
improved adaptability to nonlinear system dynamics. By integrat-
ing these novel algorithms into the control framework, the study 
provides new insights into their performance in handling real-world 
disturbances such as road incline variations, passenger weight 
fluctuations, and internal noise effects. The comparative analysis 
demonstrates that these approaches can achieve competitive, and 
in some cases superior, control performance in terms of rise time, 
settling time, and overshoot reduction. This contribution extends 
the applicability of metaheuristic optimization in VCC systems and 
opens new possibilities for further exploration in automotive con-
trol engineering.

The study demonstrates the robustness of the PID controllers opti-
mized by these algorithms when subjected to external disturbances 
such as road incline and passenger weight, as well as internal distur-
bances like Gaussian and sinusoidal inputs. This aspect is crucial for 
real-world applications where such disturbances are common.

The findings indicate that the SCA with the ITAE criterion yields supe-
rior performance under varying disturbance conditions, while the 
GWO algorithm achieves the fastest system response under different 
slope conditions. This comparative analysis helps in understanding 
which optimization method is most effective for specific scenarios.

The system model is designed and implemented in the MATLAB 
environment, providing a practical framework for future research 
and development in VCC systems. The detailed comparative results 
presented in figures and tables enhance the clarity and applicability 
of the findings.

The rest of this paper is organized as follows: Section II covers the 
mathematical modeling of the VCC system and PID control. Section 
III describes the selected metaheuristic algorithms. Section IV details 
the implementation, performance evaluation, and comparative 
analysis. Section V discusses the results, including comparisons with 
classical PID tuning. Finally, Section VI presents conclusions and 
future research directions.

II. METHODS

A. Mathematical Modelling of Automobile Cruise Control System
By maintaining the speed of a vehicle at the driver-specified speed, 
the VCC system generates the appropriate amount of pedal input. 
The system suffers from external disturbances such as wind resis-
tance and road interruptions. The VCC system determines the error 
rate brought on by these disturbances and sends the control signal 
to the appropriate actuator at the desired speed. Accelerator pedal 

pressure controls the speed. As a result, when the VCC is engaged, 
the pedal actuator functions as though the driver is pressing it. Fig. 1 
shows the general block diagram of the VCC system that is consid-
ered for the study. The mathematical equations of the vehicle are 
given in (1), (2), and (3), respectively.

F F F F Ft i s r a� � � �  (1)

F
T i i

r
t

e x d

wd
�

. . .0 �  (2)

r rwd ws= 0 98. .  (3)

where Ft (traction force) is a positive force trying to move the vehicle 
forward. All other forces are resistive, negative forces that oppose the 
movement and try to slow the vehicle down. Te [Nm] is the engine 
torque, ix is the transmission gear ratio, i0 is the final gear ratio, ηd is 
the driveline efficiency, rwd [m] is the dynamic wheel radius, and rws is 
the static wheel radius. The dynamic wheel radius is the wheel radius 
when the vehicle is in motion. Because the tire undergoes slight 
compression while in motion, this value is marginally smaller than 
rws. The force that occurs during vehicle acceleration is the force of 
inertia (Fi) and is expressed in (4).

F m ai v v= .  (4)

The force Fi is obtained by multiplying the total vehicle mass (kg) mv 
by the vehicle acceleration av. The force that occurs when the vehicle 
is traveling on an upslope or downslope is the road slope force Fs and 
is expressed in (5).

F m g as v s� � �. .sin  (5)

Fs is one of the resistance forces affecting the vehicle's motion. This 
force depends on the slope angle of the road and the mass of the 
vehicle. Here, g represents the acceleration due to gravity [m/s2], and 
as represents the slope angle of the road. The road resistance force 
usually increases as the speed of the vehicle increases or as the gra-
dient of the road increasesThat is, this force is a resistance that makes 
it difficult for the vehicle to move forward as defined in (6). 

F m g c ar v r s� � �. . . cos  (6)

Fr (road resistance force) represents the resistances that affect the 
movement of the vehicle as defined in (6). Where Fr is the road resis-
tance forcewhiich represents the resistances that affect the move-
ment of the vehicle. . Here, cr represents the coefficient of road 
resistance. Aerodynamic resistance force (Fa) whis is defined as in 
(7), is the resistance force caused by the effect of air when a vehicle 
moves.

Fig. 1. General representation of the VCC system.
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The relationship between the speed of the vehicle (v) and the forces 
is given in (8).

v
m

F F F F dt
v

t s r a� � � � �� ��� ��
1

 (8)

Where ρ is the air density at 20°C [kg/m3], cd is the air resistance coef-
ficient, A is the vehicle cross-sectional area [m2], and v is the vehi-
cle speed [m/s]. To control the speed, a suitable controller must be 
designed. In this study, a classical PID controller is designed, and its 
performance is analyzed for variable reference speed.

B. PID Control
In this study, a PID controller is designed to control the speed of the 
vehicle. A PID controller is a control system that derives its name from 
the sum of proportional, integral, and derivative terms of the output. 
These terms are called kp, ki and kd respectively. By optimally determin-
ing these variables, the dynamic response of a system is increased, 
overshoot is reduced, and steady-state error is eliminated [38]. The 
mathematical expression of the controller is given in (9) as follows.

u t k e t k e t dt k
de t

dt
p i

t

d� � � � �� � � �
� �� 0

 (9)

Here, e(t) represents the error term, kp denotes the proportional gain, 
ki represents the integral gain, and kd signifies the derivative gain. 
Optimal determination of these parameters is essential for effec-
tive speed control. In this study, the SPBO, SCO, ROA, GBO, and GWO 
algorithms were employed to compute the parameter values of kp, 
ki, and kd.

III. OPTIMIZATION ALGORITHMS

A. Rainwater Optimization Algorithm (ROA)
The ROA is a metaheuristic algorithm that determines the minimum 
points on the earth's surface, influenced by the natural flow of rain-
drops and precipitation formations [39]. When rain falls, raindrops 
reach the earth's surface. The weight of the rainfall causes it to accu-
mulate over time and reach the lowest points on the land. However, 
some drops are absorbed by the soil or mixed with previous drops. 
On the other hand, the soil dissolves in water. These facts form the 
basis for the ROA, where each solution is modeled by a raindrop. The 
Rain Optimization Algorithm is an algorithm that mimics the natu-
ral behavior of raindrops falling from a peak (high position) to a val-
ley (low position). Correct adjustment of the parameters allows this 
algorithm to identify both local and global extrema. In terms of find-
ing the global minimum, the ROA appears to be superior to other 
algorithms. The movement of raindrops flowing downhill forms the 
basis of the optimization process.

Just like raindrops falling randomly to the ground, locations in the 
solution space can also be randomly selected based on the context. 
The radius of each raindrop is its most important characteristic and 
can decrease over time and expand when the raindrop merges with 
other raindrops. After the initial population of solutions is created, 
the radius of each droplet can be randomly assigned within a reason-
able range. In each iteration, each droplet examines its surroundings 
depending on its size. A droplet connected to another droplet only 

examines the endpoint of the area it covers. In an n-dimensional 
space, each droplet contains n variables. Therefore, in the first stage, 
the upper and lower bounds of the first variable will be examined 
in a way that is determined by the droplet radius. In the next stage, 
by checking the two ends of the two variables, this process will con-
tinue until the last variable. At this stage, the cost of the first droplet 
is updated by moving downwards. This is not the final action of the 
droplet, and as the cost function decreases, it will continue to move 
downwards in the same direction. This movement causes the neigh-
boring droplets to approach each other, resulting in an improve-
ment in the results. When the droplet reaches the minimum point, 
its radius begins to decrease slowly, increasing the accuracy of the 
obtained solution. This action will be performed for all droplets, and 
then the costs and positions of all droplets will be determined. This 
entire process aims to identify the extremum points of the objective 
function.

The radius of each droplet is modified in two modes:

If two drops with radii r1 and r2 are close to each other and share a 
common point, they can be combined to form a larger drop with a 
radius R. The mathematical expression for this drop is given in (10).

R r rn n n� �� �1 2

1
 (10)

If a droplet with a radius r1 is not moving, it can be absorbed at a rate 
determined by α upon interaction with the ground. In this case, the 
droplet R is expressed as in (11).

R r n n� � �� 1

1
 (11)

In this equation, n represents the number of variables for each drop-
let. α represents the percentage of volume that can be absorbed in 
each iteration and takes a value between 0 and 100. Additionally, 
a minimum radius rmin is defined, and droplets smaller than this rmin 
value are lost. As the optimization process progresses, the droplet 
population decreases, and larger droplets expand their search areas. 
Larger droplets enhance their local search capabilities proportion-
ally to their diameters. With each iteration, weaker droplets either 
vanish due to having smaller search areas or connect to stronger 
droplets with larger search areas. As a result, the initial population 
significantly decreases, and the speed of finding correct solutions 
increases.

B. Student Psychology Based Optimization Algorithm (SPBO)
The SPBO algorithm is based on the psychology of students who 
strive to become the best students in the class by obtaining the 
highest grades and improving their performance. A students’ per-
formance is evaluated based on the grades they receive in exams. 
The student who achieves the highest grade in the exam is generally 
considered the most successful student in the class and is rewarded 
accordingly. Typically, students in the class try to improve their per-
formance in order to become the best students. This requires them 
to put in more effort for each subject. However, the effort put in 
by students for each subject depends on factors such as their abil-
ity, effectiveness, and interest in that subject. Therefore, the effort 
required for all students to improve their exam performance is not 
the same and can vary from student to student. The goal of becom-
ing the best student demonstrates that the effort students put in 
is also linked to their psychology. In light of this information, the 
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students in a class can be divided into four categories based on their 
subject-wise efforts: the best, good, average, and those who try to 
improve randomly [40].

C. Sine Cosine Algorithm (SCA)
The SCA is a population-based optimization algorithm. Initially, 
a random set of solutions is generated. These solutions are evalu-
ated by an objective function and improved according to a certain 
set of rules. The SCA utilizes sine and cosine functions for updating 
the solutions. These functions calculate the next position by deter-
mining the current solution's location and direction of movement. 
Additionally, parameters are used to determine how much the solu-
tions should move towards or away from the target, the impact of 
distance to the target, and to facilitate transitions between sine and 
cosine components. The main objective of SCA is to effectively utilize 
a region between two solutions in the search space. The cyclic pat-
tern of sine and cosine functions allows solutions to be repositioned 
around each other, enabling efficient exploration of the defined 
region of solutions.

D. Gradient Based Optimizer (GBO)
GradientBased Optimization (GBO), as its name suggests, aims to 
find the best solution in an optimization problem using both gra-
dientbased (i.e., derivative-based) and population-based (i.e., evalu-
ating multiple solutions simultaneously) approaches. This algorithm 
creates a group of solution vectors (population) in a specific search 
space and ensures each vector is located somewhere. Then, with 
the gradientbased approach, it calculates the gradient of the objec-
tive function at the position of each solution vector, determining 
the best direction at that location. Subsequently, it updates the 
solution by taking a step in that direction. However, gradientbased 
approaches may not always be effective, especially in complex or 
irregular functions. In such cases, GBO is supported by population-
based approaches. The population-based approach involves evalu-
ating many different solutions simultaneously, allowing for a broad 
search and potentially discovering better solutions [41].

E. Grey Wolf Optimization (GWO)
Grey Wolf Optimization is a metaheuristic algorithm developed by 
drawing inspiration from the hunting strategies of grey wolves. Grey 
wolves, being apex predators at the top of the food chain, are typi-
cally pack animals. The leaders of the pack, known as alphas, con-
sist of a male and a female who make decisions regarding hunting 
and resting places. At the second level of the hierarchy are the beta 
wolves, which assist the alphas and are considered potential candi-
dates for leadership. At the lowest level are the omega wolves, which 

submit to the dominant wolves in the pack. The algorithm aims to 
solve optimization problems by updating solution candidates based 
on this hierarchical structure and hunting strategies while mimick-
ing the behaviors of alpha wolves [42].

IV. IMPLEMENTATION AND DISCUSSION

In this section, the parameters of the designed PID controller (kp, ki, 
kd) are optimized with ROA [43], SPBO [40], SCA [44], GBO [41] and 
GWO [42] algorithms in the MATLAB environment in order to perform 
a comparative analysis for the VCC system. The simulation studies 
were carried out using real internal combustion engine parameters, 
which are provided in Table I. To obtain the stabilizing PID gains, the 
upper and lower bounds of [kp ki kd] are determined [45] as [0.1 0.1 
0.1] and [100 10 0.1], respectively. For a fair comparison of the five 
algorithms, the population size and iteration number are chosen 
as 50 in each simulation. The general MATLAB model of the study  
is shown in Fig. 2.

In addition, in order to select the best controller parameters for 
the VCC system, the PID is optimized using the 4 different objec-
tive functions (performance index): ITAE (integral time absolute 
error) (12), IAE (integral absolute error) (13), ISE (integral square 
error) (14), and ITSE (integral time square error) (15), which are most 
commonly used in the literature. These performance indices are  
defined as follows:

ITAE t e t dt� � �
�

�
0

,  (12)

IAE e t dt� � �
�

�
0

,  (13)

ISE e t dt� � �
�

�
0

2
,  (14)

TABLE I. VEHICLE PARAMETERS

Parameter Values

Maximum torque 450 Nm

Maximum power 340 HP

Vehicle mass (mv) 1741 kg

Aerodynamic drag, Cd 0.36

Front area 2.42 m2

Maximum speed 260 kph

Acceleration time from 0–100 kph 5.3 s

Fig. 2. General representation of the simulation model of the VCC 
system.
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ITSE te t dt� � �
�

�
0

2
,  (15)

where t is the time, e(t) is the error between measured (V) and refer-
ence (Vref) vehicle speed. During the comparative analysis, the effi-
cacy of the algorithms in optimizing the system was evaluated across 
various magnitudes of external disturbances, such as road incline (Ri) 
and passenger weight (mp), as well as internal disturbances including 
Gaussian (Gd) and sinusoidal (Sd) inputs applied to the mathematical 
model of the vehicle system. The evaluation of method performance 
is carried out by altering the reference speed Vref, initially set at 90 
km/h up to the 20th second, subsequently decreased to 60 km/h at 
the 20th second, then raised to 110 km/h at the 40th second, fol-
lowed by a reduction to 80 km/h at the 60th second, and finally low-
ered to 50 km/h at the 80th second. This assessment is conducted 
based on key performance metrics including rise time (tr), settling 
time (ts), fall time (tf), and percentage overshoot (Mo).

Initially, the parameters (kp, ki, and kd) derived from employing 
the algorithms with different objective functions, excluding con-
siderations of internal and external disturbances, are identified. 
This process facilitated the determination of the algorithm that 
exhibits superior optimization performance when coupled with 
specific objective functions. Table II shows the optimal param-
eter values obtained when different algorithms and different func-
tions are used together. Disturbance effects are not considered in 
this analysis. Scenarios that take these effects into account are  
validated below.

The optimization process is carried out over four scenarios. 
The first scenario focused on the road incline, the second on 

passenger weight, the third on Gaussian and sine noise, and the fourth  
on combining parameters from the previous three using different 
values. Thus, both transient state, steady state, and robustness analy-
sis are performed.

A. Scenario-I: Road Incline (Ri)
The behavior and performance of cruise control systems can be 
greatly affected by road inclines. Gravity gives the car more resis-
tance when it is traveling uphill. The car may slow down if a con-
ventional cruise control system finds it difficult to keep the pace 
attained. The cruise control system opens the throttle further to 
maintain speed despite the hill. In some circumstances, the engine 
may need to work harder, particularly on steeper inclines, which 
could result in increased fuel consumption and engine strain. Gravity 
helps the car drive faster when it is heading downhill; therefore, it 
might go faster than planned. Conventional systems might not be 
able to manage sudden increases in speedwell, forcing the driver 
to manually engage the brakes. Certain systems may momentarily 
deactivate cruise control. The optimization performances of the 
algorithms were looked at for various road incline conditions to 
make the proposed VCC system that was created here and one that 
was more robust. It was thus attempted to determine the optimal 
conditions under various inclination circumstances. For this purpose, 
Ri is set at 0°, 10°, and 30°, which are typical in urban and highway 
environments. According to international road design standards 
such as those set by the American Association of State Highway and 
Transportation Officials (AASHTO), the European Union Road Design 
Guidelines, the Chinese Highway Code (JTGB01-2014), and the reg-
ulations of the General Directorate of Highways in Turkey (KGM), 
highway inclines typically range between 4% and 6% (≈2.3°–3.4°), 
while urban roads may have inclines up to 8% (≈4.6°). The European 
Union and Chinese highway standards allow slightly higher inclines 

TABLE II. OPTIMAL PID PARAMETERS OBTAINED WITH THE DIFFERENT ALGORITHMS AND FUNCTIONS (INTEGRAL TIME ABSOLUTE ERROR, INTEGRAL 
ABSOLUTE ERROR, INTEGRAL SQUARE ERROR AND INTEGRAL TIME SQUARE ERROR) WITHOUT DISTURBANCES

Algorithms ITAE IAE

kp ki kd kp ki kd

ROA 0.44180 0.00010 0.00010 3.17490 0.00010 0.00010

SPBO 1.80050 0.00044 0.01763 4.41260 0.00034 0.00010

GBO 1.03920 0.00034 0.00018 3.75290 0.00022 0.00010

SCO 3.39930 0.00150 0.00560 3.24810 0.00036 0.00062

GWO 2.21210 0.00035 0.00012 4.75510 0.00035 0.00011

Algorithms ISE ITSE

kp ki kd kp ki kd

ROA 1.72790 0.00010 0.00010 3.80400 0.00010 0.00010

SPBO 4.92730 0.01268 0.05640 4.93510 0.18200 0.00880

GBO 4.25070 0.01060 0.04360 4.12410 0.01150 0.04820

SCO 2.71500 0.01440 0.09380 2.71500 0.002700 0.06510

GWO 4.48910 0.01160 0.06450  5 0.0015 0.00100

GBO, GradientBased Optimization; GWO, Grey Wolf Optimization; IAE, integral absolute error; ISE, integral square error; ITAE, integral time absolute error; ITSE, integral 
time square error; ROA, Rain Optimization Algorithm; SCA, Sine Cosine Algorithm; SPBO, Student PsychologyBased Optimization.
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in mountainous regions, with values reaching 10% (≈5.7°) in special 
cases. A 10° incline (~17.6% grade) represents a steep but realistic 
scenario, aligning with the upper limits of certain local roads and 
mountainous areas, where gradients can reach 12-15% (≈6.8°–8.5°) 
in challenging terrains, particularly in China and some European 
mountain roads. Although a 30° incline (~57.7% grade) is not com-
monly found in real-world roadways, it is included as a worst-case 
scenario for evaluating the robustness of the proposed system.

To evaluate these situations, the reference speed change is applied 
to calculate the PID coefficients and the resulting performance indi-
cators are listed in Table III.In this scenario, the driver weight is set to 
80 kg (no passenger), and Gaussian and sinusoidal disturbances are 
not considered. When the reference speed is reduced from 90 km/h 
to 60 km/h at the 20th second under zero road incline, the shortest 
reaction time is observed in the SCA algorithm, with a decrease of 
0.05 seconds, while the longest reaction time is observed in the ROA 
algorithm, with a decrease of approximately 0.34 seconds. It is clear 
that the fall time of the SCA algorithm remained unchanged during 

the slope variation, whereas the ROA algorithm is the most affected 
one. Figs. 3–5 show the transient and steady-state behaviors of the 
algorithms. Note that the results given in Table II are calculated from 
these figures.

B. Scenario-II: Weight (mp)
The total weight of the vehicle (mv) increases with an increase in 
passenger weight (mp). The extra weight puts more pressure on the 
cruise control system to precisely and frequently adjust the throttle 
in order to maintain a steady pace, particularly when accelerating 
or decelerating. Longer stopping distances result from more weight. 
To maintain safe stopping distances, VCC systems that interface 
with automatic braking and adaptive cruise control must take into 
consideration the increased momentum. Having more passengers 
alters the center of gravity of the car, which can impact handling. 
Stability control mechanisms that adapt to the weight distribution 
of the vehicle may be included in advanced control systems. While 
passenger weight does affect a cruise control system's operation, 
modern systems are designed to compensate for these variations. 

Fig. 3. Transient and steady state performance of the algorithms using ITAE for Ri = 0°.

Fig. 4. Transient and steady state performance of the algorithms using ITAE for Ri = 10°.
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The effects are most significant in terms of fuel efficiency, engine 
load, and braking performance. Advanced systems use various sen-
sors and adaptive algorithms to ensure that the vehicle maintains a 
constant speed safely and efficiently, regardless of changes in pas-
senger mass. This study investigates the efficiency of algorithms in 
response to fluctuations in vehicle weight and Table IV displays the 
performance measurements obtained by considering total passen-
ger weights of 80 kg, 240 kg, and 400 kg, respectively. Other distur-
bances are taken to be zero in each scenario. It is observed that the 
algorithms exhibit negligible sensitivity to load changes. The SCA 
algorithm demonstrates superior performance under varying loads, 
achieving a fall time of 0.05 sec. and a settling time of 2.12 sec. at the 
maximum load. Although the rise time and overshoot are compa-
rable across all algorithms, the ROA algorithm exhibits the slowest 
fall and settling times.

C. Scenario-III: Gauss and Sin
When crucial characteristics like vehicle speed, acceleration, and 
distance are measured, measurement disturbances are defined as 
noise or inaccuracies in the sensors. The feedback signals sent to 
the control system by these disturbances may contain inaccuracies 
that degrade the ability of systems to accurately control the speed. 
Inaccurate data can cause oscillations or overshooting of the desired 
speed setpoint, which can weaken a passenger’s comfort and fuel 
efficiency. In VCC systems, external and internal disturbances signifi-
cantly influence system stability and performance. Gaussian noise 
(Gd) and sinusoidal noise (Sd) are widely used as representative dis-
turbance models to assess controller robustness against real-world 
uncertainties such as sensor measurement errors, road irregularities, 
and aerodynamic effects [46–51].

Fig. 5. Transient and steady state performance of the algorithms using ITAE for Ri = 30°.

TABLE III. PERFORMANCE COMPARISON OF THE ALGORITHMS UNDER 
VARIOUS ROAD INCLINE (RI) CONDITIONS (INTEGRAL TIME ABSOLUTE 
ERROR)

Algorithms Ri (degrees) tf (sec) tr (sec) Mo (%) ts (sec)

ROA 0
10
30

0.34
0.66
0.36

1.85
0.97
0.67

0.00
3.57
6.40

2.47
1.73
1.26

SPBO 0
10
30

0.09
0.11
0.12

1.85
1.00
0.74

0.00
0.90
1.59

2.16
1.29
0.96

GBO 0
10
30

0.15
0.18
0.22

1.85
0.99
0.73

0.00
1.53
2.73

2.21
1.39
1.02

SCA 0
10
30

0.05
0.05
0.05

1.85
1.01
0.75

0.01
0.53
0.87

2.09
1.19
0.88

GWO 0
10
30

0.07
0.08
0.08

1.85
1.01
0.75

0.00
0.73
1.30

2.12
1.25
0.91

GBO, GradientBased Optimization; GWO, Grey Wolf Optimization; ROA, Rain 
Optimization Algorithm; SCA, Sine Cosine Algorithm; SPBO, Student 
PsychologyBased Optimization.

TABLE IV. PERFORMANCE COMPARISON OF THE ALGORITHMS IN RESPONSE 
TO PASSENGER MASS (MP) CHANGE (INTEGRAL TIME ABSOLUTE ERROR)

Algorithms mp (kg) tf (sec) tr (sec)
Mo

(%) ts (sec)

ROA 80
240
400

0.34
0.37
0.39

1.85
1.85
1.85

0.000
0.000
0.000

2.47
2.47
2.74

SPBO 80
240
400

0.09
0.10
0.11

1.85
1.84
1.84

0.000
0.000
0.000

2.16
2.16
2.24

GBO 80
240
400

0.15
0.16
0.17

1.85
1.85
1.84

0.000
0.000
0.000

2.21
2.21
2.32

SCA 80
240
400

0.05
0.05
0.05

1.85
1.84
1.84

0.001
0.001
0.001

2.09
2.09
2.12

GWO 80
240
400

0.07
0.07
0.08

1.85
1.85
1.84

0.000
0.000
0.000

2.12
2.12
2.16

GBO, GradientBased Optimization; GWO, Grey Wolf Optimization; ROA, Rain 
Optimization Algorithm; SCA, Sine Cosine Algorithm; SPBO, Student 
Psychology-Based Optimization.
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Gaussian noise is frequently utilized to replicate random sensor 
errors and environmental variations, which are essential for main-
taining precise feedback control [48]. Studies show that real-world 
vehicular sensors exhibit noise levels ranging from 0.05% to 5% of 
the measured signal, aligning with the values (0.05, 1, and 5) used in 
this study [48]. Sinusoidal noise is commonly utilized to represent 
periodic disruptions caused by road irregularities, engine vibra-
tions, and aerodynamic variations [47]. Previous works have shown 
that such disturbances typically occur at frequencies between 0.1 
Hz and 1 Hz, with amplitude variations up to 0.7% of the nominal 

speed, supporting the parameters (0.1, 0.4, and 0.7) selected in this 
research [46].

To systematically assess the influence of these disturbances on opti-
mization-driven PID tuning, Gd and Sd were incorporated into the 
VCC system simulations. Tables V and VI show the performance mea-
surements for these two cases. Firstly, assuming a flat road (Ri = 0), 
no Sd, and an 80 kg passenger mass, Gd levels of 0.05, 1, and 5 are 
added to assess how well the algorithms performed. It is found that 
while the disturbances have an impact on the overshoot and settling 
times, they have no effect on the fall and rise times. With a fall time 
of 0.05 seconds, the SCA algorithm demonstrates the shortest fall 
time, whereas the ROA algorithm displays the slowest fall time, at 
0.34 seconds. All the algorithms have almost the same rising times. 
The SCA algorithm yields the largest overshoot, while the ROA algo-
rithm causes the lowest, at 0.4 percent. The SCA algorithm also has 
the fastest settling time, and the ROA algorithm has the slowest. 
Secondly, assuming a flat road (Ri = 0°), no Gd with and an mp = 80 kg 
passenger mass, Sd levels of 0.1, 0.4, and 0.7 are used for assessment. 
The lowest Mo and the lowest tf are obtained with ROA and GWO 
respectively, as seen in Table VI.

D. Scenario-IV: Challenging situations
In Scenario IV, the previous three scenarios are used together to 
produce a scenario with two separate and challenging situations. 
In scenario IV-a, Gd = 1, Sd = 0.4, Ri = 10°, mp = 240 kg; in scenario IV-b, 
Gd = 5, Sd = 0.7, Ri = 30°, mp = 400 kg are taken. Table VII shows that in 
both conditions (a and b), the SCA demonstrates the fastest fall and 
settling times and the lowest overshoot, while the ROA exhibits the 
slowest fall time and the highest overshoot. However, the ROA has 
the fastest rise time. It is observed that as the conditions become 
more challenging, the rise time decreases; on the other hand, the 
overshoot increases. Figs. 6 and 7 show the performances of all algo-
rithms for Scenario IV-a and Scenario IV-b with ITAE, respectively.

When tuning control systems, it is crucial to evaluate their perfor-
mance using various performance indices. These indices help mea-
sure how well the system responds to changes, disturbances, and 
errors. Four common performance criteria are ISE, ITSE, ITAE, and IAE. 
Each of these functions has distinct characteristics and advantages, 

TABLE V. PERFORMANCE COMPARISON OF THE ALGORITHMS UNDER 
GAUSSIAN DISTURBANCE (GD)

Algorithms Gd tf (sec) tr (sec) Mo (%) ts (sec)

ROA 0.05
1
5

0.34
0.33
0.34

1.85
1.84
1.84

0.11
0.3
0.4

2.52
2.43
2.25

SPBO 0.05
1
5

0.09
0.09
0.11

1.85
1.83
1.82

0.37
0.58
1.5

2.11
2.07
2.09

GBO 0.05
1
5

0.14
0.14
0.15

1.85
1.85
1.84

0.21
0.4

0.81

2.21
2.16
2.29

SCA 0.05
1
5

0.05
0.05
0.05

1.84
1.84
1.84

0.43
1.1
1.5

2.07
2.04
2.04

GWO 0.05
1
5

0.07
0.14
0.06

1.84
1.84
1.85

0.3
0.35
1.16

2.09
2.11
2.16

GBO, GradientBased Optimization; GWO, Grey Wolf Optimization; ROA, Rain 
Optimization Algorithm; SCA, Sine Cosine Algorithm; SPBO, Student 
Psychology-Based Optimization.

TABLE VI. PERFORMANCE COMPARISON OF THE ALGORITHMS UNDER 
SINUSOIDAL DISTURBANCE (SD)

Algorithms Sd tf (sec) tr (sec) Mo (%) ts (sec)

ROA 0.1
0.4
0.7

0.34
0.33
0.32

1.44
1.44
1.44

0.000
0.005
0.009

2.14
2.10
2.09

SPBO 0.1
0.4
0.7

0.10
0.09
0.09

1.43
1.43
1.43

0.003
0.008
0.010

2.01
2.01
2.01

GBO 0.1
0.4
0.7

0.14
0.14
0.14

1.44
1.43
1.43

0.002
0.006
0.010

2.02
2.02
2.02

SCA 0.1
0.4
0.7

0.05
0.05
0.04

1.43
1.43
1.43

0.003
0.008
0.012

2.01
2.01
2.01

GWO 0.1
0.4
0.7

0.07
0.07
0.06

1.43
1.43
1.43

0.001
0.007
0.010

2.01
2.01
2.01

GBO, GradientBased Optimization; GWO, Grey Wolf Optimization; ROA, Rain 
Optimization Algorithm; SCA, Sine Cosine Algorithm; SPBO, Student 
Psychology-Based Optimization.

TABLE VII. CHALLENGING CONDITIONS (A: GD = 1, SD = 0.4, RI = 10°, MP = 240 
KG, B: GD = 5, SD = 0.7, RI = 30°, MP = 400 KG)

Algorithms Scenario-IV tf (sec) tr (sec) Mo (%) ts (sec))

ROA a
b

0.26
0.38

0.97
0.66

4.375
10

1.61
1.92

SPBO a
b

0.11
0.14

1.01
0.73

2.25
4.06

1.15
1.04

GBO a
b

0.18
0.25

0.99
0.72

2.5
4.375

1.30
1.21

SCA a
b

0.05
0.05

1.00
0.74

1.625
2.94

1.14
0.89

GWO a
b

0.08
0.08

1.01
0.75

1.875
3.125

1.18
0.99

GBO, GradientBased Optimization; GWO, Grey Wolf Optimization; ROA, Rain 
Optimization Algorithm; SCA, Sine Cosine Algorithm; SPBO, Student 
Psychology-Based Optimization.
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and understanding their differences is essential for selecting the 
appropriate criterion for a given control application. ISE is useful for 
systems where larger errors are more critical and need to be mini-
mized aggressively.

However, smaller errors are given less importance, which might 
result in slower settling times. IAE often leads to faster responses 
as the controller is sensitive to all errors. However, it may result 
in more aggressive control actions, potentially causing more 
wear and tear on the system components. ITSE can result in bal-
anced performance for systems where both large and prolonged 
errors are critical. But it can be complex to tune due to the double 
emphasis on error magnitude and time weighting. As a result, ISE 
is suitable for systems where reducing large errors is more critical 
than minor ones. IAE is useful for systems where all errors should 
be minimized equally, leading to potentially quicker responses. 
ITAE is ideal for systems where prolonged errors are particularly 
detrimental, encouraging fast correction. ITSE is beneficial for 
systems needing a balance between reducing large errors and 
minimizing prolonged errors. In this study, a detailed verification 

is carried out using these cost functions to see the performance of 
the algorithm in the internal combustion engine system. This eval-
uation is carried out for Ri values used in scenario-I, and results 
are given in Table VIII. When ITSE is used, tf is in GWO with 0.02 
seconds; tr is slightly slower in SPBO and unchanged in others; The 
minimum overshoot is in GWO, and the maximum is in SPBO; It is 
seen that ts is shortest in GWO and ROA. When IAE is used, tf is the 
fastest in GWO and SPBO with 0.02 seconds, and the algorithms 
are not affected by the incline change; tr is the same in all and 
does not change with incline; Mo is minimum in GWO; It can be 
seen that ts is almost the same in all of them, but the fastest is in 
SPBO. When ISE is used, tf is the fastest in GWO and SPBO with 
0.03 seconds and the algorithms are not affected by the incline 
change; tr is almost the same in all and decreases with Ri; when 
Ri = 0, the overshoot is at least in ROA, and when there is a change 
in slope, Mo is minimum in GBO; It is seen that ts is fastest in ROA 
when there is no incline and fastest in SPBO when Ri ≠ 0. The graphi-
cal comparisons of the algorithms under Ri = 30 for ITSE, IAE, and ISE 
are represented in Figs. 8–10 respectively. The results for ITAE are 
already given in Table II.

Fig. 6. Challenging situations: scenario IV-a.

Fig. 7. Challenging situations: scenario IV-b.
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Traditional methods and metaheuristic algorithms offer differ-
ent advantages and limitations in PID parameter tuning [52–54]. 
Classical methods, such as the Ziegler-Nichols approach, provide 
quick and practical solutions for certain systems but often result in 
high overshoots and long settling times. On the other hand, meta-
heuristic algorithms explore a broader parameter space, enabling 
more optimal and adaptive tuning, especially for nonlinear and 
dynamic systems. The key differences between these approaches in 
terms of optimization strategy, computational cost, adaptability, and 
robustness are summarized in Table IX.

This comparison given in Table IX provides a theoretical perspective 
on the strengths and weaknesses of both approaches. To further 
illustrate these differences in a practical application, Fig. 11 presents 
a performance evaluation of the Ziegler-Nichols method versus 
the metaheuristic optimization algorithms used in this study in a 
VCC system is presented. As observed in Fig. 11, the Ziegler-Nichols 
method exhibits a significantly higher overshoot compared to the 
metaheuristic-based tuning approaches. Additionally, the settling 
time is considerably longer, indicating a slower stabilization of the 
system after a reference speed change. Furthermore, the rise time is 
also elevated, suggesting a delayed response in reaching the desired 
speed. These findings highlight the limitations of the Ziegler-Nichols 
method in handling dynamic and nonlinear disturbances, whereas 
metaheuristic algorithms provide more optimized control param-
eters, ensuring faster and more stable system performance.

In this study, the effectiveness of different metaheuristic algorithms 
for PID parameter tuning in a VCC system was analyzed under vari-
ous internal and external disturbances. However, certain limitations 
should be acknowledged. First, while the selected metaheuristic 
algorithms provide improved performance compared to traditional 
methods, numerous newly developed algorithms exist, and the field 
continues to evolve with the introduction of novel approaches. As 
a result, the selection of the most suitable algorithm remains an 
open research area, and future studies could explore the potential 
of emerging optimization techniques to further enhance control 
performance.

V. CONCLUSION

In this study, a VCC system was developed using a PID controller, 
considering internal (Gaussian (Gd) and sinusoidal (Sd)) and exter-
nal (road incline (Ri) and passenger weight (mp)) disturbances. The 
PID parameters were optimized via five different metaheuristic 
algorithms: ROA, SPBO, SCA, GBO, and GWO. The efficiency of these 
algorithms was evaluated through several scenarios that replicated 
real-world circumstances. The findings indicate that no singular 
algorithm is uniformly superior under every scenario. The optimal 
algorithm varies based on certain system specifications and perfor-
mance metrics.

The SCA, enhanced by the ITAE criterion, showed improved effec-
tiveness in adjusting to varying disturbance conditions, especially 
with a fast response and reduced overshoot. Under scenarios of 
slope variation, the GWO algorithm employing the ITSE criterion 
had the fastest response time, indicating its potential suitability for 
applications prioritizing rapid response. Likewise, although the ROA 
exhibited delayed adaptation in most situations, it yielded minimum 
overshoot, which may be useful in systems where the reduction of 
overshoot is essential.

TABLE VIII. PERFORMANCE OF THE ALGORITHMS UNDER DIFFERENT COST 
FUNCTIONS

Algorithms Cost Functions Ri tf (sec) tr (sec) Mo (%) ts (sec)

ROA ITSE 0 0.03 1.85 0.00 2.07

10 0.03 1.01 0.30 1.15

30 0.03 0.75 0.61 0.87

IAE 0 0.04 1.85 0.10 2.08

10 0.04 1.01 0.50 1.18

30 0.04 0.75 0.74 0.88

ISE 0 0.08 1.85 0.04 2.09

10 0.09 1.01 1.01 1.20

30 0.10 0.74 1.03 0.95

SPBO ITSE 0 0.06 2.09 3.10 2.13

10 0.04 1.15 1.82 1.18

30 0.04 0.85 1.41 0.88

IAE 0 0.02 1.85 0.1 2.062

10 0.02 1.01 0.4 1.18

30 0.02 0.75 0.63 0.86

ISE 0 0.03 1.83 0.45 2.09

10 0.03 1.01 0.64 1.17

30 0.03 0.74 0.81 0.89

GBO ITSE 0 0.04 1.84 0.55 2.1

10 0.03 1.01 0.73 1.16

30 0.04 0.75 0.77 0.92

IAE 0 0.03 1.85 0.1 2.07

10 0.03 1.01 0.42 1.17

30 0.03 0.75 0.68 0.87

ISE 0 0.03 1.83 0.45 2.11

10 0.03 1.01 0.64 1.17

30 0.04 0.75 0.72 0.94

SCA ITSE 0 0.05 1.84 0.09 2.12

10 0.05 1.01 0.45 2.14

30 0.06 0.74 0.92 1.01

IAE 0 0.04 1.85 0.1 2.07

10 0.04 0.01 0.5 1.18

30 0.04 0.75 0.74 0.88

ISE 0 0.05 1.82 0.9 2.17

10 0.06 1.01 1.02 1.27

30 0.06 0.75 1.03 0.99

GWO ITSE 0 0.02 1.85 0 2.08

10 0.02 1.01 0.24 1.15

30 0.02 0.75 0.52 0.86

IAE 0 0.02 1.85 0.1 2.07

10 0.02 0.01 0.37 1.18

30 0.02 0.75 0.59 0.86

ISE 0 0.03 1.82 0.45 2.1

10 0.03 1.01 0.64 1.19

30 0.04 0.75 0.9 0.95

GBO, GradientBased Optimization; GWO, Grey Wolf Optimization; IAE, integral 
absolute error; ISE, integral square error; ITSE, integral time square error; ROA, 
Rain Optimization Algorithm; SCA, Sine Cosine Algorithm; SPBO, Student 
PsychologyBased Optimization.
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Fig. 8. Transient and steady state performance of the algorithms using integral time square error for Ri = 30°.

Fig. 9. Transient and steady state performance of the algorithms using integral absolute error for Ri = 30°.

Fig. 10. Transient and steady state performance of the algorithms using integral square error for Ri = 30°.



Electrica 2025; 25: 1-16
Heybetli et al. CAMPIDVCC

13

Given these findings, it is essential to select the appropriate optimiza-
tion algorithm based on the specific control objectives. For instance:

• If minimizing overshoot is the primary goal, ROA may be the best 
choice.

• If achieving the fastest response time is critical, GWO with ITSE 
should be preferred.

• If balanced performance across different disturbance conditions is 
required, SCA with ITAE may be a more suitable option.

A systematic decision framework for algorithm selection based on 
system requirements may improve the practical applicability of this 
research. Future research can focus on developing adaptive hybrid 
optimization strategies that dynamically switch among several 

algorithms according to real-time performance measures, hence 
enhancing the robustness and efficiency of PID tuning in VCC sys-
tems. Moreover, additional research could investigate statistical 
variability via multiple-run simulations. This analysis was beyond 
the scope of the research due to computational limitations. Future 
endeavors may encompass comprehensive statistical validation 
utilizing confidence intervals and significance tests (e.g., ANOVA, 
t-tests) to further evaluate algorithm adaptability.

This work illustrates that metaheuristic optimization methods sig-
nificantly enhance the efficiency of PID-based VCC systems through 
adaptive and efficient parameter adjustments. The choice of the 
most appropriate algorithm must be determined by the particular 
operating conditions and performance criteria of the system.

TABLE IX. COMPARISON OF METAHEURISTIC ALGORITHMS AND CLASSICAL TUNING METHODS IN PID CONTROL.

Criteria Metaheuristic Algorithms Classical Methods (e.g., Ziegler–Nichols)

Optimization āpproach Search-oriented, investigates an extensive solution 
landscape

Rule-based, relies on predefined tuning rules

Adaptability Can handle nonlinear, time-varying, and complex systems Limited adaptability, works best for linear systems

Computational cost Higher due to iterative optimization Lower, as it provides direct parameter estimation

Tuning accuracy Provides more optimal and fine-tuned parameters Often results in suboptimal tuning with high overshoot

Robustness More robust against disturbances and uncertainties Performance decreases under changing conditions

Real-Time applicability May require significant computational resources, limiting 
real-time use

More suitable for real-time applications due to lower 
computational burden

Implementation complexity Requires parameter selection for the optimization algorithm Easier to implement with straightforward formulas

Scalability Can be applied to a wide range of control problems Limited applicability beyond simple PID tuning

Convergence time May require multiple iterations to converge to optimal values Provides quick parameter estimation

Generalization capability Can be applied to various control systems with different 
dynamics

Works best for specific system structures

Fig. 11. Comparative performance of Ziegler–Nichols and the metaheuristic optimization algorithms in vehicle cruise control system.
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