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ABSTRACT

Gradient Boosting and XGBoost achieved the lowest root mean squared error (RMSE, ≤ 3.9 MHz) and the highest 
R-squared (R², ≥ 0.74), whereas SVR and KNN underperformed, likely due to data sparsity and high dimensionality.
Gradient Boosting and XGBoost achieved the lowest root mean squared error (RMSE, ≤ 3.9 MHz) and the highest 
R-squared (R², ≥ 0.74), whereas SVR and KNN underperformed, likely due to data sparsity and high dimensionality.
This study investigates artificial intelligence for IT operations (AIOps)–based performance optimization for 
virtual desktop infrastructure (VDI) by integrating automatic resource allocation, dynamic load balancing, and 
real-time performance monitoring.Using production telemetry from a corporate VDI cluster, we trained and 
compared seven machine-learning models XGBoost, Gradient Boosting, Random Forest, LightGBM, support 
vector regression (SVR), k-nearest neighbors (KNN), and Decision Tree to predict central processing unit (CPU), 
memory, and response-time dynamics. Gradient Boosting and XGBoost achieved the lowest root mean squared 
error (RMSE, ≤ 3.9 MHz) and the highest R-squared (R², ≥ 0.74), whereas SVR and KNN underperformed, likely due 
to data sparsity and high dimensionality. .The proposed AIOps pipeline reduces mean response time by 27%, 
memory consumption by 18%, and halves manual incident tickets, enabling proactive capacity management. 
These findings demonstrate the practical viability of AIOps for holistic, real-time VDI performance governance.
Index Terms—Artificial intelligence for IT operations (AIOps), load balancing, performance optimization, real-time 
monitoring, resource allocation, virtual desktop infrastructure

I. INTRODUCTION

Virtual desktop infrastructure (VDI) has become an essential technology for improving enterprise 
flexibility and supporting remote access to corporate resources. Despite its widespread adop-
tion, performance management in VDI systems remains challenging due to their dynamic and 
complex structures.

Artificial intelligence for IT operations (AIOps) offers a promising approach to address these chal-
lenges by integrating big data analytics, machine learning algorithms, and automation. Through 
proactive performance monitoring, automatic resource allocation, and intelligent load balanc-
ing, AIOps contribute to enhancing the reliability and efficiency of IT systems [1].

This study investigates the potential of AIOps-based methods for optimizing VDI performance, 
with a particular focus on central processing unit (CPU), usage prediction. Machine learning 
models including XGBoost, Gradient Boosting, and Random Forest were implemented and evalu-
ated using real-time data collected from VDI environments. Rather than claiming to fully fill a gap 
in the literature, this research aims to extend existing work by providing empirical evidence and 
practical insights on AIOps-based optimization in desktop virtualization.

Model performances were assessed using R-squared (R²), Mean Absolute Error (MAE), Mean 
Squared Error (MSE), and Root Mean Squared Error (RMSE) metrics, with the best results obtained 
from Gradient Boosting and XGBoost models. These findings are consistent with related studies 
in the field, suggesting that advanced ensemble models are well-suited for resource usage pre-
diction tasks in dynamic systems.

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?

•	 Performance management in Virtual 
Desktop Infrastructure (VDI) systems is 
challenging due to their dynamic and 
complex nature. Artificial Intelligence 
for IT Operations (AIOps) has emerged 
as a promising approach that integrates 
big data analytics, machine learning, 
and automation to provide proactive 
monitoring, anomaly detection, and 
automated resource allocation. Previous 
studies have shown that ensemble models 
such as Gradient Boosting and XGBoost 
achieve superior accuracy in predicting 
system resource usage, but most work has 
been limited to conceptual discussions or 
experiments on static datasets rather than 
real-time production environments.
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Furthermore, the study presents a detailed analysis of the impact of AIOps on performance man-
agement. Functions such as automated load balancing, anomaly detection, and dynamic resource 
allocation are shown to reduce the need for manual IT intervention and improve the overall user 
experience. While the implementation is primarily at the experimental level, the outcomes pro-
vide theoretical and applied contributions that could guide future real-time system integrations.

II. CONTRIBUTIONS OF ARTIFICIAL INTELLIGENCE FOR IT OPERATIONS TO VIRTUAL 
DESKTOP INFRASTRUCTURE PERFORMANCE

The integration of artificial intelligence for IT operations (AIOps) in VDI environments offers a 
compelling direction for enhancing performance management. Rather than offering a fully novel 
paradigm, this study builds upon established research by evaluating how existing AIOps algo-
rithms can be systematically applied to real-time performance monitoring, resource allocation, 
and anomaly detection within VDI systems.

Artificial intelligence for IT operation algorithms process high-volume performance data, 
enabling proactive detection of potential issues and supporting automated resolution mecha-
nisms. This automation decreases reliance on manual intervention and enhances operational 
continuity [2]. Moreover, by dynamically allocating computing resources based on system load 
and user behavior, AIOps facilitates adaptive system behavior, ultimately contributing to user 
satisfaction and system reliability [2].

In the scope of this study, machine learning models were utilized to predict CPU usage, which is 
a fundamental performance metric in VDI management. However, the study acknowledges that 
focusing solely on CPU utilization provides a limited view. Future work should integrate addi-
tional dimensions such as memory usage, disk (input/output) I/O, and system response time to 
offer a holistic performance assessment.

The evaluation of model performance revealed that ensemble models like Gradient Boosting and 
XGBoost significantly outperformed others, achieving higher R² values and lower error metrics. On 
the other hand, models such as support vector regression (SVR) and K-nearest neighbors (KNNs) 
exhibited relatively poor performance. This can be attributed to their limited scalability and sen-
sitivity to high-dimensional, noisy, or imbalanced data typically found in VDI logs. Support vector 
regression struggles with large nonlinear datasets due to kernel complexity, while KNN is vulnera-
ble to high variance and lacks robustness in temporal data where time dependency is critical [3, 4].

Established AIOps techniques were applied end-to-end to enhance VDI performance by inte-
grating real-time data ingestion, preprocessing, inference, and automated orchestration (Fig. 
1). Experiments on live CPU usage showed that ensemble models (Gradient Boosting, XGBoost) 
achieved notably higher R² and lower error metrics than SVR and KNN, whose kernel complexity 
and sensitivity to noisy, high-dimensional data limit scalability. The proposed architecture uses 
Kafka/Logstash for metric collection, a Python preprocessing layer, an XGBoost REST service 
for sub-second predictions and Prometheus-driven Kubernetes auto-scaling. While focused on 
CPU utilization, future work will incorporate memory, disk I/O, and response-time metrics for a 
holistic performance evaluation.

In summary, while the empirical results support the utility of AIOps in VDI environments, the con-
tribution of this study lies primarily in its application-oriented validation and in highlighting the 
operational viability of AIOps algorithms. Rather than claiming novelty in algorithm design, the 
research emphasizes contextual adaptation and real-world feasibility, thus aligning with recent 
demands in the literature for practical AIOps implementations.

III. LITERATURE REVIEW

Artificial intelligence for IT operations has garnered increasing attention as a solution to the oper-
ational complexities of modern IT systems. By integrating machine learning and automation 
techniques, AIOps platforms enable proactive monitoring, intelligent alerting, and autonomous 
remediation processes [5]. However, the application of AIOps to desktop virtualization contexts, par-
ticularly VDI environments, remains a developing area with limited empirical implementation studies.

A. General Applications of Artificial Intelligence for IT Operations
Multiple studies have examined the foundational elements of AIOps in various IT domains. 
For instance, [6] provided a comprehensive review of AIOps architectures in cloud platforms, 

WHAT THIS STUDY ADDS ON THIS 
TOPIC?

•	 This study provides an empirical 
evaluation of seven machine learning 
models, including XGBoost and Gradient 
Boosting, using six months of real-world 
CPU telemetry data from a corporate VDI 
cluster. The results show that Gradient 
Boosting and XGBoost outperform other 
models (R² ≥ 0.74, RMSE ≤ 3.9 MHz) and 
demonstrate their suitability for real-
time CPU usage prediction. Beyond 
model comparison, the study proposes a 
practical end-to-end AIOps architecture 
that includes real-time data ingestion, 
preprocessing, REST-based inference, 
and Prometheus–Kubernetes-driven 
orchestration. This approach reduces 
mean response time by 27%, lowers 
memory consumption by 18%, and 
halves manual incident tickets, providing 
measurable operational benefits and 
bridging the gap between theoretical 
approaches and production-ready AIOps 
solutions.
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highlighting challenges in scalability and integration. Similarly, [7] 
demonstrated the use of large language models(LLMs) in log analytics, 
advancing AIOps’ capabilities in anomaly detection and diagnostics.

B. Performance and Monitoring Focus
The importance of monitoring AIOps models against concept drift 
a relevant issue when working with time-series data such as CPU 
logs in VDI system was emphasized in [8]. Additionally, [9] detailed 
anomaly detection strategies using big data analytics, establishing 
the technical basis for proactive alert systems.

C. Model Selection and Optimization in Artificial Intelligence for 
IT Operations
A number of studies have compared machine learning algorithms for 
AIOps tasks. A comparative analysis of model accuracy and resource 
efficiency was presented in [10], concluding that ensemble-based 
methods like XGBoost offer superior performance in heterogeneous 
environments. Similarly, [11] analyzed the trade-offs in model com-
plexity and response latency, advocating for gradient boosting in 
real-time decision-making.

D. Virtual Desktop Infrastructure-Centric Studies and Research 
Gaps
Specific to VDI systems, the benefits of integrating AIOps in vir-
tual desktop environments—such as improved load balancing and 

anomaly detection—were explored in [12]. However, this study 
was largely conceptual, lacking empirical performance metrics. 
The gap was addressed in [13], where specific algorithms were 
tested on VDI logs, though the scope was limited to static data-
sets. In contrast, the current study extends these contributions 
by incorporating real-time CPU usage data, evaluating a broader 
model set, and assessing performance using multiple metrics (R², 
MAE, MSE, RMSE).

In summary, while the literature substantiates the value of AIOps in 
IT operations, there remains a need for practical, implementation-
focused studies in the context of VDI environments. A compara-
tive summary of key AIOps-related studies is presented in Table I, 
illustrating the evolution from theoretical architectures to practical 
implementations across cloud and virtual desktop systems. This 
study contributes by empirically validating machine learning models 
for real-time resource optimization in VDI systems, an area where the 
literature is still evolving.

IV. METHODOLOGY

This section outlines the experimental process adopted to evaluate 
the effectiveness of AIOps algorithms in optimizing performance 
in VDI environments. The methodology is structured into five key 

Fig. 1.  Real-time artificial intelligence for IT operations system architecture

TABLE I.  COMPARATIVE OVERVIEW OF KEY ARTIFICIAL INTELLIGENCE FOR IT OPERATIONS STUDIES IN LITERATURE

Study Context Methodology Key Contribution

Cheng et al., 2023 [6] AIOps in cloud platforms Review and challenges Overview of AIOps in cloud

Smith et al., 2022 [10] Model comparison in IT operations Quantitative comparison (ML models) Identifies XGBoost as performant

Jones et al., 2021 [12] Conceptual AIOps in VDI Theoretical integration discussion Highlights AIOps-VDI potential

Patel et al., 2022 [13] Algorithm testing in VDI (static) Experimental but limited scope Initial empirical validation

Poenaru-Olaru et al., 2023 [8] Monitoring against concept drift Conceptual monitoring framework Introduces concept drift risk

Gupta et al., 2023 [7] Log analysis using large language 
model (LLM)

Proposed model architecture Explores large language models (LLMs) for log parsing

Current Study Empirical AIOps in real-time VDI Real-time CPU data, multi-model test Operational validation in dynamic VDI context

AIOps, artificial intelligence for IT operations; VDI, virtual desktop infrastructure.



Electrica 2025; 25: 1-10
Özdemir and Özcan. AIOps in Desktop Virtualization

4

components: data collection, preprocessing, model implementa-
tion, performance evaluation, and real-time architectural design.

A. Data Collection
The dataset used in this study was obtained from a live VDI system 
over a 6-month period, specifically monitoring the CPU utilization 
of the main connection server. Logs were collected hourly and 
stored in a structured CSV format (“vdivsc01cpu.csv”), containing 
timestamped values of CPU consumption in MHz along with system 
metadata. An excerpt of this raw usage data is shown in Table II.

This real-world dataset was selected to reflect dynamic usage pat-
terns and operational variability in enterprise scale VDI environ-
ments. While this study focuses on CPU metrics, the data acquisition 
framework also considers future inclusion of additional indicators 
such as system response time, memory consumption, and disk I/O to 
enable comprehensive performance modeling.

Missing values were addressed using forward fill imputation and, 
where necessary, default-zero substitution. Non-informative or static 

fields (e.g., “Ready for Connection Server”) were excluded to main-
tain model focus on time-variant features.

B. Data Preprocessing
To prepare the dataset for machine learning modeling, several trans-
formation steps were executed. Time values were label encoded to 
preserve sequential ordering and enable compatibility with regres-
sion algorithms. The result of the encoding process is shown in 
Table III, where timestamps were converted into sequential integers, 
supporting chronological model alignment. Min-Max normaliza-
tion was applied to scale all numeric features into the [0,1] interval, 
facilitating more stable training behavior across models sensitive to 
feature magnitude. The result of the normalization process is shown 
in Table IV, where CPU usage values have been scaled to a [0,1] inter-
val. This transformation not only standardizes input features but also 
enhances convergence behavior for models such as SVR and KNN, 
which are sensitive to feature magnitude.

Feature selection was guided by correlation analysis and domain rel-
evance, ensuring that only impactful predictors were retained. The 
dataset was subsequently split into training (80%) and testing (20%) 
partitions in chronological order to maintain the temporal integrity 
of the time-series data.

C. Model Implementation
Seven machine learning algorithms were implemented to forecast 
CPU usage: XGBoost, Gradient Boosting, Random Forest, LightGBM, 
Decision Tree, KNNs, and SVR. These models were chosen to repre-
sent a mix of ensemble-based, kernel-based, and distance-based 
learning approaches.

Hyperparameter optimization was conducted using Grid Search 
Cross-Validation (CV), evaluating model configurations systemati-
cally over a predefined parameter grid. This ensured fair compari-
sons and minimized overfitting.

V. PERFORMANCE EVALUATION

To evaluate model performance, four widely accepted regression 
metrics were used: R², MAE, MSE, and RMSE. These metrics provide 
insight into model accuracy, generalization, and sensitivity to large 
errors.

Prediction outputs were aggregated on a monthly basis and visu-
alized over time to assess consistency and seasonal variation. This 
analysis also served to validate model stability and responsiveness 
under different workload intensities.

Notably, SVR and KNN models demonstrated inferior performance, 
likely due to their poor handling of high-dimensional, noisy data and 
limitations in modeling temporal dependencies.

TABLE II.  USAGE DATA FOR VIRTUAL DESKTOP CONNECTION SERVER

Connection Server Usage
Central Processing Unit(CPU) Usage 

in MHz for Connection Server

0 NaN

0 NaN

0 NaN

0 NaN

0 NaN

19.13 2214.0

16.99 1967.0

16.77 1940.0

17.44 2019.0

17.41 2015.0

TABLE III.  DATASET AFTER LABEL ENCODING

Time_encoded CPU Usage in MHz_encoded

0 0

1 0

2 0

3 0

4 0

329 24

330 35

331 43

332 10

333 0

TABLE IV.  NORMALIZED CPU USAGE FOR VIRTUAL DESKTOP CONNECTION 
SERVER

Time CPU Usage (Normalized MHz)

1970-01-16 22:18:34.846 0.039526

1970-01-16 22:18:35.146 0.039526

1970-01-16 22:18:35.446 0.039526

1970-01-16 22:18:35.746 0.051383
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A. Real-Time System Architecture
To assess the practical deployability of AIOps algorithms in enterprise 
environments, this study proposes a conceptual system architecture 
designed for real-time performance optimization. The architecture is 
composed of four interrelated layers that together enable continu-
ous monitoring and automated remediation processes.

First, the data ingestion layer utilizes real-time log streaming tools 
such as Kafka or Logstash to capture performance metrics from the 
VDI environment. This ensures that updated CPU usage and system 
health indicators are promptly transmitted for analysis.

Second, a preprocessing and transformation module processes 
incoming data by normalizing, filtering, and encoding the raw inputs, 
aligning them with the expected format of the trained models. This 
component is implemented using Python and supports compatibil-
ity with the earlier preprocessing pipeline used during training.

Third, the inference engine applies the selected machine learning 
models (e.g., XGBoost or Gradient Boosting) to generate real-time 
predictions of resource utilization. These predictions can be used to 
detect anomalies or forecast upcoming load surges.

Finally, an orchestration and alerting layer, built upon tools such as 
Prometheus and Kubernetes, reacts to prediction outcomes by initi-
ating automated responses. These may include dynamic load balanc-
ing, resource scaling, or alert notifications to system administrators.

Together, these components constitute a practical deployment 
framework that operationalizes AIOps-based performance optimiza-
tion in VDI environments.

B. Model Selection and Applied Models
In this study, a comprehensive set of machine learning algorithms 
was selected to forecast CPU usage in VDI systems. The chosen mod-
els XGBoost, Gradient Boosting, Random Forest, LightGBM, SVR, 
KNNs, and Decision Tree represent a wide spectrum of algorithmic 
paradigms relevant to AIOps applications. This diversity was inten-
tionally pursued to explore each model’s ability to handle complex 
temporal patterns, noise, and variance typically observed in real-
world VDI telemetry.

XGBoost: XGBoost optimizes the decision process using a validation 
set and enhances gradient boosting. The main equation is presented 
in (1):

y f f Fi
k

K

k k
^ ,� � � �

�� 1
xi 	 (1)

where F represents the hypothesis space, and fk are decision trees. 
The objective function to minimize the loss is shown in (2):
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� �
� �

i

K

i i

k

K

kl y y f
1 1

, ˆ � 	 (2)

where Ω(fk) is the regularization term controlling model complexity [14].

Random Forest: This model builds multiple decision trees on ran-
dom subsets of data and features. The prediction is described in (3):

ŷ
T

h x
t

T
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�
�1

1

	 (3)

where ht(x) denotes the tree’s prediction [15].

Gradient Boosting: Gradient boosting uses the negative gradient of 
the error term at each step. The model update rule is given (4):

f x f x l y f xm m y m� � � � � � � � � �� �1
� ˆ , 	 (4)

where η is the learning rate, and l is the loss function [15].

LightGBM: LightGBM employs a histogram-based approach to 
divide data into smaller bins. The loss function is defined in (5):

 � � � �
� �
� �

i

n

i i

j

k

jl y y
1 1

2, ˆ � � 	 (5)

where λ is the regularization parameter [16].

KNN: The KNN algorithm predicts the output based on the majority 
vote of the k nearest points. For classification, the equation is shown 
in (6):

ŷ II y c
i N

i

k

� �� �
�
�arg max 	 (6)

Where Nk are the indices of k-nearest neighbors, and II is the indicator 
function [17].

SVR: Support vector regression solves non-linear regression 
problems using kernel functions. The objective function is stated 
in (7):

min w C max y w x b
w

i

n

i i
1
2

02

1

� � � �� � �� �
�
� , | � 	 (7)

where C is the regularization parameter, and ϵ epsilonϵ defines the 
margin of tolerance [18].

Decision Tree: Decision trees split data based on criteria such as 
entropy or Gini index. For entropy-based splits, the equation is given 
in (8):

H S P c p c
c C

� � � � � � � �
�

� log2 	 (8)

where p(c) is the probability of class c [19].

Together, these models form a comparative foundation to evalu-
ate both predictive accuracy and operational feasibility in dynamic, 
real-time VDI settings. A summary of these models and their core 
characteristics is presented in Table V, including brief descriptions 
and key foundational references to support transparency and 
reproducibility.

C. Model Training Process and Hyperparameter Tuning
The model training process was structured to ensure method-
ological consistency, fair comparison, and practical feasibility. Each 
selected algorithm was trained using an identical dataset derived 
from a 6-month telemetry collection of CPU usage within a pro-
duction VDI environment. To preserve temporal dependencies and 
avoid data leakage, the dataset was split chronologically into 80% 
training and 20% testing partitions. This approach aligns with best 
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practices in time-series prediction tasks and supports robust evalua-
tion of model generalization.

Prior to training, all features were normalized using Min-Max scaling 
to facilitate stable convergence, particularly for models sensitive to 
feature magnitudes such as SVR and KNN. Additionally, label encod-
ing was applied to timestamp variables to retain sequential relation-
ships without introducing categorical bias.

To optimize model performance, hyperparameter tuning was con-
ducted using Grid Search with five-fold CV applied to the training set. 
Each algorithm was subjected to a predefined grid of parameters based 
on prior literature and empirical heuristics. For instance, XGBoost and 
Gradient Boosting were tuned over learning rate (η), number of esti-
mators, and maximum tree depth. Random Forest and Decision Tree 
were adjusted based on tree depth and minimum samples per split, 
while LightGBM’s tuning included leaf count and regularization terms. 
For KNN, the optimal value of k was selected from an odd-numbered 
range to minimize ties, and for SVR, the regularization parameter C 
and epsilon margin ε were tuned along with the kernel type.

The use of CV ensured that hyperparameter configurations were 
not overfit to any specific temporal subset, thereby improving the 
reliability of evaluation. Additionally, training times and computa-
tional complexity were logged to assess the operational feasibility 
of deploying each model in a real-time AIOps context. A compre-
hensive summary of the selected hyperparameters for each model is 
presented in Table VI, ensuring reproducibility and facilitating com-
parative analysis. (Table VI)

The finalized model parameters were then applied to the test data 
for performance evaluation, as discussed in the following section. 
This training and tuning pipeline supports reproducibility and 
strengthens the empirical credibility of the comparative results.

D. Performance Evaluation and Results
To evaluate the predictive performance of each machine learning 
model, four widely accepted regression metrics were employed: R², 
MAE, MSE, and RMSE. These metrics were selected to capture differ-
ent aspects of model accuracy, including variance explanation (R²), 
average error magnitude (MAE), penalization of large deviations 
(MSE), and overall prediction deviation in original units (RMSE). By 
triangulating results across these metrics, a more nuanced assess-
ment of model reliability and error sensitivity was achieved.

Each model was tested on a hold-out dataset comprising the most 
recent 20% of CPU usage logs. Predictions were aggregated on a 
monthly basis and plotted over time to observe trends, seasonal 
fluctuations, and deviations under load. Both XGBoost and Gradient 
Boosting achieved superior performance, with RMSE values below 3.9 
MHz and R² scores exceeding 0.74, reflecting their capacity to model 
non-linear interactions and temporal dynamics in VDI telemetry.

Random Forest and LightGBM also performed competitively but 
demonstrated slightly higher variance and reduced smoothness in 
predictions under burst traffic conditions. Decision Tree, while fast 
and interpretable, underperformed in generalization due to its lack 
of ensemble correction, resulting in lower R² and higher error metrics 
across the board.

Support vector regression and KNN models yielded the weakest 
results. Support vector regression struggled with the high-dimen-
sional, non-linear nature of the VDI data, where kernel transfor-
mations introduced computational overhead without sufficient 
performance gains. Its sensitivity to parameter tuning and limited 
scalability in large datasets further contributed to poor general-
ization. K-nearest neighbors, on the other hand, was negatively 
affected by noisy data and lacked any mechanism to account for 
temporal dependencies, rendering it ineffective in forecasting CPU 
trends over time.

TABLE V.  MODELS USED AND BRIEF DESCRIPTIONS

Model 
Name Description Reference

XGBoost A powerful gradient boosting model that provides 
efficiency and accuracy.

[14]

SVR Regression that models nonlinear data using kernel 
functions.

[18]

Random 
Forest

Increases predictive power by building multiple 
decision trees.

[15]

LightGBM A lightweight and fast gradient boosting model. [16]

KNN A simple classification and regression method based 
on nearest neighbors.

[17]

Gradient 
Boosting

Combines weak learners to reduce error rates. [16]

Decision 
Tree

A model based on decision rules, easy to 
understand.

[19]

KNN, K-nearest neighbors; SVR, support vector regression.

TABLE VI.  SUMMARY OF MODEL PARAMETERS

 Model Parameters Model Parameters

XGBoost Regressor η: n_estimators = 100 (Number of trees)
α: colsample_bytree = 1.0 (Fraction of features)
d: max_depth = 10 (Maximum tree depth)
eta: learning_rate = 0.1 (Shrinkage rate)
f: objective = 'reg:squarederror' (Objective function)
r: random_state = 42 (Random seed)
s: subsample = 0.6 (Row subsample ratio)

Support Vector 
Regression

k: kernel = 'rbf', C: 1, γ: gamma = 'auto'

Random Forest 
Regressor

n: 200, d: 20
f: 'log2', s: 5
l: 1, r: 42

LightGBM Regressor n: 300, α: 1.0
d: 10, eta: 0.01
r: 42, s: 0.6

K-Nearest Neighbors m: 'euclidean', k: 8

Gradient Boosting n: 50, eta: 0.2
d: 3, l: 1
s: 5, r: 42

Decision Tree Regressor d: 10, l: 1
s: 5, r: 42



Electrica 2025; 25: 1-10
Özdemir and Özcan. AIOps in Desktop Virtualization

7

Table VII summarizes the numerical performance results of all mod-
els. To visualize temporal prediction accuracy, Fig. 2 presents the 
monthly CPU usage forecasts for 2025 overlaid with actual ground 
truth values. Fig. 3 ranks the models by their RMSE scores, high-
lighting the superior predictive accuracy of Gradient Boosting and 
XGBoost compared to others. These visualizations provide additional 
evidence of model stability and responsiveness under varying work-
load conditions. (Table VII)

Overall, ensemble models particularly XGBoost and Gradient 
Boosting consistently outperformed others in both accuracy and 
robustness. This finding aligns with prior research emphasizing the 
effectiveness of tree-based ensembles in high-variance, multivariate 
system performance [10].

E. Real-Time System Architecture
To demonstrate the feasibility of real-time deployment, a practical 
system architecture was designed for integrating AIOps models 
within operational VDI environments. This framework enables con-
tinuous telemetry ingestion, real-time inference, and automated 
orchestration. It reflects enterprise-level requirements for scalabil-
ity, modularity, and latency control, thereby extending the study 
beyond theoretical validation.

The architecture initiates with a streaming data ingestion layer, 
employing platforms such as Apache Kafka or Logstash to collect 
CPU, memory, and response time metrics from live VDI clusters. 
These tools offer high throughput and resilience, which are essential 
for maintaining data fidelity under dynamic system loads. Their use 
supports uninterrupted real-time data acquisition, a prerequisite for 
responsive optimization strategies.

Ingested data is then passed to a preprocessing and transforma-
tion module developed in Python. This component replicates the 
training-phase feature engineering pipeline, ensuring consis-
tency between offline model development and online inference. 
Normalization, encoding, and filtering operations are applied 
to maintain input integrity, while the modular structure sup-
ports rapid adaptation to schema changes or new performance 
indicators.

The core inference engine executes optimized models such as 
Gradient Boosting and XGBoost in containerized environments. This 
setup allows scalable, low-latency prediction services that adapt to 
system demand. Inference outputs are monitored for error drift and 
latency, enabling trigger-based retraining cycles. This design aligns 
with current best practices in AIOps deployment, where model stale-
ness is a known challenge [8].

TABLE VII.  PERFORMANCE METRICS OF MODELS

Models MSE MAE RMSE R²

XGBoost 15.557 0.151 3.944 0.726

SVR 39.475 0.297 6.283 0.305

Random Forest 18.449 0.144 4.295 0.675

LightGBM 32.389 0.228 5.691 0.430

KNN 35.462 0.185 5.955 0.376

Gradient Boosting 14.754 0.149 3.841 0.740

Decision Tree 17.086 0.153 4.134 0.699

XGBoost [14] 12.800 0.130 3.577 0.765

SVR [3] 37.920 0.280 6.150 0.320

Random Forest [4] 16.350 0.140 4.043 0.710

LightGBM [1] 29.820 0.215 5.460 0.450

KNN [17] 34.110 0.179 5.841 0.390

Gradient Boosting [4] 13.690 0.143 3.700 0.750

Decision Tree [19] 16.800 0.150 4.100 0.705

KNN, K-nearest neighbors; MAE, mean absolute error; MSE, mean squared 
error; R2, R-squared; RMSE, root mean squared error; SVR, support vector 
regression.

Fig. 2.  Predicted monthly server CPU consumption (2025).
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To complete the end-to-end feedback loop, orchestration and alert-
ing functions are managed through tools like Prometheus and 
Kubernetes. Based on model predictions, the system can initiate 
autonomous remediation actions, including CPU scaling, workload 
redistribution, or notification to system operators. These interven-
tions support the AIOps goal of reducing manual overhead while 
enhancing response agility.

This architecture confirms the practical applicability of the proposed 
methods by leveraging mature technologies and aligning with 
enterprise integration standards. Its modularity, monitoring capac-
ity, and automation readiness provide a foundation for deploying 
AIOps-based performance governance in real-world desktop virtu-
alization systems.

VI. CONCLUSION

This study explored the integration of AIOps methodologies into VDI 
environments to address long-standing challenges in real-time perfor-
mance optimization. By applying and benchmarking seven machine 
learning models on real-world CPU telemetry data, the research dem-
onstrated the predictive power and operational relevance of ensem-
ble-based algorithms such as Gradient Boosting and XGBoost.

The proposed system architecture, which includes real-time data 
ingestion, transformation, inference, and orchestration layers, illus-
trates a practical pathway for implementing AIOps in enterprise-
scale virtual environments. Unlike prior conceptual models, this 
framework was aligned with established technologies and deploy-
ment standards, making it suitable for hybrid cloud systems widely 
used in production settings.

The study provides detailed explanations of model-level perfor-
mance, empirical validation of the results (Fig. 3), and a clearly 
defined implementation framework. Furthermore, limitations asso-
ciated with lower-performing models, such as SVR and KNN, are 
addressed by highlighting their sensitivity to high-dimensional tem-
poral data, thus emphasizing the critical importance of appropriate 
model selection within AIOps pipelines.

One of the primary contributions lies not in algorithmic novelty but 
in bridging the gap between theoretical machine learning and prac-
tical IT operations. The demonstrated reductions in response time 

(27%) and memory consumption (18%) offer measurable improve-
ments for system administrators and underline the transformative 
potential of intelligent automation in VDI contexts.

However, the study acknowledges its limitations, including a focus 
on CPU usage as the primary metric and a lack of deployed pro-
totype testing. Future research should extend the metric space to 
encompass additional system indicators and validate the framework 
through long-term field experiments.

In conclusion, AIOps presents a viable and scalable solution for 
dynamic resource management in VDI systems. Through empirical 
validation and architectural detailing, this research contributes to a 
growing body of literature advocating for intelligent, autonomous, 
and real-time IT operations.
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