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ABSTRACT

Convolutional neural networks with different architectures extract different features. Imagine a scenario where 
multiple models were trained on the same dataset, with the same hyperparameters, and under the same 
conditions. Because of their architecture, these models will learn to extract various features. As a result, even when 
all conditions are identical, different architectures will achieve varying levels of test accuracy. Test accuracy can be 
improved even more through ensembling models with varying levels of accuracy in different ways. The purpose 
of this research is to examine the encoder layers of models trained in such a scenario and to compare the effects 
of various architectures. In the study, the CIFAR-100 dataset was used to train five models based on ResNet18, 
GoogleNet, and MobileNetv3L. These models were ensembled in a multitude of ways. Class activation maps were 
computed for both analysis and ensembling. The research demonstrated that class activation maps could be 
used to learn how to ensemble models. As a result, model ensembling using class activation maps significantly 
improved test accuracy. Furthermore, one of the most important findings from the study is that including a model 
with low test accuracy in the ensemble can boost overall success.
Index Terms— CIFAR-100, class activation maps, ensemble models

I. INTRODUCTION

Researchers have studied classification problems for a long time. Surprisingly, some datasets 
containing a large number of labels still exhibit low levels of test accuracy in classification sce-
narios [1]. For example, the dataset called CIFAR-100 contains very small images, 32 × 32 pixels 
in size. Compared to standard models that can classify other datasets, such as ImageNet [2] or 
Modified National Institute of Standards and Technology (MNIST) [3], with almost absolute accu-
racy, the classification success of the CIFAR-100 dataset is quite low [4]. This is due to the small 
resolution of the images, the vast number of classes, and the generalization capabilities of model 
architectures.

Convolutional neural networks extract certain features that can describe images by convolv-
ing learnable filters over the image. These features can be thought of as specific parts of the 
image, repeating sections, or distinct edges and corners. Later, multi-layer perceptrons (MLPs) 
classify the transformed images into vectors, a series of features, in a manner similar to classical 
artificial neural networks. In convolutional networks, the MLP only distinguishes the features 
extracted by the encoder. Therefore, the encoder part typically bears full responsibility for test 
accuracy. The features extracted in the encoder part need to be descriptive and generalizable. 
Otherwise, the MLP might not be able to fully distinguish features into classes. Consequently, 
any classification error in a dataset indicates a lack of meaningful extraction of information 
from the encoder part. Furthermore, it is important to remember that trained convolutional 
networks operate as a black-box system. This implies that each architecture can encode the 
relationships between the same input and output data in different ways. Therefore, a basic 
analysis can be conducted to determine which regions in the image correspond to each class. 
The literature refers to this metric as class activation maps [5]. Class activation maps are the 
specific regions of the image that the encoder layers focus on when calculating the output for 

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?

• Combining the outputs or extracted 
features of multiple models has been 
shown to enhance test accuracy by taking 
advantage of the distinct dynamics of 
each model. This technique is known as 
model ensembling.

• In deep learning, class activation maps 
visualize which parts of an image 
contribute to the model’s predictions. 
Studies have used this technique to 
analyze the predicted labels and enhance 
the model’s explainability.

WHAT THIS STUDY ADDS ON THIS 
TOPIC?

• This study shows that class activation 
maps can also guide the combination of 
multiple models beyond their standard 
use. The study shows that the best 
ensemble performance comes from 
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each class. These maps are calculated using an image and a class label. Therefore, maps can be 
produced using both correct and incorrect classes. Thus, if the model selects the wrong class, 
the reasons for this misclassification can be investigated.

Each model uses different approaches when developing convolutional neural networks, such as 
using skip connections, looking at wider areas, or extracting more features with parallel filters. 
Therefore, the encoder part of each model extracts different features. Suppose multiple models 
are trained on the same dataset, using the same hyperparameters and loss function. Each of 
these models will extract the features expected to represent an image in different ways due to 
their architecture and black box structure. Even if the size of each feature vector is the same, 
their values will be different. The features of each model will encode some information about 
the dataset. The question here is which of these features, or which combinations, represent the 
image in a more separable space.

In this study, five well-known convolutional network models were trained under identical condi-
tions on the CIFAR-100 dataset to answer the questions. The models achieved different levels 
of test accuracy as expected. Class activation maps for the encoders of the models were calcu-
lated and analyzed. The aim of the study is to examine and improve the ensemble behaviors of 
models trained under the same conditions. Based on this information, five trained models were 
combined in different ways to form an ensemble. The most significant contribution of the study 
is to demonstrate that the information in the class activation maps can improve the overall test 
accuracy of the ensemble approach. To prove this, a comparison was made with methods that 
do not use class maps, learnable methods, and standard ensemble methods based on voting. 
Another contribution of the study is demonstrating that even if a model’s test accuracy is lower 
than others, it can still increase the overall test accuracy.

The rest of this article is organized as follows: The subsequent section presents the related work 
in a comparative manner. The second section provides background information on convolutional 
networks, standard models, loss functions, class activation maps, and model ensembling. The 
third section delves into the research on model ensembling and class activation maps. This sec-
tion provides model architectures, training details, and hyperparameters. In the next section, the 
results and discussion are presented. The last section contains the conclusion.

II. RELATED WORK

Zeng et al. have published a comprehensive comparison of classifiers using the CIFAR-100 data-
set [1]. This study examines and presents the performance of traditional models such as ResNet, 
GoogleNet, and models by Visual Geometry Group (VGG). The study emphasizes that ResNet and 
GoogleNet could potentially solve the problem and attain an average accuracy rate of approxi-
mately 73%. He et al. have proposed a learning approach based on residuals for convolutional 
neural networks [6]. The main objective of this study is to examine the degradation problem. As 
a result, it has been demonstrated that adding residual connections significantly facilitates the 
optimization of a convolutional network. The ResNet architecture developed using this approach 
has shown great success on many datasets, including the ImageNet dataset.

Various variations have been proposed for the ResNet architecture. For instance, Yu et al. discuss 
in their study of dilated residual networks that the use of dilation enhances the model’s capac-
ity for generalization without altering its depth [7]. They demonstrate the method’s success 
in the study. The study argues that the dilation operator increases the receptive fields in deep 
layers, eliminating the need for subsampling. In the study published by Hu et al., squeeze-and-
excitation (SE) blocks have been proposed [8]. They argue that more meaningful features can 
be extracted by utilizing the dependencies between the channels in the image. It has been 
stated in the study that models like ResNet can be directly replaced with counterpart SE blocks. 
The study emphasized that the SE blocks significantly improved the quality of the extracted 
features.

In the famous work published by Szegedy and others, GoogleNet was proposed [9]. They have 
emphasized that GoogleNet, which uses the Inception blocks, is highly successful in feature 
extraction. One of the key points emphasized in the article is that GoogleNet allows for an 
increase in depth and width while maintaining a fixed computational budget [9]. GoogleNet and 
its more advanced versions achieve highly successful results for classification and object recogni-
tion problems.

combining the predictions of multiple 
models with class activation map-gated 
learnable linear layers.

• One of the key findings of the research 
is that including models with relatively 
low test accuracy in an ensemble can 
contribute positively to the overall 
performance.

• The research provides an evaluation 
of different Convolutional Neural 
Network (CNN) architectures (ResNet18, 
GoogleNet, and MobileNetv3L) on the 
CIFAR-100 dataset, indicating how 
different architectures might enhance test 
performance by model ensembling.
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MobileNets are convolutional network architectures optimized for 
mobile devices. Howard et  al. published a study that presented 
MobileNetV3, the advanced version of these architectures [10]. 
MobileNetV3 consists of two models named MobileNetV3-Large and 
MobileNetV3-Small. The study emphasized that the MobileNet archi-
tecture is highly successful in terms of performance and accuracy for 
classification, object recognition, and image-based applications.

It is important to understand which features the models extract and 
how they process them. For this purpose, class activation maps have 
been developed. Zhou et al., in a very famous paper they published, 
emphasized the relationship between the global average pooling 
operator and feature maps [5]. This and previous studies explain that 
some filters in convolutional networks behave selectively, indepen-
dent of training [11]. However, it is shown that this situation disap-
pears when the last linear layer is added, and this can be corrected 
with the Global Average Pool operator. In the study, a method is pro-
posed to find which regions in the image are used for discrimination 
with a single forward pass.

Proposed by Selvaraju et al. in 2017, GradCam generalizes the class 
activation map concept for all convolutional networks [12]. Using 
feature maps from the deeper layers of the network, this method 
converts the activation maps of the classes into a heatmap of the 
same size as the image. Thus, selecting a correct or incorrect class 
allows us to visualize the areas of the image under attention. This 
method enables us to analyze the important regions of the images 
after training on any dataset. This approach has been used in many 
studies to analyze datasets and trained architectures, providing sig-
nificant improvements [13].

The combination of multiple models to achieve higher success is 
known as model ensembling in literature. Different methods exist 
to ensemble the outputs of the models or the extracted features. 
Mohammed et al. published a survey that thoroughly investigated 
and reported on these methods [14]. Bagging is the process of 
training multiple models in parallel and combining their results to 
enhance success. Boosting involves training models sequentially, 
with each model aiming to rectify the errors of its predecessor. In 
stacking, the models are trained independently. Then, a single model 
is trained to combine these models.

Studies in various fields, such as tomographic image classification and 
malware analysis, demonstrate the idea of combining the outputs or 
features of models using linear neural network layers. For COVID-19 
classification on computed tomography images, the EnsembleDVX 
model combines the DenseNet169, VGG16, and Xception architec-
tures in an ensemble model [15]. This study uses a neural network 
to combine the models’ outputs, and the three architectures yield 
the best results. In their study, Khan et al. suggested the SB-BR-STM 
(Squeezed Boosted Boundary Region Split Transform Merge) method, 
which uses model ensembling to find malware in IoT devices [16].

In the literature, class activation maps, Grad-CAM, and guided Grad-
CAM methods are used for analysis purposes [12]. Especially in stud-
ies proposed on tomography images, class activation maps, and 
model ensembling collaborations are encountered. Hosny et al. used 
Grad-CAM as the explainable model in their study. Grad-CAM was 
used in the last convolutional layer of DenseNet121 and InceptionV3 
to store spatial information and combine it with high-level seman-
tic data [17]. Similarly, Kumaran et al. trained three models—VGG16, 

Fig. 1. Feature maps from different layers after training.
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ResNet50, and InceptionV3—and attempted to improve tumor 
detection success through ensembling [18]. These studies use 
transfer learning and combine the outputs of pre-trained models to 
obtain results. Additionally, they solely use class activation maps for 
analysis.

This study is conducted to investigate whether the information from 
class activation maps can enhance success. In this study, a convolu-
tional network processes the calculated class activation maps into 
feature vectors, which then serve as a guide for model ensembling. 
The maps are used in training. All models have been trained with 
data, and transfer learning has not been used. For these reasons, this 
study employs a different approach compared to other studies in 
the literature. Similarly, Birdal demonstrates that incorporating inno-
vative features and optimizing hyperparameters can significantly 
improve model performance [19]. Both studies show that the inno-
vative use of feature vectors enhances model performance.

III. BACKGROUND

A. Convolutional Neural Networks as Classifiers
The transition from multi-layer perceptrons to convolutional net-
works is quite important. This great transformation was made pos-
sible thanks to many names [20]. These types of networks can create 
receptive fields like real neural networks thanks to the convolution 
operator. Thus, processing the data becomes quite easy. For exam-
ple, processing a large image with an MLP requires layers composed 
of an infeasible number of neurons. Convolutional networks extract 
a set of features from this image, and an MLP can perform the same 
task with fewer neurons by classifying these features. Thus, the prob-
lem becomes feasible.

Convolutional networks convolve learnable filters of varying num-
bers and sizes over the image as convolution kernels. This process 
results in the production of feature maps. This structure repeats 
sequentially in layers, and the networks deepen. Fig. 1 shows the 
feature maps from different layers of a convolutional network that 
was trained to classify handwritten numbers. As can be seen from 
the figures, more general features are extracted in the initial layers 
of the network, while more detailed features are extracted in the 
deeper layers. Applying convolution causes the image dimensions 
to decrease or reduce to the desired extent. Thus, the feature maps 
obtained after processing at certain layers are flattened and con-
verted into a set of features. An MLP network then classifies these 
features. Any network that undergoes training with a dataset forms 
feature maps that accurately describe the dataset. Optimization 
modifies the convolution kernels that provide these transformations.

B. Class Activation Maps
A class activation map (CAM) depicts the discriminative image 
regions that the CNN uses to identify specific categories [5]. CAMs 
are utilized to analyze, clarify, and improve convolutional networks. 
Class activation maps are calculated using the feature maps from the 
last convolutional layer and the classification weights. This method is 
limited to the extraction of feature maps only.

GradCAM is a generalized version of CAMs for convolutional net-
works [12]. Grad-CAM calculates a CAM using the gradients from the 
last layer of the model. Gradients represent the features that affect 
the model’s output, so identifying the regions that influence deci-
sions can yield much more accurate results. Class activation map 

generates a localization map for an image classification CNN char-
acterized by an architecture in which global average pooled convo-
lutional feature maps are directly input into the softmax layer [12].

For a target layer producing k feature maps, when calculating 
GradCAM, the activations Aij at the i,j position are subjected to global 
average pooling for each class C to produce the score YC. Equation (1) 
provides the calculation of a score YC for class C. In the equation, the 
weights are represented by wij [12].
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Grad-CAM computes the gradient of the class score relative to the 
feature maps of the convolutional layer. The contribution of the fea-
ture maps is assessed by calculating the weight assigned to each 
feature map by these gradients. These weights illustrate the correla-
tion between each feature map and the class score. Weights αk

C are 
calculated over all pixels as shown in Equation (2) [12].
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C. Ensemble Models
The goal of the Model Ensembling approach is to combine many 
models to achieve greater accuracy and generalization ability 
than a single model. By integrating each model’s advantages, this 
approach reduces possible shortcomings. In general, ensemble 
learning attempts to improve outcomes by merging the outputs or 
feature maps of several models. One of the most important methods 
is called Stacking. Stacking is the combination of different models 
(for example, models that can extract different features). Here, each 
model is trained separately, and the final model’s prediction is made 
by combining the outputs of these models.

Stacking generally uses a meta-model. The predictions of each sub-
model are used as input for the meta-model, and the meta-model 
makes the final predictions. When the submodels are convolutional 
networks, the meta-model can utilize the feature maps, which are 
the encoder outputs of the submodels, as inputs. The meta-model 
learns to combine the features of the submodels in the most effec-
tive manner, acting as a black box learning. Thus, different ways of 
encoding information can yield higher test accuracy results.

The Voting Method is another simple but effective method for model 
ensembling. This method combines the outputs of multiple models 
to make a final prediction. It is widely used, particularly in classifi-
cation problems. Majority voting is the most basic and widely used 
voting method. In this method, the class predicted by each model 
is treated as a single “vote,” and the class with the most votes is 
accepted as the final decision. In other words, the class chosen by 

TABLE I. MEAN AND SD OF THE CHANNELS IN THE CIFAR-100 DATASET

Channel Mean SD

R 0.5070 0.2673

G 0.4865 0.2564

B 0.4409 0.2761
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most models is the final prediction. Voting can be easily calculated 
mathematically by taking the mode of the predictions.

IV. EXPERIMENTS

A group of five models called ResNet-18, SE-ResNet-18, Dilated 
ResNet-18, MobileNet v3L, and GoogleNet was trained on the CIFAR-
100 dataset, and then their accuracy was compared. The model 
predictions were combined using the voting ensemble method 
to find a baseline accuracy level. This was conducted to see if the 
models could be more accurate when used together than when 
used individually. Later, the models were combined with learnable 
parameters. Finally, the Grad-CAM gating mechanism, proposed as 
a better way to combine the models, was used, and its effect was 
investigated.

A. Dataset and Preprocessing
The CIFAR-100 dataset was used in the study. This dataset is a labeled 
subset of the 80 million tiny images dataset [21]. The set contains 
small-resolution images, i.e., 32 × 32 pixels. About 50 000 samples 
of the cluster are reserved for training and 10 000 samples for test-
ing. Images are color and 3-channel. The 100 classes are divided into 
20 subclasses, such as aquatic mammals, food containers, and large 
man-made outdoor things. Each class in the dataset contains an 
equal number of 600 examples. The mean and standard deviation 
of all samples in the training set were calculated to normalize the 
samples in the dataset. These values are given in Table I.

Using these mean µ and SDs σ, the normalization given by (3) was 
applied to each channel x of the images.

z
x

�
�� �…
�

 (3)

The fact that the images in the dataset are very small in size and con-
tain many classes leaves us faced with a very difficult classification 
problem. However, using a dataset with multiple classes is extremely 
beneficial for the conducted research in terms of analyzing and visu-
alizing the model encoder performances. Thus, the effects of model 
architectures on generalization become apparent. Furthermore, 
because this dataset is a famous one, it allows for easier bench-
marking and comparison. Using data augmentation techniques has 
been reported to significantly increase the test accuracy compared 
to using the dataset directly [22]. For this reason, data augmenta-
tion techniques were applied in this study. In this way, it was tried 
to ensure that the models could learn more general features from 
the dataset. It is also predicted that it will have significant positive 
effects on reducing overfitting behavior that occurs because of 
some long training on the dataset. One of the methods used for data 

augmentation is the random horizontal flipping of the image with 
a uniform probability distribution. Another method is to randomly 
crop with a 4-pixel padding. The image can be randomly rotated by 
a maximum of 15°. Image color properties can be randomly altered 
(Color Jitter). For this, brightness, contrast, saturation, and hue are 
adjusted by ±0.2, ±0.2, ±0.2, and ±0.1, respectively. Finally, the image 
will be normalized with the statistics specified in Table I.

B. Model Architectures
ResNet, GoogleNet, and MobileNet are the architectures frequently 
used in general classification problems. These architectures are very 
successful in solving different classification problems [1]. In this 
study, a total of 5 models were used, including 3 variants based on 
ResNet architecture (ResNet-18, SE-ResNet-18, Dilated ResNet-18), 
GoogleNet, and MobileNetv3 Large models. ResNet-18, the small-
est model with ResNet architecture, was chosen as the base model 
for this study. This model allows rapid training with an acceptably 
low number of parameters. Since it was investigated that encoder 
structures can learn different features, the D-ResNet-18 variant was 
created by adding dilations. Dilations were added to enable the con-
volutional layers in the encoder to scan larger areas and extract more 
comprehensive features. Additionally, the SE-ResNet-18 variant was 
trained using SE blocks. Since it is known that SE blocks can learn 
advanced features, they were used to investigate the differences 
in feature extraction. In addition, GoogleNet, which uses inception 
blocks that can extract more advanced and comprehensive features, 
was chosen as another model. Inception blocks, which can extract 
different features at various scales with parallel convolution lay-
ers, are perfectly compatible with the aim of the research. Finally, 
MobileNet v3-Large, a model with similar capabilities optimized to 
reduce the computational load, was chosen to be trained on the 
same data. An analysis including comparisons of all models is given 
in Table II.

In the following section, simplified block diagrams of all models are 
given. It is not possible to show the residual connections of these 
models in a diagram of this scale. For this reason, the diagrams were 
drawn to include only sequential blocks. For more detailed architec-
tures of the models used in the study, you can review the code in 
the repository or the model summaries in the architectures folder. 
A simplified block diagram of the Resnet18 model is given in Fig. 2. 
The last layer was changed as in the block diagram to standardize 
the fully connected prediction layers of all the models to be used in 
this study.

ResNet architecture consists of multiple consecutive convolutions, 
normalization, and activation layers. It has been shown that the 
residual connections in this architecture enable the network to be 
trained more efficiently and solve the vanishing gradient problem 

TABLE II. KEY FEATURES AND NUMBER OF PARAMETERS FOR VARIOUS MODELS

Model No. of Parameters Key Features

Resnet18 [6] 11 333 540 Residual connections are available, a structure used for general deep learning.

D-Resnet18 [7] 11 333 540 Dilated convolutions are available, enabling feature learning in larger image regions.

SE-Resnet18 [8] 11 420 580 Squeeze-excitation allows the model to focus on more important features within the channel.

GoogleNet [9] 5 888 004 The Inception block allows it to learn features at various scales.

MobileNet v3Large [10] 3 243 668 Depthwise convolutions offer a fast and efficient model optimized for small models.
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[6]. In the model, the layers up to the adaptive average pool, includ-
ing the pooling layer, can be called the encoder. The encoder cre-
ates a 512-dimensional vector by extracting some key features in 
the images. The remaining multi-layer perceptron tries to predict 
classes from these extracted features. Convolutional neural net-
works frequently use dilation as a feature extraction trick. Filters are 
expanded with spaces so small-sized filters can scan larger areas 
and extract more detailed features. To investigate the effect of this 
feature, the D-ResNet18 variant was created by adding dilation to 
the ResNet18 model. The block diagram of the D-ResNet18 model 
is given in Fig. 3. Dilations were added only to layers 3 and 4 to 
improve deeper features [7]. The dilated convolutional blocks and 
spacing between kernel points are shown in the detailed block on 
the block diagram.

The SE block is a structure that uses channel-wise convolutions and 
tries to use channel information to improve feature extraction [8]. It 
has been predicted that the SE-ResNet18 variant, created by adding 
SE blocks to the ResNet18 model, can extract distinctive features by 
enhancing spatial encoding. The SE-ResNet18 model was created by 
adding SE blocks to the convolutional blocks of the ResNet18 model 
and is shown in Fig. 4.

The MobileNet is an architecture optimized for performance. It tries 
to use fewer computational resources with a structure based on 
Depthwise Separable Convolutions and SE blocks [10]. MobileNet 
v3 Large is one of the two models chosen in this study to compare 
with ResNet models. It has been trained to explain the impact of a 
different architecture on the extracted features and overall test per-
formance. The architecture of the MobileNet v3 L model is presented 
in the block diagram given in Fig. 5.

GoogleNet is an important model within convolutional networks 
that has an inception block architecture. Inception is a block that 
processes in parallel with kernels of varied sizes simultaneously 
[9]. Thus, it can learn features of different sizes from the image at 
once. A block diagram of the Inception block is provided in Fig. 
6. The usage of the 1 × 1 convolutions in this model significantly 
reduces the number of parameters. GoogleNet is an incredibly 
famous deep learning model created by sequentially combining 
inception blocks. It is significantly successful in feature extrac-
tion and maintains computational power as the model depth 
increases [9]. The block diagram of the model is given in Fig. 7. 
The features extracted by the models are 512-dimensional vec-
tors for ResNet variants, 960-dimensional vectors for MobileNet, 

Fig. 2. Block diagram for ResNet18 architecture.

Fig. 3. Block diagram for dilated ResNet18 architecture.
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and 1024-dimensional vectors for GoogleNet. To better posi-
tion the research, model ensembling was carried out using two 
approaches. In the first of these approaches, model predictions 
were combined through voting. In the second approach, three 

different methods were tried to combine the models with a learn-
able structure. These are respectively the combination of feature 
vectors, the direct combination of output vectors, and the com-
bination weighted by GradCam. These methods are explained in 

Fig. 4. Block diagram for squeeze and excitation ResNet18 architecture.

Fig. 5. Block diagram for MobileNet v3 Large architecture.

Fig. 6. Block diagram for inception block architecture.
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Table III. The mentioned methods have been visualized with the 
block diagrams provided in Fig. 8.

C. Training Setup
In this study, different features that can be learned from the same 
data are being investigated. Therefore, the training process has been 
standardized for all models, and hyperparameters have been kept 
constant across all experiments. In the training of the models, the 
maximum number of epochs was chosen as 100. It has been observed 
that the test success does not change after a certain period of training. 
Therefore, an early stopping strategy has been used. In this strategy, 
if the test success does not improve in the last n epochs, the training 
is terminated. In this study, the patience count n has been set to 5 
epochs. Therefore, each model has been trained over different epochs.

The stochastic gradient descent algorithm was preferred to optimize 
the model’s weights. The learning rate was set to 0.01, momentum 

to 0.9, and weight decay to 5e-4. Additionally, the Cosine Annealing 
Learning Rate Scheduler was used to reduce the learning rate over 
time. The maximum epoch value for this scheduler was set to 60. 
Finally, the CrossEntropyLoss function was used to calculate the loss 
between the model’s predictions and the actual labels. To prevent 
excessively large gradients during the training process, gradient clip-
ping was also applied, and the maximum gradient value was set to 
0.1. For ResNet variants and other models, the input images should 
be 224 × 224 pixels in size. To avoid interfering with the architectures 
of the models, each example in the CIFAR-100 dataset was bilinearly 
upscaled by a factor of 7. All training and test data were divided into 
batches of size 64.

Standard metrics have been used to evaluate the model’s success. 
By calculating the ratio of correct predictions to the total number 
of predictions, the training and test accuracy for each model have 
been determined. Additionally, a confusion matrix, which shows 

Fig. 7. Block diagram for GoogleNet architecture.

TABLE III. DETAILS FOR ENSEMBLE METHODS

Method Details

Voting The modes of the predicted labels were calculated, and direct voting was applied.

Feature concatenation or sum Linear layers converted each feature vector into 128-dimensional compressed vectors. The vectors are concatenated or summed, 
classes are predicted.

Output concatenation or sum Linear layers converted each output vector into 100-dimensional new vectors; vectors are concatenated or summed, classes are 
predicted.

GradCAM weighted output 
sum

A quite small convolutional network converts the GradCAM of each sample into 5 vectors of 100 dimensions. These vectors are 
used to weight the outputs of the models, each of which is 100-dimensional. The resultant vector is calculated as the sum of the 
products.

Fig. 8. Block diagram for ensemble models.
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the correct and incorrect classifications for each class of the model, 
has been calculated. Standard metrics such as precision, recall, and 
F1-score have also been calculated for evaluation purposes.

The numerical calculations reported in this paper were fully 
performed at TUBITAK ULAKBIM, High Performance and Grid 
Computing Center (TRUBA resources). The computations were 
carried out on V100 GPUs, and the code was implemented using 
PyTorch.

V. RESULTS AND DISCUSSION

In this section, accuracy plots, accuracy metrics, and test results have 
been presented. In this study, five different models were trained 
under identical conditions. Each of the models stopped training at 
different epochs due to the training setup, using a specified early 
stopping strategy. For a fair comparison, the test and training accura-
cies of the models have been plotted on top of each other and are 
presented in Fig. 9.

Despite being trained in the same manner, the models have learned 
different features due to their architectures and have achieved vary-
ing levels of accuracy in classification tests. From the accuracy curves 
of the models, it is observed that the generalization success of all 

models is at an average level. This situation is close to the levels of 
the standard models previously reported [1]. Additionally, due to 
the difficulty of the dataset, the difference between training and 
test accuracies increases as the number of epochs increases, and the 
models begin to exhibit overfitting behavior. The accuracy statistics 
and confusion matrix plots of the models are provided in Table IV 
and Fig. 10.

When the metrics are examined, it is observed that all models reach 
the same accuracy levels on average. This suggests that standard 
classifier convolutional networks have a limit on the CIFAR-100 data-
set. Generalizing this idea, it can be said that even if different encoder 
models are used in the datasets, the average maximum accuracy and 
generalization capability plateau at a certain level. Additionally, it is 
observed that the dilation operator among the metrics does not 
have a positive impact. Fig. 10 shows that the models do not create 
any bias between classes.

For each model, the same nine randomly selected images belong-
ing to the apple class were used to calculate the class activation 
maps, which are presented in Fig. 11. The figure displays the class 
activation maps as heatmaps over the input images. The red areas 
in the heatmap indicate the places where the model focuses more 
while making classifications. Examining the figure reveals that 

Fig. 9. Train and test accuracy plots for all models.

TABLE IV. MODEL PERFORMANCE COMPARISON

Model Precision Recall Specificity F1 Score Accuracy (%)

Resnet18 0.7398 0.7355 0.9973 0.7360 73.55

D-Resnet18 0.7174 0.7139 0.9971 0.7143 71.39

SE-Resnet18 0.7369 0.7344 0.9973 0.7345 73.44

GoogleNet 0.7398 0.7369 0.9973 0.7371 73.69

MobileNet v3Large 0.7246 0.7218 0.9971 0.7215 72.18
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other encoder layers, aside from the dilation operator, draw con-
clusions from similar regions. The dilated operator, by its nature, 
focuses on sparse regions and attempts to increase the chance of 

feature extraction. In the following section, it has been demon-
strated that these activation maps can enhance the ensembling 
performance.

Fig. 10. Summed confusion matrix of all models.

Fig. 11. Class activation maps for random images from the apple class.
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To investigate whether different models can achieve greater test 
accuracy through ensembling their outputs and feature vectors, 
the models have been ensembled. Firstly, the labels predicted by 
the models were ensembled using voting. To examine the impact of 
the models that joined the ensemble, the test accuracies after vot-
ing for all combinations of all models were calculated and presented 
as Fig. 12. Looking at the figure, it can be said that the number of 
models added increases the performance of the voting ensemble. 
Additionally, the SE ResNet18 and GoogleNet ensembles achieved 
the best performance in the binary combinations.

Examining Table IV reveals that these two models do not achieve 
the highest success among the five models. The highest-performing 
model and the second highest-performing model, the GoogleNet 
and ResNet18 ensemble, have shown less performance than the 
previous pair. The Dilated ResNet-18 model, despite its significantly 
lower performance compared to the others, significantly boosts the 
success of the ensemble it joins.

Table V displays the results of the second approach, which combines 
the models with learnable linear or convolutional layers. Since simi-
lar results were obtained, only the test accuracies for the scenario 
where the features or outputs of all models were combined are pro-
vided in this section.

Combining the labels predicted by the models through a voting 
ensemble increases test accuracy by approximately 4% compared to 

the models’ test accuracy. To prove the existence of a strategy that 
can learn better than the voting ensemble, ensemble results were 
obtained using the feature vectors or prediction vectors of the mod-
els. The predicted feature or output vectors necessitated a gating 
mechanism for ensembling, as the direct combination was not pos-
sible in a trainable scenario. Research demonstrates that this mecha-
nism, utilizing data from GradCAMs, produces superior outcomes 
compared to voting. Research generally demonstrates that using 
the predicted vectors yields greater success than using the feature 
vectors.

VI. CONCLUSION

This study demonstrated the use of class activation map information 
to enhance model ensembling. For this purpose, the test accura-
cies of five different models trained with the same dataset and the 
same hyperparameters were calculated. The features extracted by 
the models were examined using class activation maps. As expected, 
despite all conditions being the same, different models extracted 
different features and achieved different test accuracies. By freez-
ing the weights of the models, different model combinations were 
ensembled using voting. The voting results were accepted as a base-
line test accuracy value that needed to be surpassed. A small convo-
lutional network processed the class activation maps, transforming 
the feature maps to weight the class outputs. Then, these weights 
were used to perform a weighted sum of the models’ predictions, 
significantly increasing the test accuracy. To prove that this increase 
was due to the information in the class activation maps, test accu-
racies were also calculated for other learnable configurations that 
did not include this information. As a result, the scenario using the 
information from the class activation maps achieved the highest test 
accuracy.

The experimental results revealed that the scenario using all models 
yielded the most accurate results. The article’s proposed approach 
achieved the highest test accuracy, resulting in an approximately 2% 
increase over the voting method. Additionally, despite the model 
with dilated convolutions having lower test success than the oth-
ers, its use significantly increased test success in the ensembles. 
In conclusion, it can be said that models that are more successful 
than those in the ensemble are not needed to improve overall test 

Fig. 12. Test accuracies after voting ensemble.

TABLE V. TEST ACCURACIES FOR ENSEMBLE METHODS

Method Test Accuracy (%)

Voting 77.41

Feature concatenation 76.96

Feature sum 76.52

Output concatenation 72.05

Output sum 76.75

GradCAM weighted output sum 78.84
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success. Additionally, the study showed that combining the predic-
tions of models provided higher test success compared to combin-
ing feature maps.

The proposed method offers opportunities for model ensembling. 
The research demonstrated the use of GradCAM, an analysis-only 
method, for feature extraction during forward model operation. 
Beyond voting, other ensembling mechanisms, such as stacking or 
boosting, can also be explored as future work. When used in con-
junction with CAM-based weighting, these techniques have the 
potential to significantly enhance model performance.

APPENDIX

The source code for experiments in this research is avail-
able at the following GitHub repository: github.com/aggelen/
GradCAMGuidedEnsembleModels

The code includes implementations of the experiments and data 
processing methods described in this paper. You can also access 
detailed architectures of the models.
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