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ABSTRACT

With the rapid development of new power systems and global energy transformation, the comprehensive 
scheduling difficulty of large-scale power systems continues to increase. The research aims to design a 
comprehensive scheduling model to optimize the balance between energy supply and demand, efficiently 
utilizing electricity. This study establishes an energy control hub and performs random fuzzy power flow 
calculations. The alternating direction multiplier algorithm is used for regional decentralized calculation in three-
layer scheduling programming. Then, a source-grid-load-storage integrated scheduling model based on the 
alternating direction multiplier algorithm is designed. According to the verification results, the designed model 
had the lowest abandoned wind and solar rates, which were 7.4% and 2.6%, respectively. During peak shaving 
periods, the frequency remained stable at around 49.72 Hz, and the demand response at the load side helped 
reduce frequency drops. The overall cost was 11.7% lower than that of the large-scale power system scheduling 
model based on Benders. The results indicate that the scheduling model designed for large-scale power systems 
can flexibly and efficiently integrate source-grid-load-storage scheduling, achieving efficient energy utilization 
and supply-demand balance. The research designs a new solution for the efficient and flexible operation of large-
scale power systems.
Index Terms–ADMM, electricity, distributed, power flow, source-grid-load-storage

I. INTRODUCTION

With the widespread access to distributed new energy and the rapid growth of electricity demand, 
power system scheduling is becoming increasingly difficult in ensuring the efficient and flexible 
operation of modern power systems [1]. The access to distributed power sources is also affected 
by issues such as insufficient grid regulation capacity and large voltage fluctuations. The high 
penetration rate of distributed power sources exacerbates the random fluctuations on the gen-
eration side, increases issues such as overvoltage and power reversal in the distribution network, 
and disrupts the planning and operation mode of traditional power grids. Energy hubs can effec-
tively balance the volatility and uncertainty of distributed power sources. For example, as a part 
of the energy hub, microgrids can coordinate and control distributed power sources, energy stor-
age devices, and loads. Therefore, the research aims to design an integrated scheduling model 
that comprehensively considers power generation, transmission, consumption, and energy stor-
age. Through vertical regulation from generation to consumption and horizontal scheduling 
between regions and equipment, the power system can operate with high quality and stability 
[2]. The power system scheduling method based on deep learning algorithms can achieve multi-
objective economic scheduling and minimize regional economic costs and pollution emissions, 
but this method does not consider the energy reserve situation in large-scale power generation 
[3]. The energy sources, power grids, electricity loads, and energy storage systems in the power 
system are organically integrated to form a comprehensive energy system, optimize the balance 
between energy supply and demand, and achieve efficient energy utilization.

Fuzzy Theory (FT) can handle the fuzziness of problems, which makes it more effective in dealing 
with complex systems and uncertainty problems. In addition, it has the advantages of simple 

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?

•	 Energy hubs are crucial for achieving 
efficient energy utilization, supply-
demand balance, and integrated 
scheduling.

•	 Random fuzzy theory can be used to deal 
with the uncertainty and fuzziness of new 
energy output.

•	 Use different scheduling models to handle 
the complex scheduling of large-scale 
power systems.

WHAT THIS STUDY ADDS ON THIS 
TOPIC?

•	 By using the random fuzzy power flow 
algorithm, research can more accurately 
handle the uncertainty and fuzziness of 
new energy output, thereby improving 
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design and wide applicability [4]. The alternating direction multiplier (ADMM) algorithm is widely 
used in the field of optimization. The ADMM introduces an augmented Lagrangian function to 
transform constrained problems into unconstrained problems, simplifying the solution process 
of constrained optimization problems. It has high computational efficiency and distributed opti-
mization [5]. Many researchers have conducted related research on the source-grid-load-storage 
integrated scheduling, FT, ADMM, and large-scale power system scheduling.

Gao et al. proposed a hierarchical network control architecture to address the difficult control 
of distributed new energy grid connections. The control architecture involved three layers, 
including the energy management layer, bus control layer, and inverter control layer. The results 
indicated that the control method had flexible control capabilities in the simulation testing of 
PSCAD/EMTDC [6]. To solve the instability in large-scale power systems caused by the continuous 
increase of distributed power sources, Wang et al. developed a MMG (Multi-Microgrid) control 
strategy to avoid passive transition from grid-connected operation to islanded operation. The 
research method was effective [7]. Echreshavi et al. proposed a fuzzy static output feedback con-
trol scheme to address the information packet loss, time delay, and execution failure in the TSFM 
control model. The proposed control method reduced fault problems by 37.2%. This method 
solved the information packet loss, time delay, and execution failure in the control process [8]. 
To address the insufficient landslide data for accurate landslide risk assessment, Shano et  al. 
designed a landslide risk assessment method based on hazardous pixels and fuzzy set theory. 
The results showed that the method divided the research area into 6.86% of very high-risk areas, 
21.15% of high-risk areas, 43.26% of medium-risk areas, 10.97% of low-risk areas, and 17.76% of 
extremely low-risk areas [9]. Bai et al. designed a distributed control method based on ADMM 
to address the stable regulation of Wind Turbines (WTs) in wind farms. This method achieved 
stable power output inside the WT, and the voltage stabilization performance was improved by 
12.6% [10]. To enhance the optimization performance of optimization algorithms in deep learn-
ing, Na proposed a gradient learning rate adaptive hierarchical algorithm based on ADMM. The 
results indicated that the research algorithm outperformed other algorithms in image classifica-
tion tasks on the benchmark dataset [11]. Shi et al. developed a power resource dynamic pro-
gramming strategy based on FRDDP (Fast Robust Dual Dynamic Programming) to address the 
economic dispatch difficulties caused by the integration of distributed energy into the grid. The 
results showed that the research algorithm reduced the operating cost by 8.67% and exhibited 
good scalability in large-scale power systems [12]. To solve the large-scale power outages caused 
by substation shutdowns, Jiang et al. developed a three-stage optimization algorithm for load 
transfer in distribution systems. Case analysis showed that the algorithm ensured the reliability of 
important loads and safe operation, while also improving the load recovery rate and enhancing 

TABLE I.  COMPARISON BETWEEN THE LATEST RESEARCH RESULTS AND RESEARCH CONTENT

Research Contents Reference Research Method The Innovation of This Article

Distributed new energy 
grid connection control

Gao et al [6] Hierarchical network control architecture This article combines random fuzzy theory and ADMM to achieve 
integrated scheduling of multi-regional source-grid-load-storage

Distributed new energy 
grid connection control

Wang et al [7] Control method based on MMG This article proposes a three-layer scheduling model based on ADMM 
to optimize scheduling efficiency

Fuzzy control method Echreshavi et al [8] Fuzzy static output feedback control This article uses random fuzzy power flow calculation to improve the 
reliability of scheduling decisions

Landslide risk assessment Shano et al [9] Risk assessment based on fuzzy set 
theory

This article does not cover

Wind turbine control Bai et al [10] Distributed control based on ADMM This article applies ADMM to the integrated scheduling of source-grid-
load-storage in large-scale power systems

Optimization algorithm 
improvement

Na [11] Gradient learning rate adaptive algorithm 
based on ADMM

This article uses ADMM for regional decentralized computing to 
reduce computational cost

Economic dispatch of 
power system

Shi et al [12] Dynamic programming algorithm based 
on FRDDP

This article combines IBDR and ADMM to optimize scheduling cost

Load transmission of 
power distribution system

Jiang et al [13] Three stage optimization algorithm This article does not cover

ADMM, alternating direction multiplier; IBDR, incentive-based demand response. 

the reliability and accuracy of scheduling 
decisions.

•	 By using alternating direction multiplier–
based optimization methods, research 
can determine the optimal scheduling 
strategy, significantly reduce system costs, 
and improve the consumption capacity of 
new energy.

•	 Through the three-layer scheduling 
programming method, flexible scheduling 
of multi-regional power systems 
has been studied and implemented, 
optimizing supply and demand balance 
and improving the overall operational 
efficiency of the system.
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the reliability of the power supply in the power system [13]. The sum-
mary of the above content and its comparison with the research con-
tent are shown in Table 1.

Based on the above content, it can be concluded that current 
research mainly focuses on the application technology of high-
proportion renewable energy grid connection. However, the main 
research problem is the lack of global collaboration capability and 
only optimizing a single site, which makes it difficult to respond 
in real time to changes in distributed resources. Therefore, the 
research first establishes random fuzzy models for photovoltaic, 
wind power, gas, electricity, and heat loads, as well as energy hub 
control models in the system. Then, the various energy flows in the 
power system are modeled, and a new flow calculation method is 
established. Finally, a large-scale integrated power system sched-
uling model based on ADMM is designed. The innovation of the 
research lies in the ADMM algorithm for regional decentralized 
computing, which transforms the linear three-layer programming 
algorithm into a conventional two-layer programming algorithm, 
achieving the integrated scheduling requirements of source-grid-
load-storage for the multi-regional, multi-power system under 
three-layer programming.

II. METHODS AND MATERIALS

The unstable output of new energy and the randomness of the elec-
tricity load end have led to difficulties in the integrated scheduling 
of multi-regional source-grid-load-storage in large-scale power sys-
tems. Therefore, the research establishes a control hub for source-
grid-load-storage integrated scheduling and uses stochastic FT to 
compute the power flow of each part. The ADMM is used for decen-
tralized computing of power system regions, which determines 
information exchange between regions, and improves computing 
efficiency, hoping to minimize the planning cost, operating cost, fre-
quency control cost, and fluctuation of large-scale power systems.

A. Design of Random Fuzzy Power Flow Algorithm Based on 
Semi-Invariant Method
To achieve source-grid-load-storage integrated scheduling in large-
scale power systems, an energy hub is established, which takes into 
account photovoltaic and wind power output, Electric Storage (ES), 

Power to Gas (P2G), WT, Combined Heat and Power (CHP), etc [14, 
15]. The energy hub structure is displayed in Fig. 1.

In Fig. 1, the energy hub is linked to renewable energy equipment, 
including photovoltaics and wind power, as well as the user’s load 
end. The power energy is transmitted through transformers in the 
middle, and the energy conversion between electrical and thermal 
rooms is completed through equipment such as CHP. For energy stor-
age, equipment such as ES, HS (Heat Storage), GS (Gas Storage), etc., 
are used to store electrical and thermal energy. During energy hub 
operation, the gas supply allocation factor for photovoltaic and wind 
power is vw,t. The distribution network and energy hub exchange 
power Pt

e~
 with random fuzzy values in a given time interval t . The 

allocation factor during this period is ve(t). The electricity injected 
into the electrical conversion device by the distribution network and 
new energy is v t P te e( ) ( )  and v t P tw w( ) ( ) , respectively. Therefore, the 
coupling effect between the output and input of the energy hub in 
the t  interval is shown in (1).
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In (1), Le(t), Lh(t), Lg(t) represent the output power of the electrical and 
thermal energy sources, respectively. The �e g�  shows the efficiency 
of converting electricity to gas. �g h�  and �g e�  are the efficiencies of 
gas-to-heat and gas-to-electricity conversion in energy conversion 
equipment, respectively. �r e�  is the efficiency of photovoltaics and 
WTs. When the energy hub considers energy storage in the source-
grid-load-storage integrated scheduling, the extended expression of 
the coupling relationship is displayed in (2) [16].
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Fig. 1.  Schematic diagram of energy hub structure.
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In (2), �h s�  and �e s�  represent the energy storage efficiency of HS and 
ES, respectively. P th ’( ) and P te ’( ) represent the thermal and electrical 
energy reserves at the beginning of the time period t . L th

� � � and L te
� � � 

signify the thermal and electrical energy reserves at the end of time 
period t. Hybrid power flow calculation can understand the voltage 
magnitude and phase angle of each node, and the power flow of each 
line. Through power flow calculation, the system state is quantita-
tively assessed and the intelligent improvement of the power system 
can be achieved [17]. After completing the mathematical modeling 
of the energy hub, the mixed power flow calculation for large-scale 
power systems is performed to provide a foundation for subsequent 
implementation of source-grid-load-storage integrated scheduling. 
The power of power nodes in the power system is shown in (3).
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In (3), U  signifies the voltage vector. Y represents the admittance 
matrix. Q and p are the reactive power and active power of the node, 
respectively. The energy consumption for gas compressors in large-
scale power systems is shown in (4).
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In (4), qfc represents the energy consumption power of the natural 
gas starting compressor. Ps is the energy consumption power of the 
motor-driven compressor. LHV  represents the low calorific value of 
natural gas. pout and pin are the pressures at the inlet and outlet of the 

compressor, respectively. γ  is the index of variability. Tg,in represents 
the temperature of the gas. zin represents the compression factor at 
the entrance. qin represents the inlet flow rate. In the electric thermal 
collaborative network of large-scale power systems, the heat load 
and heat source in a steady state are shown in (5).

�SP i p h i s i r iC L T T, , , ,� �� �	 (5)

In (5), Tr,i and Ts,i are the return water temperature and hot water 
temperature of hot node i. Lh,i signifies the node traffic. ΦSP i,  rep-
resents the thermal power of the node. The coupling of large-scale 
power systems is tight. The unified solution of power system flow 
ensures convergence, but it requires more computation and time. 
The decomposition solution method can decouple and solve inde-
pendent subsystems until they all converge. Therefore, the research 
introduces the decomposition solution method for power flow cal-
culation. The decomposition solution method is displayed in Fig. 2.

In Fig. 2, the decomposition solution method first decouples the 
energy hub, and then iteratively solves it in the electrical thermal 
network. Power flow mathematical models of each subsystem are 
established during the solving process. Finally, the mixed power flow 
of each subsystem is obtained by calculating the power flow math-
ematical model. The power flow calculation mathematical model in 
the decomposition solution method is shown in (6).
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Fig. 2.  Schematic diagram of decomposition solution method.
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With the increasing integration of distributed new energy into the 
grid, the input of new energy with unstable output introduces ambi-
guity. The randomness of variables in power flow calculation can 
be considered through (6), but fuzziness is not taken into account. 
Therefore, fuzzy power flow is used to replace the probability power 
flow calculation method in (6), and the incremental method is 
adopted to deal with the ambiguity caused by distributed energy 
and other factors. The expression for calculating the fuzzy incremen-
tal value using the incremental method is shown in (7).
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In (7), ∆Z  is the fuzzy increment of pipeline flow and branch 
active and reactive power. ∆ X  signifies the increment of voltage 
amplitude, phase angle, air pressure, and return water tempera-
ture matching. ∆W

~
 signifies the increment of matching the fuzzy 

expected value of injection power. wdi is the result of deterministic 
power flow calculation. W i

~
 is the fuzzy expected value of injected 

power for electrical, gas, and thermal nodes. The semi-invariant 
method is a commonly used algorithm for dealing with fuzziness 
and randomness in power systems. Based on semi-invariants to 
approximate probability distributions, it can reduce the compu-
tational cost of traditional convolution operations and enhance 
computational efficiency. Therefore, the calculation for solving the 
stochastic fuzzy power flow of large-scale power systems using the 
semi-invariant method is shown in (8).
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In (8), S0 and T0 signify sensitivity matrices, where 0  represents the 
reference operating point, and S J0 0

1� �  and T G J0 0 0
1� � . For the sum 

of independent random variables, their respective order cumulants 
can be obtained by simply adding up the corresponding order 
cumulants of each independent random variable. The semi-invariant 
method transforms complex convolution problems into easier-to-
handle arithmetic operations, thereby quickly obtaining the proba-
bility distribution of system state variables. The arithmetic operation 
is shown in (9).
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In (9), ∆X k( )  and ∆Z k( )  signify the k-order semi-invariants of ∆X  and 
∆Z , respectively. W

k~ ( )  signifies the k-order semi-invariant of the input 
variable w. The specific method of using the semi-invariant method 
to solve random fuzzy power flow is shown in Fig. 3.

In Fig. 3, firstly, all data in the large-scale power system is read to 
match the credible range of fuzzy parameters. Afterward, the mean 
of all possible distribution state variables is calculated, and the sen-
sitivity at the benchmark running time is represented in matrix form. 
Finally, the fuzzy confidence interval and fuzzy power flow distribu-
tion are obtained by simplifying the operation of semi-invariants. 
The fuzzy power flow results and energy utilization of ENERGY HUB 
are outputs.

B. Construction of Large-Scale Power System Source-Grid-Load-
Storage Integrated Scheduling Model Based on Incentive-Based 
Demand Response–Alternating Direction Multiplier
For the source-grid-load-storage integrated scheduling in the large-
scale power system, power sources, grids, and storage can achieve 
power balance through the adjustment of the power system’s own 

Fig. 3.  Method of solving stochastic fuzzy power flow using the semi-invariant method.
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equipment, but load-side scheduling can only respond and adjust from 
the user’s demand side. Therefore, the research introduces Incentive-
based Demand Response (IBDR) to reduce or transfer the load on the 
user side. The corresponding expression for IBDR is shown in (10).
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In (10), T is the time period of the scheduling cycle. Li(t) and L ti
’ ( ) sig-

nify the load before and after participating in IBDR, respectively [18, 
19]. P ti

LTDR( ) and P ti
LRDR( ) represent the load transfer amount and load 

reduction amount of node i  during the t  time period, respectively. To 
promote users’ response to the demand for load transfer and reduc-
tion in the power system, appropriate compensation should be pro-
vided to users. The compensation cost CIBDR is shown in (11).
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In (11), µ1 and µ2 are the unit compensation costs for load transfer 
and reduction. In large-scale power system scheduling, due to the 
higher flexibility of thermal power units and energy storage equip-
ment control, energy storage systems and thermal power units 
are used to undertake frequency regulation tasks. The Automatic 
Generation Control (AGC) of thermal power units is shown in (12).
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In (12), ∆f  represents the frequency deviation between regions. ∆PT  
represents the power deviation value of the connecting line. B  rep-
resents the frequency deviation coefficient [20, 21]. ACE represents 
the deviation that occurs in the control of the secondary frequency 
modulation area. ACEFFC, ACEFTC, and ACETBC represent three different 
control modes of AGC. The State of Charge (SOC) of the energy stor-
age system during frequency regulation is shown in (13).
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P k dt
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M
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	 (13)

In (13), EM signifies the total capacity of the energy storage system. 
P k( ) signifies the output power of the energy storage system at time 
k. SOC0 is the initial value of the SOC [22]. The structural diagram of the 
energy storage system in grid frequency regulation is shown in Fig. 4.

In Fig. 4, the regional load variation in the power system is input to 
the energy storage system. The energy storage system calculates the 
frequency deviation coefficient B, generates the AGC control signal 
β for the power grid through B, and adopts β to compute the output 
power of the secondary frequency regulation to achieve power grid 
frequency regulation [23, 24]. The two-layer programming method is 
commonly used for power system scheduling, which achieves opti-
mal programming through decision-making and parameter feed-
back of upper and lower layers. However, this method cannot meet 
the more complex scheduling requirements in large-scale power 
systems. Therefore, the research adopts a three-layer programming 
method to achieve complex scheduling requirements. The upper-
layer programming is to minimize the cost within the cycle of a large-
scale power system, and the objective function is displayed in (14).
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In (14), n  represents different regions of electricity. µGeni n,  is the unit 
investment cost of the generator set. µn

ID and µn
IL  are the unit plan-

ning costs for equipment, lines, and pipelines [25, 26]. I i nGen , , I yi n
lD
, ( ), 

and I yi n
IL
, ( ) represent the planning situation of the line in the y -year. 

P i nGen
rate

,  is the rated capacity of conventional generator units. Pi n
ID rate
,

,  
and Pi n

IL rate
,

,  are the rated capacities of equipment, pipelines, and 
lines, respectively. The constraint is that duplicate construction is 
not allowed [27]. The middle-layer programming is to waken carbon 
emissions and the operating cost of the integrated energy system. 
The objective function calculation is shown in (15).
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In (15), P y ti n GS , ( , )  represents the gas supply of a segment t  in the y
-th year. P y ti n Gen , ( , ) , P y ti n PV , ( , ), P y ti n WT , ( , ) , and P y ti n, ( , )ED  respectively 

Fig. 4.  Structural diagram of energy storage system in grid frequency regulation.
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represent the output of conventional power generation units, pho-
tovoltaics, WTs, and energy storage and conversion equipment. c i nGS ,  
is the unit cost of gas. cn

ED , cGeni,n, cpvi,n, and cWTi,n respectively represent 
the unit cost of energy storage and conversion equipment, conven-
tional power generation units, photovoltaic and WT operation. The 
constraints include capacity, demand balance, regional connectivity 
power constraints, etc. The lower-layer programming is to minimize 
frequency control cost and output variable fluctuations. The objec-
tive function is displayed in (16).

min ( , ) ( , ), , ,( )J P y t P y t ACEcon n G

i

i n S

i

i n� � �� �� �
Gen

Gen

ES

ES 	 (16)

In (16), P y ti nES , ( , ) is the energy storage frequency modulation out-
put. The constraint conditions are system balance and safe power 
transmission of the line. The objective function of constructing 
a large-scale power system source-grid-load-storage integrated 
scheduling is transformed into a three-layer programming problem. 
The transmission relationship of the three-layer programming is 
shown in Fig. 5.

In Fig. 5, the upper, middle, and lower layers form a complete closed-
loop scheduling model. The lower layer returns basic data such as 
frequency to the middle layer, and the middle layer returns the out-
put results of the system equipment to the upper layer. The upper 
layer plans the scheduling scheme for a large-scale power system 
based on the output results, while the middle layer adjusts the out-
put of each piece of equipment according to the scheme. The com-
plex scheduling of large-scale power systems is achieved through 
three-layer programming, and distributed algorithms are often used 
for calculation during the solving process. ADMM is a simple distrib-
uted algorithm with fast convergence speed and high robustness. 

The ADMM is used for decentralized solutions of various regions in 
the middle and lower layers. The objective function for the ADMM 
solution is shown in equation 

min

( , ), , , ,

F F

F c P y t c P
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	 (17).

In (17), F  represents the comprehensive operating cost. The process 
of using the ADMM algorithm for decentralized solution in each 
region is shown in Fig. 6.

In Fig. 6, the solving process of ADMM is as follows. The basic data, 
including load and equipment parameters, are first inputted. Then, 
initialization settings are made for each region, including deter-
mining the convergence boundary and the initial value of electri-
cal conversion line power. Afterwards, the power variation value 
of the electrical interconnection line is obtained through distrib-
uted computing. In large-scale power systems, adjacent regions 
transmit updated values of variables and update the reference 
fixed values and multipliers within each region to achieve informa-
tion exchange between regions. Finally, the algorithm will deter-
mine whether it converges, and if so, output a scheduling plan; 
otherwise, return to the distributed computing step to continue 
iterating. Through this distributed-solving approach, the ADMM 
algorithm can efficiently solve complex scheduling problems in 
large-scale power systems.

Fig. 5.  Transmission relationship of three-layer programming.
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III. RESULTS

To demonstrate the performance of the model, relevant experiments 
are carried out. The experiment first conducts a comparative test on 
the random fuzzy power flow solving algorithm based on the semi-
invariant method, testing the reliability of the algorithm for power 
system scheduling decisions. Then, a simulation experiment is estab-
lished to simulate the integrated scheduling of source-grid-load-
storage in large-scale power systems. Comparative experiments are 
conducted in different regions and environments for the source-
grid-load-storage to analyze the model’s effectiveness. Finally, a 
comparative experiment is conducted between the research model 
and the comparative method in the large-scale power system based 
on the generalized Benders decomposition algorithm to verify the 
performance of the research model.

A. Testing of Random Fuzzy Power Flow Solving Algorithm Based 
on Semi-Invariant Method
A comparative test is conducted between the random fuzzy power 
flow solving algorithm based on semi-invariant method and the 
random power flow solving algorithm to compute the mixed power 
flow of the simulated system. The simulated mobile system being 
tested is a multi-energy system composed of an IEEE 39 node New 
England power system, a 14 node thermal system, and a 14 node 
Belgian natural gas system coupled together, with each coupled 
node serving as an energy hub. Meanwhile, the wind speed data 
of the wind farm and the data of the photovoltaic power station 
are collected on a 30-day cycle, with 24 time periods per day and 
3 data points collected in each time period. The simulation soft-
ware uses MATLAB R2023a, with an Intel Xeon Gold 6248 processor, 
2.5GHz, 128 GB memory, and a Windows 10 operating system. The 

Fig. 6.  Flowchart of alternating direction multiplier.

Fig. 7.  Probability distribution curve of voltage amplitude for a single node.
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probability distribution of the voltage amplitude for a single node in 
the system is shown in Fig. 7.

According to Fig. 7 (a) and Fig. 7 (b), the maximum probability density 
in the voltage amplitude curves calculated by both algorithms was 
close to 0.47, and the curve trend remained consistent. There was 
only one probability distribution curve in Fig. 7 (a), while the curve 
in Fig. 7 (b) was a group of equally possible lines. The results indicate 
that scheduling solely based on randomness may deviate from real-
ity while calculating fuzzy probability power flow can obtain a prob-
ability density curve decision set, which is a more reasonable basis 
for scheduling decisions. In large-scale power systems, the output of 
new energy sources such as photovoltaics and wind power is highly 
uncertain and ambiguous. The random fuzzy power flow algorithm 
can more accurately describe these uncertainties by introducing FT, 
thereby improving the reliability of scheduling decisions.

B. Simulation Analysis of Source-Grid-Load-Storage Integrated 
Scheduling for Large-Scale Power System
To verify the model, simulation experiments are carried out using 
three regions to simulate large-scale power systems. Region III 
includes the thermal, natural gas, and power systems of IEEE 7, 
5, and 6 nodes. Regions I and II contain IEEE 15 node natural gas 
systems, 40 node power systems, and 13 node thermal systems. 
The annual growth rates of gas, heat, and electricity loads are 
2%, 3%, and 5%. Four simulation experimental scenes are set up 
for comparative experiments. Scene 1 separates regions I, II, and 
III for three-layer scheduling programming but does not consider 
the load side IBDR. In scene 2, three regions are coordinated for 
scheduling, considering two-layer programming and not consider-
ing IBDR. In scene 3, three regions are coordinated for scheduling, 
considering three-layer scheduling but not IBDR. In scene 4, three 
regions are planned collaboratively, considering three-layer sched-
uling and load side IBDR, which is the scheduling model designed 
for research. The joint scheduling programming of multiple regions 
is shown in Table 2.

In Table 2, due to independent programming, scene 1 added genera-
tors and transmission lines to meet the load. In scene 2, frequency 
control is not considered under the two-layer programming, reduc-
ing the number of generators and energy storage devices. Scene 3 
added ES to assist in frequency regulation and suppress fluctuations 
in new energy output. In scene 4, IBDR reduced the load and corre-
spondingly reduced the power lines. The cost composition and new 
energy consumption of large-scale power systems after completing 
scheduling programming in four different environments are shown 
in Fig. 8.

In Fig. 8 (a), the cost composition of large-scale power systems 
under different scheduling environments was demonstrated. Each 
bar chart represents a scheduling environment, and the height 
of the bar chart represents the total cost. The different colors or 
symbols in the figure distinguish the cost components in differ-
ent environments, including investment cost, operating cost, com-
pensation cost, and frequency modulation cost. Among them, the 
single cost under scene 1 was the highest, with a total cost of 20 
286.83 × 106 RMB. The total cost under scene 2 was 18 861.9 × 106 
RMB. Considering collaboration and frequency control in scene 3, 
the total cost was lower than in scene 1 but higher than in scene 2. 
By implementing demand-side management in scene 4, the total 
cost was reduced to a minimum of 18 023.5 × 106 RMB. In Fig. 8 (b), 
the abandoned wind and solar rates were highest in scene 1, while 
they were lowest in scene 4, at 7.4% and 2.6%, respectively. From an 
economic perspective, the research method introduces IBDR and 
three-layer programming to more effectively coordinate schedul-
ing strategies across regions, optimize resource allocation, and 
achieve significant cost reductions. This indicates that it can reduce 
unnecessary equipment investment and operating costs and sig-
nificantly improve the economic efficiency of the system. The load 
adjustment of IBDR in each region in scene 4 is shown in Fig. 9.

In Fig. 9, the three bars in each group represent regions I, II, and III, 
and Fig. 9 shows the IBDR load adjustment in the three regions in 
scene 4. Fig. 9 (a) shows the load transfer situation, and Fig. 9 (b) 
shows the load reduction situation. In Fig. 9 (a), the fluctuation of 
load transfer was relatively large, with a maximum value of 12.2 MW 
and a minimum value of −13.3 MW. In Fig. 9 (b), the fluctuation of 
load reduction was relatively small. From Fig. 9 (a) and Fig. 9 (b), the 
load transfer and reduction in region III were not as good as those in 
regions I and II. The results indicate that through the participation 
of IBDR, the research model can effectively adjust the load, promote 
the consumption of new energy electricity, and reduce frequency 

TABLE II.  MULTI-REGION JOINT DISPATCH PROGRAMMING

Scene Energy Hub Transmission Line Alternator

Scene 1 CHP1(4), GB3(6) 1–4(2) G4(2)

Scene 2 3-6(4) CHP1(4), GB3(6), HS1(3) 2–3(4), 1–4(2), 3–6(4) /

Scene 3 CHP1(4), GB3(6), ES1(4), ES2(4), 
HS1(3)

1–4(2) G4(2)

Scene 4 CHP1(6), ES1(4), ES2(4) 1–4(4) G4(4)

Fig. 8.  System cost composition and new energy consumption.
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Fig. 9.  Incentive-based demand response load adjustment in each area in scene 4.

Fig. 10.  Frequency lowest point deviation.

Fig. 11.  Comparison test results of the power system scheduling model.
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decline, thereby improving the stability and economy of the power 
system. From a social perspective, this research method can allevi-
ate the load pressure on the power grid during peak hours, effec-
tively improve user satisfaction, and ensure the safe operation of the 
power system. Fig. 10 shows the deviation of the lowest frequency 
points from 8 to 14 in the three regions during the peak shaving 
period under four different scenes.

In Fig. 10, in scene 1, the frequencies of regions I and II stabilized 
at 49.60–49.70 Hz, with region III having a slightly higher frequency. 
In scene 2, regional collaborative programming was carried out, but 
the lowest frequency of 49.3 Hz exceeded the normal range. Scene 3 
considered frequency control to increase the frequency at the lowest 
point to the normal range. In scene 4, the frequency remained stable 
at around 49.72 Hz. From this, under the scheduling of the research 
model, the participation of IBDR further stabilizes frequency regu-
lation in multiple regions, and demand response helps to reduce 
frequency drops. To further validate the research model, a compara-
tive test is designed between the large-scale power system schedul-
ing model based on the Benders decomposition algorithm and the 
research model, as displayed in Fig. 11.

In Fig. 11 (a), the research model achieved convergence after 33 
iterations, with an optimal cost of 15 015 × 106 RMB. In Fig. 11 (b), 
the Benders model converged after 51 iterations, and the optimal 
cost was 11.7% higher than the research cost. From this, the research 
model is more in line with the requirements of source-grid-load-stor-
age integrated scheduling in the large-scale power system than the 
Benders model. The summary of the above results is shown in Table 3.

IV. DISCUSSION

The research conducted relevant tests and simulation experiments 
on the ADMM-based large-scale integrated scheduling model. The 
test results showed that the maximum probability density of the 
random fuzzy power flow solving algorithm based on semi-invariant 
was close to 0.47, and the probability distribution curve was a group 
of equally possible lines. This result was similar to the unified itera-
tive power flow calculation method proposed by Yang et al., which 
considered the control mode of voltage source converters [28]. The 
research method had the lowest abandoned wind and solar rates, 
which were 7.4% and 2.6%, respectively. The fluctuation of load trans-
fer was large, and the fluctuation of load reduction was small. The 
frequency during peak shaving periods remained stable at around 
49.72 Hz. From this, under the scheduling of the research model, the 
load transfer in regions I and II promoted the consumption of new 
energy electricity, and the IBDR helped to reduce frequency drops. 
Ramachandran et  al. obtained similar results in improving energy 
utilization efficiency through source-grid-load-storage integrated 
scheduling [29]. The research model converged after 33 iterations, 
with an optimal cost of 15 015 × 106 RMB, which was 11.7% lower 
than the Benders model. This result was similar to the research on 
IBDR improving power system efficiency and reliability drawn by 
Duc et al [30]. The results indicate that the random fuzzy power flow 
solving algorithm can improve the reliability of scheduling decisions, 
while the decentralized solving method in each region has higher 
computational efficiency and scheduling cost control performance.

V. CONCLUSION

The research is to address the scheduling challenges brought by 
the increasing demand for electricity and the widespread access of 

distributed new energy to the power system. A large-scale power 
system source-grid-load-storage integrated scheduling model based 
on ADMM was designed. An energy control hub was established, and 
random fuzzy power flow calculations were conducted. The ADMM 

TABLE III.  THE SUMMARY OF THE ABOVE RESULTS

Figs. Comparison Items Indicator Situation

Fig. 7 Random flow solving algorithm A group of equally possible curves

Random fuzzy power flow 
solving algorithm

A group of equally possible lines 
is a more reasonable curve 
decision set

Fig. 8(a) Scene l 20 286.83 × 106

Scene 2 18 861.9 × 106

Scene 3 19 354.1 × 106

Scene 4 18 023.5 × 106

Fig. 8(b) Scene l Abandoned light rate 12.1%

Scene 2 Abandoned light rate 9.9%

Scene 3 Abandoned light rate 5.1%

Scene 4 Abandoned light rate 2.6%

Scene l Abandoned wind rate 20.0%

Scene 2 Abandoned wind rate 16.3%

Scene 3 Abandoned wind rate 10.2%

Scene 4 Abandoned wind rate 7.4%

Fig. 9(a) Maximum load transfer value 12.2MW

Minimum load transfer value −13.3MW

Fig. 9(b) Maximum load reduction −4.6MW

Minimum load reduction value −8.2MW

Fig. 10 Scene l Region I 49.60~49.70Hz

Scene l Region II 49.60~49.70Hz

Scene l Region III 49.80~49.90Hz

Scene 2 Region I 49.30~49.42Hz

Scene 2 Region II 49.30~49.40Hz

Scene 2 Region III 49.30~49.41Hz

Scene 3 Region I 49.60~49.70Hz

Scene 3 Region II 49.60~49.70Hz

Scene 3 Region III 49.60~49.70Hz

Scene 4 Region I 49.70~49.80Hz

Scene 4 Region II 49.70~49.80Hz

Scene 4 Region III 49.70~49.80Hz

Fig. 11 ADMM optimal cost 15 015 × 106

Benders optimal cost 16 772 × 106
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algorithm was used for regional decentralized computation in three-
layer scheduling programming. An intelligent scheduling model 
based on ADMM was designed. Simulation experiments demonstrate 
that the model can effectively reduce cost, improve the absorption 
rate and frequency stability of new energy, and achieve intelligent 
source-grid-load-storage integrated scheduling in large-scale power 
systems. However, the research still has certain limitations, as it 
ignores the role of the correlation between loads in the programming 
results. In future research, the correlation among electricity load, heat 
load, and natural gas load can be comprehensively considered to 
improve the impact of correlation on the programming model.
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