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ABSTRACT

In this paper a resilient frequency control design specifically for microgrids (MGs), designed to withstand false data 
injection attacks (FDIA), is presented. The approach focuses on enhancing the robustness of frequency control 
mechanisms to ensure stable and reliable microgrid operation, even when subjected to malicious data tampering. 
The design integrates advanced detection and mitigation strategies to identify and counteract the impact of false 
data. Initially, the method integrates a bidirectional long short-term memory (BiLSTM) neural network and an 
improved whale optimization algorithm (IWOA) into a unified framework, working in tandem with a controller to 
identify and counteract FDIA . Second, a historical MG dataset containing frequency and power variations trains 
the BiLSTM neural network, enabling it to accurately detect multiple types of FDIAs with high precision. Lastly, 
the IWOA to the PID (Proportional – Integral – Derivative) controller was applied, effectively counteracting the 
adverse effects of FDIAs. The results demonstrate that the resilient frequency control system effectively mitigates 
the adverse effects of FDI attacks, maintaining MG stability and reliability.
Index Terms—Cyber attack, electric vehicles, interlinked microgrid (MG) system, particle swarm optimization 
algorithm (PSO), renewable energy resources (RESs)

I. INTRODUCTION

The integration of renewable resources and communication infrastructure creates smaller, grid-
like networks known as microgrids (MGs) [1]. Educational campuses, hospitals, and military sites 
are increasingly implementing MGs, and they find extensive use in remote applications such as 
telecommunications and remote-based households. These MGs utilize advanced metering set-
ups for data collection, facilitating the exchange of information via communication networks, 
which creates a new pattern in energy systems known as cyber-physical microgrids (CPM) [2, 3]. 
By locally harnessing renewable energy sources (RESs), modern MGs reduce power losses and sig-
nificantly decrease environmental pollution compared to traditional power systems. Microgrids 
commonly employ dynamic control, which includes primary, supplementary, and hierarchical 
control. To react to variations in the MG frequency or the speed of spinning energy sources, pri-
mary control comprises the governor or electronic controller quickly adjusting the power output 
[4]. However, the low inertia and changeable nature of RESs, along with load demand uncer-
tainties, may compromise the effectiveness of primary control. This deterioration may cause an 
imbalance between supply and demand, leading to frequency variations and even instability. 
For islanded MGs, which do not receive frequency and voltage support from the main grid, such 
instability can be disastrous.

Furthermore, a secondary control unit can enhance the primary control response, particularly 
for energy sources like batteries and EVs (Electric Vehicles) that do not rely on governor-based 
or droop-based control [5]. Given the variability and uncertainty of non-dispatchable energy 
resources, extensive energy storage systems are necessary for MGs. Secondary control serves 
as a supervisory function, leveraging measurements and cyber-communication systems to cap-
ture rapid MG dynamics. This significantly enhances the operational reliability of MGs in both 

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?

• Interlinked AC microgrids are decentralized 
power systems that rely on coordinated 
frequency control to maintain stability, 
especially due to their low inertia and 
integration of intermittent renewable 
sources.

• Traditional control strategies like droop 
and secondary control have been widely 
studied for frequency regulation.

• However, the increasing reliance on 
communication networks for control 
and monitoring exposes microgrids to 
cyber threats such as false data injection 
and denial-of-service attacks, which can 
compromise system stability.

• To address this, research has progressed 
toward cyber-resilient control approaches 
that incorporate secure communication 
protocols, anomaly detection, and 
adaptive control strategies.
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grid-connected and islanded modes, surpassing the performance of traditional distribution sys-
tems. The swift control response in CPMs can effectively track sudden changes in load and non-
dispatchable generation. Using batteries as storage for control is not cost-effective. Instead, EVs 
operating in vehicle-to-grid mode due to their high availability (around 90% during the day) and 
low power loss ratio are preferred. Typically, wireless/mobile communication network protocols 
such as IEEE 802.15.4 (e.g., ZigBee) or IEEE 802.11, which offer more secure communication, are 
commonly used, discussed in [6]. However, these protocols can compromise security, making 
data susceptible to manipulation by adversaries.

One form of cyber disruption is denial of service [7], which arises when components of the 
smart grid become unavailable. The time delay attack, which introduces a delay into commu-
nication channels, is another disruptive cyber event [8, 9]. False data injection (FDI) is another 
type of server attack that occurs when advanced sensors manipulate information [10]. Also, 
FDI agents make it harder for measurements, control centers, and energy sources to share data 
in real time. This can cause frequency changes and the wrong defensive protection responses, 
like cutting off power to generators or load shedding [11]. Such events have significant social 
and economic repercussions, underscoring the importance of resilient control mechanisms 
[11], which are crucial for maintaining the normal operations of CPMs. The occurrence of FDI 
disruptions, as demonstrated by the 2015 Ukraine Blackout events [12], highlights their prac-
tical occurrence and the devastating effects they can have. Scholars have explored various 
methods for detecting FDIin power grids. The authors in [13] discuss the use of a reinforcement 
learning approach, while authors in [14] and [15] employ risky learning machine techniques. 
Although these methods are capable of detecting FDI, the state estimation remains static and 
non-dynamic in [16]. To detect fraudulent data introduced into power systems, a detection 
framework based on artificial neural networks and Kalman filters is provided in [17, 18]. Given 
that not all system states can be directly observed due to financial restrictions [19–21]. Further 
authors of [22, 23] presented state estimators and observers to detect attacks in smart grids. 
These approaches avoid the curse of dimensionality and seem plausible. However, the mea-
surements and system states are constantly perturbed by uncertainties arising from RESs and 
disturbances from FDIs, which renders them inappropriate for direct use in feedback control. 
Although Kalman filters are frequently employed for state estimation, threshold settings may 
have an impact on their accuracy [24]. Conventional Leuenberger observers cannot distinguish 
between signals and treat ambiguous signals in the same way [25]. Although they provide an 
alternative, sliding-mode observers are vulnerable to excessive chattering [26]. A model-based 
method for estimating and identifying unknown inputs was presented by the authors [27, 28], 
but they did not concentrate on managing or averting disruptions. This paper develops an 
optimal controller for an islanded MG based on Unknown Input Observer (UIO). This controller 
may identify uncertainties and FDI and then mitigate them without depending on a predeter-
mined threshold. Current detection and defense methods have certain limitations, which can 
be categorized as follows:

1. Limited Scope and Generality: Some researchers focus on a narrow range of false data injection 
attacks (FDIAs) and propose detection methods without implementing corresponding defense 
strategies. It is important to develop detection and defense measures that are applicable across 
diverse types of FDIAs.

2. Dependency on System Parameters: Model-based methods for detection and defense rely 
heavily on the parameters of MGs. For instance, strategies presented in [29] require precise 
estimation of the system state, which may not always be feasible for real-world applications.

3. Increased System Overhead: Certain defense approaches, such as bandwidth allocation and 
event-triggered algorithms can add significant overhead and complexity to the system.

4. Further research is required to evaluate the effectiveness of current detection and defense 
methods, particularly when addressing multiple FDIAs simultaneously in interlinked AC MG.

This paper’s primary major contribution is as follows.

• To successfully identify and reduce the negative impacts of the three different types of FDIAs 
such as step, pulse, and random. For this a unique detection and defense mechanism has been 
devised.

• Since both past and future states have an impact on the current state of the MG system, a 
detection technique based on the bidirectional long short-term memory (BiLSTM) neural net-
work has been introduced in this study. The three FDIA kinds can be accurately detected by 

• The complexity of interlinked microgrids, 
with their strong cyber-physical 
interdependencies, further necessitates 
robust and intelligent designs capable of 
maintaining operational integrity under 
cyber-attack scenarios.

WHAT THIS STUDY ADDS ON THIS 
TOPIC?

• This study contributes a novel cyber-
resilient frequency control design tailored 
for interlinked AC microgrid systems, 
addressing the growing vulnerability of 
such systems to cyber-attacks.

• While traditional control strategies focus 
primarily on maintaining frequency under 
normal operating conditions, this research 
integrates adaptive control logic with real-
time anomaly detection to identify and 
respond to cyber threats such as false data 
injection and communication disruptions.

• The proposed framework enhances system 
resilience by dynamically adjusting control 
actions and ensuring stable frequency 
regulation even during active cyber 
intrusions.

• Through comprehensive simulations 
under various attack scenarios and 
interlinked microgrid configurations, 
the study demonstrates significant 
improvements in system stability, 
robustness, and recovery performance 
compared to conventional approaches.
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this method, which efficiently gathers information from both past 
and future sequences.

• After the BiLSTM identifies an FDIA, a defense technique has 
been developed that uses the IWOA to improve the PID control-
ler parameters in the distributed LFC (Load Frequency Control) 
system. System stability is maintained by this optimization, which 
guarantees that the PID controller maintains frequency deviations 
within the typical range. Further, dynamic performance of system 
has been compared with other methods available in literature.

The following is the arrangement of the remaining sections of the 
paper: In Section II, the interconnected MG system which includes 
many generating sources is mathematically modeled. The detection 
and defensive mechanism for FDIA control was proposed in Section 
III. Section IV, presents the simulation results and remarks of the pro-
posed controller. The paper's conclusion is given in Section V.

II. MATHEMATICAL MODELLING

The schematic of MG system over communication network is depicted 
in Fig. 1, which consists of distributed generation and load. A distrib-
uted management system (DMS) at control center of interlinked AC 
MG obtain the required state information through measurements of 
signals. The DMS also communicates decisions and logic processing 
to the actuators of energy sources, such as the DG and EV stations, 
thereby establishing a cyber-infrastructure for the CPM.

A. State Space Modeling of Microgrid
The state space modeling of an interlined AC MG system is given in 
(1–2)

x t Ax t Bu t Dd t� � � � � � � � � � �  (1)

y t Cx t� � � � � (2)

Where, x(t) denotes the state vector of MG 
x t f P P P P Pg WG EV PV ESS

T� � � �� ��� � � � � � , u(t) represents the input 
control of MG, d(t) represents the unknown disturbance to MG 
System. A is the state matrix, B, C, D are input matrix, output matrix 
and load perturbation of studied MG system respectively. The matri-
ces are given in (3–9) as follows.

A
A A
A A

�
�

�
�

�

�
�

11 12

21 22
 (3)

A

D
H H H H

T T

T

T

T

t t

PV

WT

EV

11

1
0

1 1
0

0
1 1

0 0 0

0 0
1

0 0 0

0 0 0
1

0 0

0 0 0 0
1

�

� � � �

�

�

�

� 11

1
0 0 0 0

1
T

R T T

EV

i G G

� �

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

 (4)

Fig. 1. Schematic of microgrind system under attack.
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B. False Data Injection Attacks on Interlinked Alternate Current 
Microgrid
The LFC controller uses data from the frequency deviation to con-
trol the MG, and the security of this data is essential to the correct 
operation of the control commands in the LFC system. As illustrated 
in Fig. 2, a cyberattack can infiltrate the frequency deviation chan-
nel, concealing itself from the LFC controller and appearing identical 
to the initial system state vector. Equation (10) describes how the 
BDD (Bad Data Detection) system in the distributed LFC system uses 
a residual test to detect FDIAs.

p p a
x x c
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Here, pa represents the state variable with FDIAs, a is the injected 
attack vector, p is the state variable, c denotes the deviation from 
normal system states xa, μ is the threshold pre-set by the BDD sys-
tem, and J is the Jacobian matrix of the power system. If the attack 
vector fulfills the requirement conditions in (11), the FDIA can suc-
cessfully inject manipulated data into the power system without 
being detected by the BDD system’s residual test. In this paper, all 
constructed FDIAs satisfy the conditions in (11).

a Jc
a Jc p Jx

�
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�
�
� 2 2�

 (11)

Further, the study covers three types of FDIAs, including pulse, step, 
and random attacks in this study.

Fig. 2. Two area interconnected microgrid system with false data injection attacks.
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1) Pulse Attack: (Ap)
The attacker introduces false data ∆fa in the form of pulses over a 
period of time in actual signal, represented as:

f t f t t t otherwisea a ia fa� � ��� 1 0�[ ],  (12)

2) Step Attack: (As)
In this type of attack from starting at a predefined time, the attacker 
continuously injects false data ∆fa2 into the LFC system, represented 
as:

f t
t t

f t ta
ia

a ia
� � � �

�
�
�
�

0

2�
 (13)

3) Random Attack: (Ar)
In this type of attack at random times, the attacker injects a false 
data ∆fa3, such as sinusoidal, random, etc. in original signal, can be 
expressed as:

f t fa a� � � � 3 (14)

III. DETECTION AND DEFENSE MECHANISM FOR INTERLINKED 
ALTERNATE CURRENT MICROGRID

This section presents the proposed detection and defense method. 
The BiLSTM neural network is capable of detecting three types of 
FDIAs outlined in this paper, while the improved whale optimization 
algorithm (IWOA) optimizes the PID controller parameters to keep 
the frequency response of system within the required limit.

A. Detection Using Bidirectional Long Short-term Memory Neural 
Network
A sophisticated kind of recurrent neural network (RNN), the long 
short-term memory (LSTM) neural network was created to solve the 
vanishing gradient issue that conventional RNNs frequently face. The 
vanishing gradient problem in deep networks makes it challenging 
to efficiently update weights during backpropagation, especially for 
earlier time steps, as the model rapidly loses knowledge over time. 
This issue, sometimes referred to as the “Long-term dependency 
problem,” restricts the model’s capacity to efficiently extract data 
from earlier occurrences.

Researchers all across the world have altered RNN models to address 
this, with the LSTM neural network emerging as the most well-
known method. In contrast to conventional RNNs, LSTM networks 
add a special four-layer repeating module while maintaining the 
chain structure. This structure supports long-term memory and 
enhances model efficacy by allowing LSTM networks to selectively 
preserve important information while discarding less pertinent 
input. The fundamental design of a BiLSTM neural network, which 
has a two-way cyclic architecture with both forward and backward 
propagation, is shown in Fig. 3. The output of the model is repre-
sented by 𝑦, and the hidden layers for the past and future contexts 
function independently of one another.

h L x h

h L x h

t t t

t t t

suu s uuu

uru u ruu
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1
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 (15)

Fig. 3. Basic structure of bidirectional long short-term memory neural Network.
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In this context, ht

suu
represents the hidden layer state of the forward 

LSTM neural network at time t, and ht

uru
 denotes the hidden layer state 

of the reverse LSTM neural network at the same time t and L refers 
to the LSTM cell. The complete hidden layer state of the network, ht, 
is obtained by combininght

suu
 and ht

uru
 . The BiLSTM network constructs 

three different types of FDIA in four labels, as shown in Fig. 4. To 
train the BiLSTM model and evaluate its performance on a separate 
test set processed dataset was used. The trained model was imple-
mented to mitigate FDIAs in the distributed load frequency control 
(LFC) system of the MG.

B. Microgrid with Detection and Defense Mechanism
In this study, the advanced capabilities of BiLSTM neural networks 
and IWOA to detect and mitigate FDIAs in MGs are utilized. This 
approach integrates a BiLSTM neural network and IWOA into a 
decentralized LFC system to analyze and prevent FDIAs within dis-
tributed LFC data. By applying this method, the MG’s frequency devi-
ation within an acceptable error range is maintained, ensuring its 
security and stability. Fig. 5 illustrates the LFC system with its detec-
tion and defense mechanisms, embedded within the LFC controller 
framework. Here, trained BiLSTM networks analyze input data to flag 
potential threats. Upon identifying an FDIA, IWOA is immediately 
triggered to optimize PID controller parameters, countering any fre-
quency deviations caused by the attack. When the primary MG faces 
an FDIA, the LFC controller typically responds to frequency deviation 
data, though this response may involve a time delay and may not 
adequately protect MG security. The proposed method addresses 
these limitations, offering a robust method of detection and defense 
mechanisms that enhance MG security. Through prompt FDIA detec-
tion and optimized PID controller settings, the BiLSTM and IWOA 
provide high detection accuracy and defense strength, bolstering 
MG stability and preventing FDIAs. Importantly, this detection and 
defense mechanism activates specifically in the presence of FDIAs, 
leaving MG’s normal operations unaffected. It can be seamlessly 
integrated with existing LFC controllers, requiring minimal invest-
ment and showcasing excellent scalability without additional pro-
tection measures.

Inspired by the way whales prey, the whale optimization algo-
rithm (WOA) is a new intelligent optimization technique. One of 
its benefits is that it requires less parameters, enhanced accuracy, 

and quicker convergence. Each whale location in WOA represents a 
target solution, and the algorithm uses three different approaches 
to update the positions in order to find the best solution: random 
search, spiral search, and encircling prey [29]. An enhanced ver-
sion known as the IWOA is suggested in order to achieve a balance 
between local and global search capabilities. By adding a nonlin-
ear convergence factor, the IWOA improves its capacity to manage 
intricate, large-scale optimization issues in the MG. The IWOA effi-
ciently synchronizes local and global search capabilities, lowering 
the chance of converging to a local optimum by applying a diver-
sity variation operation to the currently optimal whale individuals 
and varying the convergence factor non-linearly with the number 
of evolutionary selections [29]. This study proposes the IWOA as 
a defense against FDIAs to solve the volatility of the LFC system 
under FDIAs. When the BiLSTM detection model sends signals, 
IWOA quickly adjusts the PID controller settings in the LFC system. 
By using its strong local and global search capabilities, IWOA can 
determine the ideal PID settings, allowing the controller to miti-
gate the effects of FDIA and improve the LFC system's resilience 
and security.

IV. SIMULATION RESULTS AND ANALYSIS

This subsection demonstrates the effectiveness of the Proposed 
Method for Detection and Defense Against FDIAs in the MG. The 
MG simulation model is shown in Fig. 2, with simulations conducted 
using MATLAB/Simulink. Further, between 10 and 40 seconds, the 
load demand progressively drops to 0.5 p.u. after rising to 0.9 p.u. in 
the first 10 seconds. Finally, the load remains 0.5 p.u. between 40 and 
50 seconds. The parameters for the two-area interconnected MG are 
detailed in [30].

A. Analysis of Detection/Defense Method
The model is trained over 100 epochs and has 100 hidden units is 
given in Table 1. It takes about 34 minutes to train the BiLSTM neural 
network. The BiLSTM network does not use the system’s computa-
tional resources while operating because it is trained offline. To aid 
in convergence toward an ideal solution, the learning rate is first set 

Fig. 5. Flowchart of detection and defense mechanism.

Fig. 4. Bidirectional long short-term memory detection process.
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at 0.005 for the first 50 epochs and subsequently lowered by a decay 
factor of 0.2. Furthermore, Fig. 6 shows the BiLSTM network’s train-
ing accuracy and loss following 100 epochs. With a training accuracy 
of around 98% and a training loss of less than 0.5 throughout, the 
graph demonstrates the model’s remarkable performance. With an 
accuracy of 0.98972 and an F1-score of 0.97357, the BiLSTM detec-
tion model presented in this research outperforms the other models 
in all four metrics shown in Table II. This demonstrates how much 
better the BiLSTM model is at identifying FDIAs. The BiLSTM model 
exhibits a definite advantage over other benchmark models, such as 
SVM (Support Vector Machine), LSTM, and LSTM-attention. Among 
these models, the BiLSTM performs significantly better than its 
peers, as seen by the second-highest F1-score of 0.8812. These out-
comes confirm the remarkable efficacy and capability of the BiLSTM 
model in identifying FDIAs.

The purpose of this study was to assess the efficacy of the suggested 
defense and detection strategy for three different kinds of FDIAs, 
each of which targets the frequency signal in particular. The first 
attack, which starts at t = 10 seconds and has an attack magnitude 

of 0.8 p.u., is regarded as a pulse attack in which FDIA hits the LFC 
system. Moreover, the second attack is a phase in which FDIA uses a 
0.2 p.u. magnitude attack level to target the LFC system at t = 10 sec-
onds. The third attack type, random attack, incorporates both ran-
dom and sinusoidal components in FDIA. Beginning at t = 0 seconds, 
the random component introduces attack magnitude into the LFC 
system with values between 0.095 and 0.115 p.u. Additionally, simu-
lation results have been performed for the sinusoidal FDIA compo-
nent, which injects FDIA magnitude into the system within a range 
of 0.15 p.u. starting at t = 0.

Figs. 7-9 depict the three different kinds of FDIAs. Unlike the PID 
controller optimized by IWOA, the original PID controller cannot rec-
tify frequency discrepancies as the load varies, as seen in Figs. 10-
13. Frequency variations under the original PID controller can be as 
much as 0.03 p.u. Nonetheless, the frequency variation is minimal 
and stays well within the allowable error range when the PID control-
ler is optimized by IWOA.

Improved whale optimization algorithm’s performance is assessed 
by contrasting it with two alternative control strategies, namely par-
ticle swarm optimization (PSO) and WOA. When working with the 
three types of FDIAs, the PID parameters optimized by WOA and PSO 
produce oscillations that beyond the allowable error range, failing 
to maintain frequency stability, as illustrated in Figs. 10-13. It is clear 
that, IWOA successfully removes the frequency deviation brought on 

TABLE I. BIDIRECTIONAL LONG SHORT-TERM MEMORY NEURAL NETWORK 
PARAMETERS

Parameters Value

Input Size 1

Total no. of classes 4

No. of hidden units 100

Total Epoch 100

Threshold value 1

Learning rate 0.005

Learning rate drop period 125

Learning rate drop factor 0.2

Q2

Fig. 6. Bidirectional long short-term memory neural network 
training accuracy, F1 score and loss.

TABLE II. DETECTION PERFORMANCE OF VARIOUS MODEL

Model Accuracy Precision F-Score Recall

BiLSTM 0.9897 0.9485 0.97357 0.9171

LSTM 0.9041 0.8812 0.8421 0.8312

LSTM-attention 0.9315 0.9121 0.8752 0.8812

SVM 0.7952 0.7562 0.7152 0.6932

BILSTM, bidirectional long short-term memory; LSTM, long short-term memory; 
SVM, Support Vector Machine. 

Fig. 7. First and second type of false data injection attack.
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by FDIAs, maintaining the frequency within the typical error range 
and guaranteeing system stability. These results demonstrate that 
IWOA is superior to other optimization algorithms in reducing the 
negative impact of FDIAs on frequency stability.

B. Case-1 (Pulse-type False Data Injection Attack)
At t =10 seconds, the attacker injects a pulse-type FDIA and intro-
duces erroneous data into the MG. The MG is in an unstable state 
when it is controlled by the original PID controller because it exhibits 
a large frequency deviation at t = 10 seconds that approaches 01 p.u. 
On the other hand, the MG rapidly corrects the frequency deviation 
to zero when it is controlled by the PID controller optimized using 
IWOA. This occurs at t =10 seconds. As seen in Fig. 10, the MG system 
is at steady for the next 40 seconds. This indicates that pulse-type 
FDIAs are successfully countered and system stability is maintained 
by the PID controller optimized using IWOA as compared to other 
optimization method such as WOA-PID, PSO-PID, and PID. The pro-
posed method is superior in terms of settling time, undershoot etc. 
and therefore maintain the stability of system and less prone to FIDA.

Fig. 8. Third type of false data injection attack as a sinusoidal form.

Fig. 9. Third type of false data injection attack as a random form.

Fig. 10. Frequency deviation area-1 for first type of false data 
injection attack control.

Fig. 11. (a) Frequency deviation of second type of false data injection 
attack control—area-1. (b) Zoom plot of frequency deviation of  
second type of false data injection attack control—area-1.
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C. Case-2 (Step type False Data Injection Attack)
From Fig. 11, the attacker continuously introduces erroneous data 
into the system at t = 10 seconds in the second form of FDIA. The sta-
bility of the MG controlled by the typical PID controller is seriously 
disrupted within the first 5 seconds by large frequency fluctuations, 
as seen in Fig. 11(a). The zoom plot of frequency deviation of second 
type of FDIA control for area-1 is given in Fig. 11(b). Further, the attack 
significantly weakens the MG's stability at t = 10 seconds, resulting in 
a frequency variation of −0.09 p.u., or nearly −0.1 p.u. After identify-
ing the FDIA in the MG, the BiLSTM neural network sends a defense 
signal to the IWOA. The IWOA-optimized PID controller then quickly 
recalculates the ideal PID parameters in a defensive move. This guar-
antees stability throughout the attack by enabling the system to 
keep the frequency variation within the allowable error tolerance. 
These findings demonstrate that, in step-type FDIA settings, the sug-
gested PID controller improved by IWOA successfully preserves MG 
stability.

D. Case-3 (Random Type False Data Injection Attack)
The third kind of attack targets the LFC system by combining ran-
dom and sine signals in the attack vector, as shown in Figs. 8 and 
9 have been applied to the system. Fig. 12(a) shows the frequency 
deviation of sinusoidal FDIA control and its zoom plot is given in 

Fig. 12(b). Further, Fig. 13(a) shows frequency deviation of random 
FDIA control. And its zoom plot is given in Fig. 13(b). The system is 
more severely affected by this kind of FDIA than by the other two 
of attack. This attack is too strong for the LFC system managed by 
the conventional PID controller, resulting in long-lasting, significant 
frequency oscillations. The frequency deviation varies between 
0.12 and 0.05 p.u. under the random signal and between 0.06 
and.05 p.u. under the sine signal. The stability of the MG is seriously 
threatened by these oscillations, which last for 50 seconds. Further, 
the control area of both area is shown in Fig. 14. The tie-line power 
deviation is shown in Fig. 15. The active power deviation of area-1 
and area-2 is shown in Fig. 16(a) and 16(b) respectively. It is evident 
from the data that the IWOA-based protection mechanism that was 
suggested in this study reacts rapidly to a defense signal from the 
BiLSTM. The MG's frequency stability is essentially maintained since 
the adjusted frequency deviation is completely within the permit-
ted error range, even in the face of random FDIA attacks. This effi-
ciently maintains the system in a stable zone and guarantees the 
mitigation of FDIA.

Fig. 12. (a) Frequency deviation of sinusoidal false data injection 
attack control. (b) Zoom plot of Frequency deviation of sinusoidal 
false data injection attack control.

Fig. 13. (a) Frequency deviation of random false data injection 
attack control. (b) Zoom plot of Frequency deviation of random false 
data injection attack control.
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V. CONCLUSION

This paper focuses on developing detection and defense techniques 
to address FDIAs in interlinked AC MG systems. In this study firstly, 
a detection and defense model are integrated into the LFC control-
ler to identify and mitigate the adverse effects of FDIAs. The offline-
trained BiLSTM neural network powers the detection process, and 

simulation results validate its accuracy. The defense strategy also 
uses the IWOA to fine tune the PID controller parameters. This keeps 
system frequency deviations within the acceptable range and the 
microgridMG stable even when FDIA is present. The obtained results 
have also been compared with other existing methods. Simulation 
results confirm the proposed method's effectiveness in countering 
various types of FDIAs and preserving MG stability. Future, research 

Fig. 14. Control signal for both areas.

Fig. 15. Tie-line power deviation.
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will explore defense mechanisms against adversarial machine learn-
ing attacks in MGs.
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