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ABSTRACT

The Internet of Things (IoT) devices perform critical functions such as sensitive data collection, storage, and 
processing, which make them vulnerable to malicious attacks. In this study, a Network Intrusion Detection System 
was designed to enhance the security of IoT devices. Data sets obtained from three different IoT environments 
(CICEVSE2024, CICIoT2023, and RT-IoT2022) were utilized for attack detection using tree-based machine learning 
methods. Experimental results demonstrated that attacks were detected with an average accuracy of 99%. 
Additionally, a second security layer was implemented to identify zero-day attacks. Analyses showed that the 
Isolation Forest algorithm detected zero-day attacks with accuracies ranging from 30% to 62%. This proposed 
approach shows promise in enhancing security against known and unknown attacks.
Index Terms—Cyber-security, Internet of Things, isolation forest, zero-day attack, zero-shot learning

I. INTRODUCTION

The Internet of Things (IoT) has seamlessly integrated into daily life, fueled by rapid advance-
ments in technology and internet infrastructure. The Internet of Things devices connect physi-
cal objects to the internet, enabling data collection, recording, analysis, and sharing for various 
purposes. These devices often process sensitive data critical for managing business operations 
across sectors such as education, healthcare, industry, and agriculture.

However, increasing demand for IoT devices has made them prime targets for cyber threats. Such 
threats exploit IoT system vulnerabilities to cause data theft, service interruptions, malware spread, 
physical damage, and reputational harm to companies. For example, in the healthcare sector, a 
vulnerability in an IoT device could result in unauthorized access to patient information, while in 
industrial settings, it could lead to production line disruptions or workforce losses. Therefore, devel-
oping robust Intrusion Detection Systems (IDS) to detect and prevent cyber threats is essential.

The evolving nature of cyber threats necessitates continuous updates to IDS systems and the 
integration of multiple approaches to ensure robust defense. Three fundamental approaches are 
commonly employed in Network Intrusion Detection Systems (NIDSs) [1]: Signature-based IDS, 
Anomaly-based IDS, and Stateful Protocol Analysis.

Signature-based IDS systems detect known attacks by matching observed activities against a 
database of stored patterns. Observed activities are checked against these stored patterns. While 
these systems are highly effective at identifying known attacks, they struggle to detect new or 
variant attack types [2-4]. Anomaly-based IDS uses rules representing normal system behavior, 
often created using statistical methods, to identify anomalies. Observed activities are evaluated 
against these rules to identify anomalies [5-7].

Stateful protocol analysis records generally accepted normal protocol activities for each proto-
col state. Profiles outline appropriate protocol usage, and anomalies are detected by comparing 
observed events to predefined profiles [8].

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?

•	 IoT devices are increasingly targeted by 
cyberattacks due to their exposure to 
sensitive data, and traditional signature-
based intrusion detection systems (IDS) 
struggle to detect zero-day attacks. 

WHAT DOES THIS STUDY ADD ON 
THIS TOPIC?

•	 This study introduces a two-layer IDS 
architecture that integrates supervised 
tree-based models with the Isolation 
Forest algorithm to improve detection of 
both known and zero-day attacks.

•	 The proposed method achieves up to 
99% accuracy for known attacks and 
demonstrates promising detection rates 
(30–62%) for zero-day threats across three 
diverse IoT datasets.

•	 The research empirically validates the 
Isolation Forest method as an effective 
anomaly detection technique for 
identifying previously unseen cyber 
threats in IoT environments.

Content of this journal is licensed 
under a Creative Commons
Attribution-NonCommercial 4.0 
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In recent years, machine learning (ML) has been increasingly applied 
to enhance the performance and efficiency of many technological 
applications by extracting and learning complex data patterns that 
are otherwise difficult for experts to observe. Machine learning’s 
capabilities have also been leveraged to detect threats in NIDS. In 
[9], Distributed Denial of Service (DDoS) attacks were detected using 
the CICDDoS2019 dataset, various machine learning algorithms 
such as artificial neural networks, support vector machines (SVM), 
Naive Bayes (NB) variants, logistic regression (LR), k-nearest neigh-
bors (KNN), decision trees (DT), and random forests (RFs), achieved 
high accuracy rates of 98%–99%.

Similarly, [10] investigated the impact of data issues such as missing 
values, outliers, and imbalanced records on machine learning model 
performance using the CICIDS2017 dataset. Pre-processing steps 
included data cleaning, matching, normalization, outlier detection, 
sampling, and dimensionality reduction. DT, RF, NB, and LR models 
were trained for six different attack types. Random forest achieved 
the highest accuracy of 99.94% on the processed dataset.

Despite their effectiveness, signature-based NIDS systems are lim-
ited in detecting zero-day attacks, which target undiscovered vul-
nerabilities [11]. Zero-day attacks pose a particularly severe threat 
to networks. These are carried out by targeting vulnerabilities in the 
software of devices that have not yet been discovered. Zero-day vul-
nerabilities can cause huge financial and intangible damage when 
exploited before being noticed by device manufacturers.

This work aims to improve IoT security by developing a NIDS that 
combines ML models with the Isolation Forest (iForest) algorithm to 
detect known and zero-day attacks. The study aims to fill a critical gap 
in the existing cybersecurity literature by demonstrating the high 
accuracy of machine learning models in detecting known attacks 
and the potential of Isolation Forest to address zero-day attacks.

The paper is structured as follows: Section II provides a comprehen-
sive review of the existing literature related to zero-day attack detec-
tion and the application of iForest in cybersecurity. Section III details 
methods and experimental setups. Section IV presents the proposed 
approach’s results and discusses the findings. Finally, Section V con-
cludes the study.

II. LITERATURE REVIEW

Zero-day attacks are difficult to detect as they exploit unknown 
vulnerabilities, making them a critical concern for cybersecurity 
researchers. To address this, researchers are analyzing outlier-based 
methods for zero-day attack detection. Two common approaches 
utilized in this context are the One-Class SVM and autoencoders 
[12]. Analyzing both approaches, [13] shows that detection accuracy 
ranges from 89% to 99% for the NSL-KDD and from 75% to 98% for 
the CICIDS2017. Research highlights that both models have a low 
miss rate (false positives) in zero-day attack detection, but the accu-
racy of autoencoders is higher compared to One-Class SVM. In addi-
tion to that, [14] analyzed Snort's, an open-source NIDS and intrusion 
prevention system, performance in detecting zero-day attacks. It 
was tested on 183 previously unseen attack vectors, achieving an 
accuracy of 17%. It was emphasized that, although this detection 
rate is low, it is not zero.

[15] developed a security system for attack detection in a fog envi-
ronment by combining Autoencoder and iForest methods in fog 

computing. The research achieved a 95.4% accuracy rate in tests 
conducted with the NSL-KDD dataset. Since their proposed system 
supports binary classification, it is insufficient to determine the 
attack type. Besides, no analysis is presented about the contributions 
or support level of the iForest method to the autoencoder method. 
Similarly, [16] used the iForest method to detect anomalies in web 
traffic and achieved a high accuracy rate of 93%. The low computa-
tional complexity of the iForest model enables it to detect anomalies 
very quickly. No analysis is included in this study to detect zero-day 
attacks.

iForest-based outlier detection model [17] is used to detect outliers 
in the training set. Before outlier detection, the dataset is reduced 
using feature elimination methods. Then, all outliers are detected 
and removed to make the intrusion detection model more effective. 
The research achieved an average of 3% increase in precision, recall, 
F1 score, and accuracy values using LR, SVM, AdaBoost, NB, and KNN 
methods.

This study analyzes tree-based ML models’ success in detecting 
cyber-attacks in different IoT environments. Three different IoT envi-
ronments (CICEVSE2024, CICIoT2023, and RT-IoT2022) are used in 
this context. Logistic regression, DT, KNN, SVM, AdaBoost, RF, and 
XGBoost methods were compared for detecting attacks in Electric 
Vehicle Charging Equipment (EVSE) networks [18]. Methods such 
as XGBoost and AdaBoost proved effective in distinguishing the 
complex attack patterns of EVSE networks. XGBoost demonstrated 
superior accuracy and a lower false alarm rate compared to other 
methods. Tree-based ensemble learning techniques have emerged 
as powerful tools for enhancing the security of EVSE networks 
and optimizing attack detection. The Federated Learning-Based 
Anomaly Detection System (FL-EVCS) [19] aims to protect data pri-
vacy by sharing model parameters, avoiding the centralized data 
collection used in traditional ML approaches, which is considered 
insecure. Researchers obtained 97% accuracy from the CICEVSE2024 
dataset. Results underscore FL-EVCS’s ability to establish a secure 
and resilient charging infrastructure while maintaining strict privacy 
standards. In addition, [20] achieved an average accuracy of 94.23% 
was achieved on the CICEVSE dataset using deep learning-based 
AutoKeras and genetic programming-based TPOT frameworks.

[21] developed IDS systems using the CICIoT2023 dataset, which 
includes 33 different attack types. Three classification strategies 
were applied: 34 classes, 8 classes, and a binary class. These scenar-
ios were analyzed using DT, RF, LR, AdaBoost, and SVM. Among all 
scenarios, while SVM demonstrated the lowest accuracy (76.09%), RF 
emerged as the most robust model, achieving 99% accuracy across 
all scenarios. [22] focused on detecting DDoS attacks using two-
stage deep learning models such as Deep Neural Networks (DNN), 
Convolutional Neural Networks, and Long short-term memory net-
works (LSTM). Firstly, the models determined whether the network 
flood was malicious, and subsequently, they identified whether 
the malicious activity constituted a DDoS attack in the CICIoT2023 
dataset. Long short-term memory stood out as the best model, 
achieving 94% accuracy in the first stage and 90% accuracy in the 
second stage. The researchers highlighted that, although the two-
stage model enhanced accuracy, its computational complexity 
posed challenges for real-time application, necessitating further 
improvements. Likewise, [23] implemented various machine learn-
ing algorithms, including LR, KNN, and DNN, on the CIC2023 dataset 
to identify attack patterns. Across all models, a precision of 0.9999 
was achieved, along with equally high recall, accuracy, and F1 scores.
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[24] developed IDS systems for IoT environments using the RT-IoT2022 
dataset and various machine learning methods, including KNN, SVM, 
DT, Gradient Boosting (GB), XGBoost, RF, and Extremely Randomized 
Trees (ERT). Random forest and XGBoost models stood out, achiev-
ing 99% accuracy. These models demonstrated their reliability for 
real-time IoT attack detection by excelling across multiple metrics, 
such as F1 score, recall, precision, and accuracy.

[25] presented a two-stage feature selection approach that reduces 
computational load while maintaining IoT system security. They 
achieved 98.8% accuracy by reducing the RT-IoT2022 dataset by 
62%, using an enhanced whale optimization algorithm (WOA-HA) 
that incorporates a chaotic Hénon map mechanism, an adaptive 
coefficient vector, and a binary operator. However, the complexity 
of the parameter settings in this approach requires domain-specific 
knowledge. Additionally, while the algorithm performs well with 
large IoT datasets, its efficiency may decrease with extremely large-
scale data.

[26] study in context employed the Quantized Autoencoder model 
for detecting network anomalies in edge devices through unsuper-
vised learning. The model integrates optimization techniques such 
as pruning, clustering, and quantization. Experimental studies con-
ducted with the 2022 RT-IoT dataset to train the model achieved an 
average accuracy of 98%.

III. MATERIALS AND METHODS

In this section, we provide a comprehensive overview of the datas-
ets, machine learning techniques, and the proposed methodology 
for ensuring secure IoT systems.

A. Datasets
Three different datasets, CICEVSE2024, CICIoT2023, and RT-IoT2022 
were used from different IoT environments. Each dataset includes 
network traffic floods and has its own domain-specific protocols and 
attacks.

CICEVSE2024 [27] is designed to contribute to cybersecurity 
research on EV charging stations, considering the increasing use of 
electric vehicles. It includes various attack scenarios, covering both 
network and host attacks on EVSE when idle and during charging. 
Researchers can assess the suitability of specific features by utilizing 
the dataset for tasks such as statistical analysis, behavioral profiling, 
and anomaly detection. Detailed information on the types of attacks 
performed is provided in Table I. In this work, we used CICEVSE-A 
device network flood.

CICIoT2023 [28] aims to enhance security analytics applications in 
real IoT operations, with 33 attacks performed on an IoT topology 

consisting of 105 devices. Generating large-scale data for IoT security 
is a costly and complex process. The Canadian Cybersecurity Institute 
has established a laboratory to develop IoT security solutions and 
made this data available to improve cybersecurity practices and sup-
port the development of new solutions to address these challenges. 
Table II lists the attack scenarios performed in the test environment.

RT-IoT2022 [29] contains data from a testbed representative of the 
real world created by combining different IoT devices such as Thing 
Speak-LED, Wipro-Bulb, and MQTT-Temp. Attacks in the dataset are 
categorized in Table III.

B. Methods
In this study, zero-day attacks are examined by defining an outlier as 
an observation that deviates from generally expected behavior [30]. 
Anomalies can be described as abnormal behaviors (attacks) gen-
erated by different processes that do not conform to the system's 
normal (benign) structure. iForest assumes that outliers are rare and 
tend to be located far from the centers of normal clusters. This tech-
nique relies on a partitioning process using a random tree structure. 
For each dataset, a random feature is selected, and a random parti-
tion value is chosen between the minimum and maximum values 

TABLE I.  CICEVSE DATASET DESCRIPTION

Attack 
Group

Number 
of Records Types

Benign 68 Normal traffic

Recon 98 547 Aggressive-scan, vulnerability-scan, os-fingerprinting, 
portscan, service-detection, slowloris-scan, SYN-
stealth-scan, synonymous-IP

Dos 131 094 ICMP-fragmentation, SYN-flood, TCP-flood

TABLE II.  CICIOT2023 DATASET DESCRIPTION

Attack 
Group

Number 
of Records

Attack Types

Benign 295 585 Normal traffic

DDoS 109 996 ACK fragmentation, UDP flood, SlowLoris, ICMP 
flood,RSTFIN flood, PSHACK flood, HTTP flood, UDP 
fragmentation, TCP flood, SYN flood, 
SynonymousIP flood

Brute Force 10 000 Dictionary brute force

Spoofing 10 000 ARP spoofing, DNS spoofing

DoS 39 999 TCP flood, HTTP flood, SYN flood, UDP flood

Recon 42 262 Ping sweep, OS scan, Vulnerability scan, Port scan, 
Host discovery

Web-based 24 828 Sql injection, Command injection, Backdoor 
malware, Uploading attack, XSS, Browser hijacking

Mirai 29 999 GREIP flood, Greeth flood, UDPPlain

TABLE III.  RT-IOT2022 DATASET DESCRIPTION

Attack 
Group

Number 
of Records

Attack Types

Benign 12 507 ​

DoS 94 659 DOS_SYN_Hping

DDoS 534 DDOS_Slowloris

Recon 7602 Nmap_Udp_Scan, Nmap_Xmas_Tree_Scan, 
Nmap_Os_Detection, Nmap_Tcp_Scan, Nmap_
Fin_Scan

Spoofing 7750 ARP_poisoning

Brute Force 37 Metasploit_Brute_Force_SSH
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of that feature to construct the tree structures. Outliers are isolated 
with fewer partitions compared to normal data points, resulting in 
shorter paths for outliers. To achieve this, an anomaly score is calcu-
lated for each sample based on (1).

S x
H x

c n( )
( )

( )�
�

2 	 (1)

H(x) represents the isolation depth for sample x, while c(n) is the nor-
malization factor, calculated based on the size of the dataset. S(x) 
denotes the anomaly score of the sample, with higher scores indicat-
ing a greater likelihood of the sample being anomalous.

The proposed IDS system incorporates a two-stage security mech-
anism, as illustrated in Fig. 1. The first stage employs supervised 

machine learning methods to detect known attacks originating from 
previously identified vulnerabilities. In this stage, widely adopted 
models from the literature are utilized for security detection. The 
second stage focuses on identifying potential zero-day attacks using 
iForest. Network flows that pass through the first stage are analyzed 
by iForest to assess their likelihood of being zero-day attacks. Normal 
flows are forwarded to the secure IoT environment, while suspicious 
flows are directed to the appropriate security officer for further 
investigation.

IV. RESULTS AND DISCUSSION

This study used Python 3.11, Pandas 2.0, and scikit-learn 1.4 librar-
ies on a Windows 11 operating system with a 2nd Generation Intel® 
Core™ i5-1240P processor. All datasets were divided into 70:30 
training and test sets. Models were optimized using a probability-
based Bayesian method. Hyperparameters tested with the Bayesian 
method include the number of estimators (50, 500), maximum depth 
(10, 100), learning rate (1e-4, 1e-1), subsample (0.5, 1.0), colsample 
bytree (0.5, 1.0), gamma (0, 10), and minimum child weight (1, 10). 
These values were tested to optimize the balance between overfit-
ting and generalization, with the best model being selected. Records 
containing missing values were removed from the study. Raw data 
was used without any preprocessing. Accuracy, precision, recall, 
and F1-score were used to evaluate the performance of the models. 
Accuracy represents the ratio of correctly predicted samples to all 
test samples. Precision measures the proportion of positive predic-
tions that were actually correct. Recall (also known as Sensitivity) 
indicates how many of the actual positive samples were correctly 
identified by the model. F1-Score is the harmonic mean of Precision 
and Recall. It is often preferred over accuracy when dealing with 
imbalanced data.

Since tree-based ML models are known for their robustness in han-
dling noisy data and their ability to model complex relationships 
[31-32]. In this work, we used DT, RF, GB, ET, and XGB models to ana-
lyze IoT security challenges. Table IV presents a comparison of test-
ing performance metrics for three different datasets: RT-IoT2022, 
CICEVSE2024, and CICIoT2023. While models achieved high perfor-
mance in RT-IoT2022 and CICEVSE2024 environments, as shown in 
Table IV, performance metrics in CICIoT2023 are insufficient for a 
robust NIDS when compared to the works in [21], [22], and [23]. This 
could be due to the dataset's complexity, which may be related to 

Fig. 1.  Proposed NIDS system architecture.

TABLE IV.  PERFORMANCE METRICS OF ML MODELS

Dataset ML Model Accuracy Precision Recall F1 Score

CICEVSE2024 DT 1 1 1 1

RF 0.99 0.99 0.99 0.99

GB 0.99 0.99 0.99 0.99

ET 0.99 0.99 0.99 0.99

XGB 0.99 0.99 0.99 0.99

CICIoT2023 DT 0.76 0.76 0.76 0.76

RF 0.81 0.81 0.81 0.81

GB 0.79 0.79 0.79 0.79

ET 0.74 0.74 0.74 0.74

XGB 0.82 0.82 0.82 0.81

RT-IoT2022 DT 0.99 0.99 0.99 0.99

RF 0.99 0.99 0.99 0.99

GB 0.99 0.99 0.99 0.99

ET 0.99 0.99 0.99 0.99

XGB 0.99 0.99 0.99 0.99
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its device variety, number of devices, attack types, and other factors. 
Commonly, as the complexity of the dataset increases, it becomes 
more challenging for machine learning models to identify the rela-
tionship between benign and attack data [33-34]. [21] achieved 
99% accuracy in detecting attack samples using RF. In contrast, we 
obtained a lower accuracy of 81% with RF. Since no information 
regarding the hyperparameters of the RF model was provided in 
[21], a comparative analysis could not be conducted. Although high 
accuracy was reported in [23], the study focused on developing 
an NIDS using binary classification, where network floods are pre-
dicted as either malicious or benign. This approach does not provide 

information about specific attack types. However, since the primary 
goal of the study was to demonstrate the effectiveness of the iForest 
method against zero-day attacks, the analysis showed that the iFor-
est method improved security by an average of 62% for CICIoT2023.

Each dataset contains different attack scenarios based on its struc-
ture. Consequently, separate iForest models were trained for each 
dataset. Since zero-day attacks are those that have not been seen 
before, the iForest model was trained by excluding these attack data 
from the training set during the training phase. Each attack type 
was assumed to be a zero-day attack and presented to the iForest 

Fig. 2.  Zero-day attack detection accuracy of iForest algorithm according to different attack scenarios by using CICEVSE2024.

Fig. 3.  Zero-day attack detection accuracy of iForest algorithm according to different attack scenarios by using CICIoT2023.
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method for testing within the corresponding dataset. The model's 
performance, evaluated in terms of accuracy, is presented in Figs. 2-4.

The use of EVs in the transportation sector is increasing [35]. In addi-
tion to serving as an alternative for transportation, the integration of 
green energy sources has made these vehicles a key component of 
energy management systems [36]. The increasing number of charg-
ing stations has also introduced new security challenges. While ML 
has demonstrated its effectiveness in cybersecurity within other IoT 
environments [37], research in this area is limited. This study shows 
that ML can enhance cybersecurity for EVs. In addition to addressing 
known attacks, it was found that the iForest method provides high 
accuracy in detecting zero-day attacks. For a more robust defense, 
these methods should be further tested on diverse datasets.

This study adopted a similar approach to [16] and [17] in terms of zero-
day attack detection and utilized the iForest method. A key distinction 
between our study and theirs is that we demonstrate the effective-
ness of iForest in zero-day detection through comparative analyses 
involving different scenarios, where the iForest method was both 
used and not used. [17] observed an average performance increase 
of 3% in detecting zero-day attacks using iForest, which is lower than 
the performance of the model we presented. Furthermore, [15] was 
designed to analyze possible attack types, including zero-day attacks, 
separately, considering the problem beyond a general classification 
task. Known attack types were taught to existing tree-based ML algo-
rithms, achieving 99% accuracy. iForest was used to reconsider the 
possible 0.1% error margin. An average accuracy of 62% was obtained 
for CICIoT2023, and an average of 30% accuracy was obtained for 
RT2022. Each attack includes different attack vectors targeting various 
vulnerabilities. When Fig. 2 is examined, the Mirai-great-flood attack 
was detected at a rate of 100%, while Recon-OsScan was detected at a 
rate of 39%. This is related to how different attack vectors can be from 
the system's normal state. Some attacks were not detected at all in the 
RT-IoT2022 dataset, which is an expected outcome.

V. CONCLUSION

The Internet of Things devices are used in critical processes such as 
collecting, storing, routing, and managing sensitive data, enabling 

revolutionary developments in many sectors. However, the sensi-
tive data they contain and their widespread usage have made 
IoT devices open targets for malicious people. NIDS systems are 
essential to ensure the security of IoT environments. Although 
these systems effectively detect known vulnerabilities with tradi-
tional methods, they can be vulnerable to zero-day attacks. In this 
study, a NIDS system was designed to ensure the security of dif-
ferent IoT environments. The iForest method was used to detect 
zero-day attacks. Obtained results are promising, and there is a 
need to develop more secure systems. There is no silver bullet in 
cybersecurity.

In the future, we aim to maximize the accuracy rate of detection of 
zero-day attacks based on a hybrid system that uses iForest and neu-
ral networks.
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