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ABSTRACT

Resolvers are very accurate rotating position feedback mechanisms utilized by Low Earth Orbit (LEO) ground 
stations to track a satellite and communicate with it. Mechanical misalignments and temperature fluctuations 
are some of the environmental reasons that commonly cause resolvers to suffer from problems in calibration. 
The contribution of this work is to present a methodology for the calibration of 16-bit resolvers using 14 different 
Machine Learning (ML) techniques that improve the accuracy and reliability of LEO ground stations. Conventional 
calibration techniques include mechanical adjustment of the resolver for known inaccuracies. This often involves 
much manual refinement and recalibration to achieve any reasonable degree of accuracy. On the other hand, the 
proposed automatic calibration would reduce the need to routinely perform human calibration, thereby reducing 
wastage of time and other resources. Machine Learning statistical algorithms can learn from data and generalize to 
new data, including complex input-output mappings, and have made such error profiles and resolution features 
visible. This software-based error-compensation technique improved the target distortion ratio of a 16-bit resolver 
from approximately ±10% to approximately ±2%. In cases where ML is used for calibration, it is possible to reduce 
the goal angle error—which can reach up to 1°—to a level of 0.2°.
Index terms— Encoder, LEO ground stations, machine learning, resolver

I. INTRODUCTION

The main purpose of a Low Earth Orbit (LEO) ground station is to establish communication with 
satellites in the Earth’s orbit. Since LEO spacecraft are traveling at rapid speed, the satellite ground 
stations need to target the satellite as precisely as possible in order to obtain the right telemetry 
information. This ensures that during orbit, feedback control mechanisms will keep the antenna 
in the correct orientation relative to the satellite. In relation to the satellites’ ground stations, it 
is also a significant constituent, a feedback control system, which acts to accomplish the task of 
tracking and linking up with orbitally deployed satellites. These systems utilize the information 
supplied from sensors, such as resolvers, encoders, Global Positioning System (GPS), or Inertial 
Measurement Units, to make continuous adjustments in the position of the antenna based on 
deviations from the planned track. While they serve similar purposes, a number of factors might 
account for discrepancies in the degrees of rotation recorded by these devices. These are not 
limited to differences in accuracy and resolution, calibration and alignment issues, environmen-
tal effects, and mechanical wear. A resolver, on a satellite ground station’s side, is not only one of 
the major parts of their feedback systems but it is also one of the main devices responsible for 
generating disagreement.

These electromechanical components, which give exact angular position feedback, become 
very important in the tracking systems of LEO ground stations. In most cases, a resolver is made 
up of a cylindrical rotor and stator for measuring the azimuth antenna (horizontal angle) and 
elevation (vertical angle). These are necessary measurements so that the antenna will be posi-
tioned precisely in order to monitor satellites crossing the cloud. Encoders, on the other hand, 
are technological devices used to convert mechanical motion into digital signals that can be read 
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resolver calibration performance.
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by computer systems. The resolution of the encoders often creates 
digital outputs, while encoders also provide an analog signal, which 
represents the shaft angle. The passing of digital feedback on the 
position of the antenna is very much related to satellite ground sta-
tions, which are often provided by using encoders along with resolv-
ers. The resolver and encoder work in such a manner that the ground 
station can monitor and interact with the satellites correctly. This 
ensures that the transmission and reception of data are dependable, 
ranging from various uses in telecommunications and Earth obser-
vation, to scientific research. While satellite tracking is initiated, the 
values for the azimuth and elevation of the antenna are provided 
by the resolvers. This is done when a ground station is set up for the 
very first time. The reference value that is obtained will serve as the 
starting point. Once this reference value has been obtained, there 
is a rotation mechanism involved according to where the satellite is 
located in the earth. Immediately after the tracking process is over, 
the resolver is once again used to get the reference location for the 
purpose of tracking a third satellite. However, since there is a variance 
in the resolver, the location information that is acquired may also be 
inaccurate. Again, even though an encoder can locate the degrees 
without any variation, after the motor has begun its rotation, it will 
not be able to find the final degree. Since the difference between the 
encoder and the resolver needed to be observed, both were set to 
the same value, and the operations were executed in parallel.

A. Literature Review
There have been a variety of missions that have led to the deploy-
ment of a large number of LEO satellites into near-earth space in 
recent years. These missions include space exploration [1, 2], Earth 
remote sensing [3, 4], monitoring of the weather [5], navigation aug-
mentation [6, 7], worldwide telecommunications [8–10], and con-
nectivity to the Internet of Things [11, 12]. As a result of their lower 
altitudes, LEO satellites provide a number of benefits that are not 
available with other methods of communication. These benefits 
include increased ground transmission power and less signal noise 
[13–14]. SpaceX and OneWeb are two examples of commercial com-
panies that have suggested the construction of global LEO constella-
tions [15]. These constellations would consist of hundreds of satellites 

and would enable access to the Internet on a worldwide scale. In tan-
dem with the progression of this technology, the significance of satel-
lite ground stations and sensors that are utilized in these systems will 
also increase. The shaft angle is translated into an analog signal using 
electromechanical means in one of these devices, which is referred to 
as a resolver [16–17]. In light of the substantial body of literature that 
provides evidence that resolver error patterns [18–21] are systematic, 
the implementation of a compensation technique to address this sys-
tematic mistake has the potential to significantly enhance the accu-
racy of the manufacturer’s quotations. In order to lessen the amount 
of measurement error that occurred in these trials, a variety of modu-
lation strategies and excitation signals were utilized. The numbers 
[22–23]. The calculation of the performance of the Linear Resolver is 
also discussed in certain articles [24–27]. By the way, recent advance-
ments in the computing capacity of computers have resulted in a 
rapid rise in the theory and application of deep learning. Additionally, 
a great number of anomaly detection methods that make use of deep 
neural networks are beginning to appear [28–29]. It has been noted 
in recent years that machine learnings (MLs) have been used to solve 
a wide range of calibration problems related to low-cost particle 
sensors [30–31]. There has been a proposal to use One Dimensional 
Convolutional Neural Network calibration for low-cost carbon mon-
oxide sensors, which is compared with several ML-based calibration 
techniques [32]. The goal of a different study is to develop a standard-
ized calibration protocol that can be implemented at low cost and 
to evaluate different calibration algorithms [33]. A study carried out 
recently this year employed ML models for sensor calibration, includ-
ing linear regression, gradient boosting regression, and random for-
est regression [34]. The results of another recent study demonstrate 
a variety of nonlinear models are derived from the sensor response 
to varying methane concentrations, temperatures, and humidity, as 
well as models with interaction terms [35].

Similar to the previous studies, this research aims to employ ML for 
developing an automated and adaptive calibration system for 16-bit 
resolvers. Besides enhancing tracking accuracy and reducing calibra-
tion errors, this new technology is bound to enhance the overall per-
formance of LEO ground stations.

Fig. 1. The main control framework of satellite ground stations.
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The remainder of the article is structured in the following manner. 
The dataset, which serves as the model for measurements, is pre-
sented in the materials and methods section. In the third section, 
the implementation of the ML-based rectification procedure is pre-
sented. There is a discussion and evaluation of the results that were 
collected. A brief discussion of the potential future directions of this 
research is presented in the final section of this article.

II. MATERIALS AND METHODS

A. Dataset Collection
During the course of a track operation, resolver and encoder val-
ues were collected and assembled into the data set. In accordance 
with the results provided by the tracking algorithm of the satel-
lite ground station, these are the two most important data points 
in which angular changes are monitored. In order for the tracking 
algorithm to correctly receive the signal from the next target angle, 
it is exceptionally vital that the values received from the resolver and 
encoder, which can be seen in Fig. 1, are taken into consideration. 
Due to the fact that the tracking process involves constant calcula-
tions, the objective is to conduct live calculations using the feedback 

from the sensors and the hardware, and then pay attention to any 
minor variations that may occur.

B. Machine Learning Models
In ML and statistical modeling, a variety of methods are employed 
to address both regression and classification tasks, each with dis-
tinct strengths. Decision trees offer interpretability through their 
hierarchical decision-making process, while k-nearest neighbors 
(kNN) relies on proximity-based classification, making it effective in 
low-dimensional spaces. Gaussian Processes (GPs) provide a proba-
bilistic framework, capturing uncertainties in predictions, whereas 
robust methods like Theil-Sen and Huber Regressor mitigate the 
effects of outliers. Classical techniques like Linear Regression, Ridge 
Regression, and Lasso Regression address linear relationships, with 
Ridge focusing on multicollinearity and Lasso incorporating feature 
selection. Bayesian Ridge adds a probabilistic layer, while Elastic 
Net blends the penalties of Lasso and Ridge for enhanced flexibility. 
Linear Support Vector Regression (LSVR) and Random Forest han-
dle complex, nonlinear patterns, with the former maximizing the 
margin of separation and the latter leveraging an ensemble of deci-
sion trees for greater accuracy. Passive Aggressive Regressors are 
efficient for online learning, adapting quickly to new data. Similarly, 
ensemble methods like the Bagging Regressor improve model sta-
bility by averaging predictions across multiple models. Following 
the application of these methods, calibration techniques ensure 
that model outputs are properly adjusted to align predicted values 
with actual outcomes, enhancing the reliability and interpretability 
of the results across diverse datasets.

In this paper, the top four methods that provided the best results 
based on the evaluation were selected. After applying a compre-
hensive set of ML algorithms, including regression and ensemble 
techniques, these four methods consistently outperformed the oth-
ers in terms of accuracy, robustness, and predictive capability. The 
selection was made through a combination of model performance 
metrics and calibration, ensuring that the chosen models not only 
delivered high accuracy but also maintained reliability and stability 
across various test scenarios. A detailed description of these top-per-
forming methods appears below, which forms the basis for further 
analysis and discussion.

1) Decision Tree:
A decision tree is a model that classifies data points based on their 
features using a tree structure consisting of nodes and branches. 
Each node represents a decision based on a specific feature, and the 
branches represent possible outcomes of the decision. The model 
works by traversing the tree to make predictions. The split at each 
node is based on criteria like Gini impurity (1) or entropy (2). The aim 
is to choose the feature that maximizes information gain.
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2) k-Nearest Neighbors:
The kNN is a simple algorithm that classifies a new data point based 
on the majority class of its kNN in the training data. The distance 

Fig. 2. ML-based approach to compensate for the faults made by 
the resolver.

Fig. 3. Resolver schematic.
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between the new point and its neighbors is typically calculated 
using the Euclidean distance (3). The predicted class is determined 
by the majority vote of the neighbors.
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3) Gaussian Process:
A GP is a probabilistic model used for predicting continuous values. 
It assumes that the data follows a Gaussian distribution and models 
the relationships between data points using a covariance function, k 
(x,x’). Gaussian Process provides both the prediction and uncertainty 
for each prediction. A commonly used covariance function is the 
Radial Basis Function.
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4) Theil-Sen Estimator:
The Theil-Sen estimator is a robust regression method used to esti-
mate the slope of a set of points. It computes the slope between all 
pairs of data points, then takes the median of these slopes as the 
final estimate. This method is resistant to the influence of outliers.
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C. Machine Learning-Based Compensation Algorithm
The presented compensation algorithm aims to reduce undesired 
disturbances and imperfections in systems in order to mitigate their 
effects. As a result of its enhanced ability to learn and correct imper-
fections, this ML-based compensation algorithm offers superior per-
formance to traditional methods.

As it is seen in Fig. 2, Sensor data is fed into ML. The different mod-
els of ML have resolver, encoder, GPS, and TLE (Two-line element 
set) inputs and two corrected outputs. The compensation values 
between the estimated and corrected values are the outputs.

D. Resolver-To-Digital Converter
Electronic and mechanical devices known as resolvers as seen in 
Fig. 3 are utilized for the purpose of determining the angle at which 
a rotating shaft is pointed. As a result of their durability and depend-
ability in hostile settings, they are frequently utilized in industrial 
applications, aircraft, and robotics. A Resolver-to-Digital Converter 
(RDC) is responsible for converting the analog sine and cosine sig-
nals into digital form, which allows for the digital computation of the 
rotor angle.

Stators have a resolver primary field winding (R1–R2) and a second-
ary magnetic field winding (S2–S4, S3–S1). Input into the primary 
winding is the excitation signal (R1–R2):

V V wtr m� � �sin  (6)

Vm is the peak voltage of the excitation signal, ω is the angular  
frequency of the excitation signal, and t is time.

Stator winding voltages are calculated as follows:

V kV ts m� � � � �sin sin� �  (7)

Fig. 4. Variations in the resolver value that occur during turning 
maneuvers of 0.2°, 1°, 2°, and 5° degrees.
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V kV tc m� � � � �cos sin� �  (8)

k is a constant relating to the resolver’s design and θ is the  
rotor angle.

The following angle θ can be determined using sine and cosine 
outputs:
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E. Nanotec Servo Motor and Integrated Encoder
The Nanotec PD4 motor is a stepper motor that is known for its high 
level of precision and efficiency. It is frequently utilized in a variety 
of scientific and industrial applications. The motor is equipped with 
an encoder, which enables it to deliver precise feedback regarding 
position and speed. This is vital for achieving precise control and per-
formance. The integrated encoder is a magnetic absolute encoder 
that functions with a single turn and has a revolution rate of 2000 
encoder cycles. In addition, the gear ratio is equivalent to 10 000, 
which is the ratio of the revolutions of the encoder to the revolutions 

of the motor. By entering these numbers into the formula, the num-
ber of encoder increment values that increase by one degree for 
every degree of angle can be determined.

Encoder Increments encoder cycles per rev ge�
�
� � ��1

360
2000 10000. aar ratio� � � 55555   

 (11)

III. IMPLEMENTATION AND RESULTS

Throughout the process of data collection, satellite tracking was 
carried out by utilizing change commands of 0.2 degrees, 1 degree, 
2 degrees, and 5 degrees. Throughout all of the studies, the motor 
movement was contrasted with commands that were either fre-
quent, serial, or infrequent in order to determine how the move-
ment changed. As can be seen in Fig. 4, these modifications led to 
the development of distinct methods for tracking satellites.

Fig. 5 demonstrates that a cumulative difference of up to 0.15 
degrees has been recorded between the encoder, the resolver, and 
the target angle. This difference was observed at low angle ratios and 
during repeated rotation movements between the three locations. 
In the turning movement that is made with small angle values of  
0.2 degrees and more frequent orders, it has been established that 
there is a deviation in the target tracking angles. This deviation is 
similar to the 2-degree angles that were shown in the previous graph.

Fig. 5. The angle difference between the targeted and realized angle quantities for the resolver and encoder is quantified.

Fig. 6. The angle difference between the targeted and realized angle quantities for the resolver and encoder is quantified.
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These are the quantities of change that are a result of the rota-
tional movement of the resolver with fixed angles, as can be seen in  
Fig. 6. In spite of the fact that the objective was to complete the  
rotation with 116 digital value movements displayed on the red 
line, it was not possible to achieve this objective in its entirety due 
to deviations. In order to provide an explanation for the equivalent 
of 116 digital values, the resolution of an RDC is determined by the 
number of bits that are present in its digital output. The resolution 
can be calculated using the following formula for a 16-bit RDC:

Resolution
o

o� �
360
2

0 005516 . To put it another way, a 16-bit RDC  

has the capability of distinguishing 65 536 discrete positions across  
an entire rotation of 360 degrees.

In order to maximize the performance of the system, it is essential 
to monitor the effectiveness of the compensation using a variety 
of different technologies. One way in which this was accomplished 
was by carrying out a comparative research, the results of which 
are presented in Table I. Upon examining the error metrics pre-
sented in Table I, it is evident that the R2 values are consistently 
high across all models. However, there are significant variations 

in root mean square deviation, mean absolute percentage error 
, and mean absolute error metrics, which provide deeper insights 
into model performance. For instance, in the case of the kNN 
method, the MSE value is reported as 1.78, while the RMSE is cal-
culated as 1.33. Since RMSE is the square root of MSE, this relation-
ship is expected and confirms the consistency of the calculations. 
Similarly, for the LSVR method, the MSE is 37.56, with an RMSE 
of 6.13, maintaining the expected correlation. However, the dif-
ferences in these error metrics across models highlight impor-
tant performance insights. For example, models such as kNN and 
Decision Tree exhibit relatively low error values, suggesting strong 
predictive capabilities. On the other hand, ensemble methods like 
Random Forest and Bagging Regressor show significantly higher 
error values, indicating less accurate predictions in this specific 
scenario. Notably, the lowest MAE and MAPE values are observed 
in kNN and Decision Tree models, demonstrating their robust-
ness and consistency in predictions. A more comprehensive com-
parison should consider MSE, RMSE, MAE, and MAPE collectively, 
ensuring that model selection aligns with the characteristics of the 
dataset and the specific requirements of the task.

Table II shows the residuals for each of the top-performing models 
in the comparative study, showing the mean, maximum, and mini-
mum residuals. Residuals are those values that indicate the differ-
ence between the predicted and actual values of a certain model. 
These give further detail on how error in any particular model will 
be distributed. The Decision Tree performed with the least mean 
residual at 0.8438, indicating that the actual values were slightly 
deviated from the expected values. K-nearest neighbors and GP, 
meanwhile, had relatively higher mean residuals; however, both 
were also a bit more consistent. Though the Theil-Sen had a mean 
residual of 4.0000, it nevertheless remained quite robust in dealing 
with non-linearities.

In addition to the residual data, a graph was constructed showing 
the distortion patterns of the predicted resolver values for the top-
performing models. This graph provides a clear comparison between 
the predicted values for the Decision Tree, kNN, GP, and Theil-Sen 
models against the expected values Fig. 7. The following graph 
shows the compensating efficiency of the models against the dis-
tortions. The Decision Tree model kept minimal deviation from the 
expected values, while the kNN and the GP performed with much 
more sturdiness in the lines of minimal distortions. Another model 
that deformed due to the distortions slightly more was the Theil-Sen, 
but still, it managed to follow the general trend of the expected val-
ues. The above visual analysis reinforces the quantitative data and 
reiterates the desirability of ML-based methods in solving angular 
distortions. The closeness of their outputs to the expected values 
underlines their robustness and precision, especially in those envi-
ronments where interference patterns are consistent.

IV. CONCLUSION

In conclusion, the utilization of a self-calibrating 16-bit resolver sys-
tem for LEO satellite ground stations, which makes use of the ML 
technique, is a substantial advancement in terms of precision and 
dependability for satellite tracking and communication. When it 
comes to applications that require precise rotational position feed-
back in aircraft systems, encoders and resolvers are acknowledged to 
be essential components. Differences in their measurements might 
result in discrepancies in the functioning of the system, which neces-
sitates an in-depth comprehension of the factors that are responsible 

TABLE I. PERFORMANCE COMPARISON OF MODELS: MEAN ERROR METRICS 
AND IMPROVEMENT RATES

Model MSE MAE R2 RMSE MAPE

Linear Regression 25.25 4.50 0.9999995783 5.0249 0.0544

Ridge Regression 25.25 4.50 0.9999995783 5.0249 0.0544

Lasso Regression 25.25 4.50 0.9999995783 5.0249 0.0544

Elastic Net 30.25 4.75 0.9999994948 5.5 0.0671

Bayesian Ridge 25.25 4.50 0.9999995783 5.0249 0.0544

Huber Regressor 24.25 4.43 0.9999995950 4.9244 0.0535

Decision Tree 1.218 0.84 0.9999999796 1.1039 0.0091

Random Forest 72.78 7.96 0.9999987845 8.5311 0.0829

Linear Support 
Vector Regression

37.56 5.31 0.9999993727 6.1288 0.0556

K-Nearest Neighbors 1.781 1.09 0.9999999703 1.3346 0.0107

Gaussian Process 2.812 1.50 0.9999999530 1.677 0.0144

Theil-Sen 22.68 4.00 0.9999996211 4.7631 0.0485

Passive Aggressive 84.50 8.00 0.9999985888 9.1923 0.0716

Bagging Regressor 99.12 8.25 0.9999983446 9.9561 0.1047

TABLE II. RESIDUAL VALUES OF MODELS

Model Mean Residual Max Residual Min Residual

Decision Tree 0.8438 2 0

K-Nearest Neighbors 1.0938 3 0

Gaussian Process 1.5000 3 0

Theil-Sen 4.0000 11 0
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for the inconsistencies. In this particular investigation, the ML correc-
tion resulted in a significant reduction in the disparities that existed 
between the degrees of rotation. By offering real-time, adaptive 
calibration, this new methodology tackles the inherent constraints 

of standard calibration methods, such as mechanical misalign-
ment and environmental fluctuations. Specifically, this approach 
addresses these shortcomings. With its higher precision in angular 
position measurements, enhanced flexibility to dynamic situations, 
and decreased maintenance requirements, the ML-based system 
was able to display outstanding performance. Continuous learn-
ing and the ability to adapt to changing circumstances are two of 
the most important factors in ensuring sustained performance and 
precision, which are needed for the high demands of LEO satel-
lite operations. In general, this self-calibrating technology not only 
enhances the efficiency and efficacy of ground station operations, 
but it also establishes a new benchmark for the advancement of 
satellite tracking technologies in the years to come. Future research 
should explore the integration of more advanced ML techniques, 
such as deep learning or reinforcement learning, to enhance adapt-
ability in dynamic conditions. Additionally, expanding the system to 
multi-axis resolver applications could further broaden its usability in 
aerospace and robotics. Beyond satellite operations, this approach 
holds promise for real-world applications in autonomous naviga-
tion, industrial automation, and defense systems where precision 
and adaptability are crucial. These future advancements will contrib-
ute to the ongoing evolution of intelligent calibration technologies, 
ensuring sustained improvements in performance and reliability 
across various domains.
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