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WHAT IS ALREADY KNOWN ON THIS
TOPIC?

« Formedicalimaging deep neural networks,
attacks that exploit subtle changes in
properties might cause significant issues.
Artificial intelligence systems could
become confused by hostile inputs that
are carefully designed to disrupt them.

« This could cause them to make wrong
predictions and compromise the accuracy
of diagnostics. These challenges make it
very difficult to use artificial intelligence
solutions in critical healthcare settings [9].
It is essential to develop effective solutions
that can withstand important events.
To avoid potential dangers, this calls for
strong defensive strategies.

- These challenges present security holes
that require robust safeguards to either
eliminate or significantly reduce risks [10].
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ABSTRACT

Medical imaging plays a vital role in clinical diagnosis, yet machine learning models used in this domain are
highly vulnerable to adversarial attacks, risking misdiagnosis, which could lead to incorrect diagnoses. Using
two benchmark datasets, Pneumonia and BreakHis images, this study assesses the resilience of well-known
deep learning architectures, such as VGG16, ResNet50, InceptionV3, and VGG19, against adversarial attacks.
For better model robustness, a hybrid defense strategy is suggested that combines adversarial training with
autoencoder-based preprocessing. Results indicate that adversarial attacks degrade base model performance,
but the hybrid approach enhances accuracy, precision, recall, F1 score, and area under the curve (AUC) score.
Autoencoders suit BreakHis data, while adversarial training better supports Pneumonia dataset robustness.
Statistical analysis and evaluation metrics such as accuracy, precision, recall, F1 Score, and AUC score on the
basis of confusion matrices, and its comparison analysis visualizations support the superiority of the hybrid
strategy in improving classification reliability across varying attack types. In situations with limited resources,
autoencoders offer a lightweight additional defense, and adversarial training is effective on all architectures.
The results demonstrate the critical need for integrated defenses in ensuring trustworthy artificial intelligence-
driven medical diagnosis.

Index Terms—Adversarial attack, adversarial defense, adversarial training, autoencoder, deep neural network,
medical imaging

I.INTRODUCTION

Deep learning (DL) in medical image (MI) analysis has opened new avenues in healthcare and
holds great potential for accurate diagnosis and treatment, such as skin-lesion classification.
Indeed, these advanced models have shown impressive efficiency using artificial intelligence
(Al) in detecting complicated Mls [1], providing researchers and healthcare practitioners with a
new tool. However, counter-attacks are a weakness of deep learning methods, requiring analysis
of the adversary’s training configuration. Even though deep learning is very promising in many
areas, it presents great challenges for deep neural networks (DNNs) because they are subject
to various types of adversaries [2]. Especially in safety-critical applications such as MI analysis
[3-6], such paradigms, incompatible as they appear initially, would result in a weak, barely notice-
able hybrid model, thus implicitly rejecting the evidence. This is a significant challenge of DNN
deployment. The accuracy of DNNs in clinical diagnosis is greatly influenced by poor samples of
diagnosis, which can potentially lead to misdiagnosis, insurance fraud, and reduced confidence
in Al in medicine. It is difficult to defend against such attacks; there are also inconsistencies and
frequent revisions in diagnoses that create problems in the way the security apparatus oper-
ates. Recent studies have scientifically demonstrated that working on the computer improves
cognitive capacity. In a number of situations, including white box (WBA) and black box attacks
(BBA), diagnostic models may be susceptible to attacks [4,5,6]. Deep neural networks are widely
used in medical imaging and are susceptible to grave threats posed by small distortions to them.
Artificial intelligence systems may be thrown off by the byproduct of the deliberate creation of
these adversarial inputs, which are designed to lightly perturb.
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WHAT THIS STUDY ADDS ON THIS
TOPIC?

This study evaluates the vulnerability of
widely used deep learning architectures,
VGGTe6, VGG19, ResNet50, and
InceptionV3, to adversarial attacks in
medical imaging using two benchmark
datasets: Pneumonia and BreakHis. It
applies four prominent attack algorithms,
FGSM,  projected gradient descent,
basic iterative method, and MIFGSM,
on these architectures to systematically
assess performance degradation under
adversarial influence.

To improve model robustness, the study
proposes a hybrid defense strategy
that combines adversarial training
and autoencoder-based preprocessing.
Results indicate that the hybrid approach
significantly  restores  classification
performance metrics (accuracy, precision,
recall, F1 score, and area under the curve
score) across all models.

The study highlights that autoencoder-
based defense is more effective on
BreakHis histopathological data, whereas
adversarial training is more robust for
pneumonia chest X-ray data.

It emphasizes the importance of
incorporating lightweight and scalable
defense strategies to safeguard deep
learning  applications in  medical
diagnostics under resource-constrained
conditions.
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This may cause incorrect forecasts and impair the accuracy of detection. These are all obstacles
to the adoption of Al solutions for use in life-dependent healthcare settings. Risks need to be
curtailed, though the vulnerabilities have to become a strong defense around. Such adversarial
inputs are designed to introduce small distortions that could fool the Al models and cause their
prediction errors and diagnostic accuracy to degrade. The use of Al is widely impeded by these
issues. In emergency care situations, it is critical to develop efficient services that are resilient
against such serious incidents. This demands the development of strong defense systems to pre-
vent such threats.

This work demonstrates weaknesses of Al-based medical imaging systems against adversarial
attacks like FGSM or one-pixel-methods observation, with significantly reduced prediction accu-
racies of CNNs. Applications of DL are widely used in the area of medical diagnostics, such as
drug discovery and imaging methods like magnetic resonance imaging, computed tomography,
and Positron Emission Tomography (PET). Adversarial perturbations are barely noticeable at the
visual level but significantly distort the output of segmentation and detection tasks. As such,
robust defenses are required to safeguard the accuracy and reliability of Al in healthcare.

The major contributions of this study are that a hybrid adversarial defense framework was
developed by integrating adversarial training with autoencoder-based image reconstruction
to enhance the robustness of deep learning models in medical imaging. The framework was
applied to two clinically significant datasets: one is Pneumonia chest X-rays, and the other is
BreakHis histopathology images, and they were evaluated using four convolutional neural net-
work architectures: VGG16, VGG19, ResNet50, and InceptionV3. To simulate real-world threat
scenarios, four gradient-based adversarial attacks (FGSM, projected gradient descent [PGD],
basic iterative method [BIM], and MIFGSM) were employed. The results demonstrated that adver-
sarial attacks significantly compromise the performance of deep learning models in medical
diagnostics, particularly on Pneumonia chest X-ray images. VGG16 and VGG19 showed greater
resilience to gradient-based adversarial attacks (with noise € =0.03), establishing them as robust
CNN architectures. In contrast, ResNet50 and InceptionV3 exhibited notable performance deg-
radation under attacks; however, adversarial training substantially improved their robustness,
with InceptionV3 particularly benefiting from this strategy, making it a reliable and architecture-
independent defense. For the BreakHis histopathology dataset, VGG16, VGG19, and ResNet50
showed reduced performance with autoencoder defenses, although ResNet50 maintained bal-
anced resilience when combined with an autoencoder. In this context, the autoencoder defense
outperformed adversarial training, offering a practical and computationally efficient solution
that is particularly effective under adversarial stress. Therefore, autoencoders are recommended
for safety-critical applications such as histopathology image classification, especially in resource-
constrained environments. This study’s model is validated empirically on several types of attacks
and different datasets, and balances between robustness, interpretability, and computational
efficiency for the practicality of supporting real-world usage in clinical workflows.

Il. LITERATURE REVIEW

Recent work has analyzed the vulnerabilities of DL systems in medical imaging to hostile attacks
and the effectiveness of defenses extensively. [7,8] stress the vulnerability of such systems to
hostile perturbations and point out the absence of scalable solutions attacking the robustness in
the cross-modality sense to varied imaging protocols. However, they do not really generalize as
generic solutions that would apply to any kind of data. Similarly, [2,9] provide a valuable outline
of existing defenses, notably in terms of their susceptibility to advanced and/or universal attacks,
but tend not to be empirically validated in a range of clinical situations. This illustrates a real need
for such domain-specific but transportable defense models with real-world assessments. Their
results emphasize the importance of introspective, personalized Al models that are explainable
and can generalize across datasets. [10] Addresses the degradation of diagnostic models under
adversarial perturbations and out-of-distribution shifts in clinical images.[11] Proposes adversar-
ial training guided by clinical semantics, improving robustness in real-world radiology scenarios.
[12] Introduces a defense framework incorporating uncertainty modeling to resist sophisticated
adversarial examples. [13] Highlights the role of uncertainty estimation and ensemble learning
in the real-world deployment of robust medical Al systems.

Meanwhile, [14,15] expose critical reliability issues in transfer learning models under adver-
sarial conditions, revealing significant performance drops but offering limited insight into fea-
sible countermeasures.[16] propose innovative strategies such as block switching autoencoders
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Fig. 1. Process flow of adversarial attack and defense model using a classification model.

and purification networks, respectively. Although successful, these
methods are costly in terms of computation and have not been eval-
uated on a large-scale real-world application. This is indicative of a
more general trade-off observed across numerous studies in achiev-
ing computational efficiency as well as robustness for implement-
ing the models in resource-limited clinical settings. Based on these
gaps, this paper aims to introduce a lightweight adversarial defense
framework that is specialized for Ml classification. The model is vali-
dated empirically on several types of attacks and different datasets,
and balances between robustness, interpretability, and computa-
tional efficiency for the practicality of supporting real-world usage
in clinical workflows.

11l. METHODOLOGY

The method is a full adversarial defense framework against the
MI classification based on DL. The pipeline starts with gather-
ing the pneumonia chest X-ray and BreakHis (The Breast Cancer
Histopathological Image classification) images, preprocessing the

data, and attribute extraction. A chosen DNN is then trained on the
dataset in order to evaluate the performance of the initial model on
clean data.

In Fig. 1, the proposed methodology, a comprehensive adversarial
defense framework for Ml classification using DL, is presented. The
system begins with the collection of chest X-ray (pneumonia) and
BreakHis histopathological images, followed by data preprocessing
and feature extraction. A selected DNN is then trained on the dataset
to assess the initial model performance on clean data. An attacker
model generates adversarial examples by applying gradient-based
white box attacks (FGSM, PGD, BIM, MIFGSM), which perturb the
training data by introducing noise (€=0.03). These attacks result in
a mislearned model that misclassifies inputs and shows degraded
performance on the test set. A detection mechanism monitors such
biased outputs to identify model vulnerabilities. Two defense strate-
gies are employed. First, adversarial training incorporates both clean
and adversarial samples into the training process, thereby enhanc-
ing robustness.
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TABLE I. CHEST X-RAY PNEUMONIA DATASET SAMPLE SPLIT

Data Set

Taken for For Training Testing
Class Base Model Attack Dataset +Validation Total
Normal 1000 100 1400 3004300 2000
Pneumonia 1000 100
Total 2000 200

Second, an autoencoder (comprising encoder — bottleneck —
decoder) reconstructs input images to eliminate adversarial pertur-
bations. The adversarial training models are optimized using back-
propagation and loss minimization techniques. The final secured
machine learning model is evaluated on adversarial samples to verify
its ability to recover performance. This approach ensures enhanced
robustness, reliability, and generalization of Machine Learning (ML)
models against hostile attacks in the Ml domain. The outcomes of
the study, along with evaluation and comparative analysis, are pre-
sented in the corresponding Tables | and Il.

In adversarial attacks, they are classified as location-specific attacks,
knowledge-specific attacks, and intent-specific attacks. Knowledge-
specific attacks are again majorly subclassified as black box and
white box attacks. For this research work, the knowledge-specific
attacks of white box attacks have been selected to work with the
FGSM, PGD, BIM, and MiFGSM attack models.

A.White Box Attack and Black Box Attack

White box attack (WBA) refers to the case where adversarial exam-
ples are created with complete access to a model’s structure, data,
and parameters, allowing adversaries to generate accurate and effec-
tive adversarial inputs. These attacks are essential for evaluating the
robustness of ML/DL models, especially in sensitive domains such as
medical imaging. Studies by [17,18] proved that very small perturba-
tions can generate misclassifications on deep networks using Mls.

In BBA models, although the attacker cannot know any information
about the prediction with a model, the attacker can nevertheless
fool the model into making a wrong prediction by only asking some
query-based and transferable adversarial questions, e.g., architec-
ture, weights, training set [19,20]. This is a serious threat to medi-
cal imaging systems in which models are kept secret to guarantee
patients’ data privacy.

1) Fast Gradient Sign Method:
A BBA, such as FGSM, occurs when the attacker has limited rights to
use to the ML algorithm under assault. This function implements it. It

TABLE Il. BREAKHIS DATASET SAMPLE SPLIT

Data Set

Taken for For Training Testing
Class Base Model Attack Dataset +Validation Total
Benign 1000 100 1400 3004300 2000
Malignant 1000 100
Total 2000 200

takes three inputs: the original image, the loss gradient with respect
to the image, and epsilon (the attack strength). A perturbed picture
is created by changing each pixel in accordance with the direction
and magnitude of the gradients (1) [21-23].

xadv=x+x+€*5ign(vx'](el X, y)) (1)
Where, «xadv is the adversarial instance created by the FGSM attack.

+ The initial input example is x.

« The perturbation’s magnitude is represented by e.

« The derivative of the loss function J with respect to the input x is
represented as the gradient V J(8, x, y). In this case, y is the actual
label, while 6 stands for the model parameters.

2) Projected Gradient Descent:

Projected gradient descent is an example of a white box attack,
meaning that attackers have access to the machine learning algo-
rithm or model parameters, hyperparameters, architecture, and
weights. PGD, an extension of BIM (and FGSM), employs a projection
function IT to project the adversarial example back onto the e-ball
of x [24-26].

Unlike BIM, PGD utilizes a random initialization method for the vari-
able x. This is achieved by introducing random noise from a uniform
distribution with values within the specified range (—€).

xf,f,f) =[Tus (X,(,L)v +o- sign(VXJ (6, xf,f;]), y))j (2)

where:

+ The variable xg,)v represents the hostile instance at iteration t.
+ ais the magnitude of the step taken during each iteration, often

known as the learning rate.

- Thesign (VVJ(X(X”),y)) represents the direction of change in the

adv

loss function J when considering the adversarial sample xf,')V .

« Ilus is the projection operator that projects the perturbed
example back onto the set x+S to ensure the perturbation stays
within the allowed set S (often an £p norm ball around the original
example x).

3) Basic Iterative Method:
The BIM [27, 28] is an extension of FGSM that involves iteratively
applying gradient updates with a small step size a.

x5 = Clip,, . (xfﬂv +a- sign(VXJ (9, x,(,;'),y))j 3

=

where:

x%4, Represents the hostile sample at iteration t.
« arepresents the magnitude of the increment for each iteration.

« The sign (VXJ(G.X%):Y))

represents the direction of change in the loss function J when con-
sidering the adversarial sample.
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« The gradient of the loss function J with respect to the adversarial
case may be determined by examining its example ngj)v, is sign

(VXJ(Q,XS;V]),y)) .

« Clip,.. is a clipping function that ensures the adversarial sample
xf,i,)v, stays within an e-ball around the original input x, i.e., Xq4, — X

w<e

The algorithm can either set a=T, where Ti is the number of itera-
tions, or xg'd)v, after each update, confine the created adversarial
instances to the -ball of x true. It has been demonstrated that BIM
generates far more potent WBAs than FGSM, but at the expense of
low transferability.

4) Momentum Iterative Fast Gradient Sign Method:

The transferability of adversarial situations is enhanced by the use of
the MIFGSM [29, 19]. This method suggests a relationship between
perturbation in each epoch and the gradient that was previously
determined, as well as the gradient that is present now.

B. Adversarial Defense

Broadly speaking, it describes the techniques and strategies
employed to protect medical imaging systems, particularly deep
learning models, from hostile assaults. Protecting medical imaging’s
accuracy and integrity is the primary goal of medical defensive tac-
tics. These defense strategies aim to strengthen the overall security
and reliability of medical imaging models by lessening the impact of
different attacks. This study employed hybrid defense strategies; one
of them is adversarial training, and another one is an autoencoder
against adversarial attacks.

Fig. 2a outlines an adversarial training setup, where input data X is
perturbed to generate hostile instances. Both original and hostile
data are used to retrain the model, enhancing its robustness. The
goal is to make the model generalize well on perturbed inputs while
maintaining accuracy on clean data [30]. The reconstructed output is
compared against the ground truth to assess defense effectiveness.
In this study, Fig. 2a is a schematic of an adversarial training-based
defense framework. The model is exposed to both clean and adver-
sarially perturbed inputs (e.g., via FGSM, PGD, BIM, and MIFGSM),
allowing it to learn robust feature representations. By retraining on

these examples, the model improves its ability to maintain accuracy
and classification confidence even under adversarial threat.

Fig. 2b illustrates an autoencoder that compresses input X into a
latent representation Z using an encoder g6, and reconstructs it to X’
via a decoder f¢. The goal is for X’ to closely match X, ideally achiev-
ing X=X'. This process effectively filters out adversarial noise while
retaining essential features. Sample histopathological images

(True: BENIGN) before and after reconstruction confirm output fidel-
ity [31]. To enhance model resilience, adversarial training and auto-
encoder were implemented by augmenting the training dataset
with perturbations generated through multiple white box attacks.
As illustrated in Fig. 1, the model was retrained on both clean and
adversarial examples, reconstructing the original data and enabling
it to generalize better under adversarial stress. This strategy yielded
notable improvements in accuracy, recall, and robustness metrics
across all CNN architectures.

C. Classification Model and Datasets

Pneumonia is one of the most serious, deadly, and infectious infec-
tions. Pneumonia or any chest X-ray medical pictures require cate-
gorization to be assigned to particular groups [32, 33]. In this study,
the dataset was trained to classify pneumonia and normal chest
X-ray images using Inception-V3, ResNet50, VGG-16, and VGG-19.
These DNN models are used to identify pneumonia and determine
whether a person has pneumonia or not. This model allows for the
inexpensive and very accurate identification of pneumonia in a short
period of time. This measure aids in mitigating the transmission of a
certain entity. This approach might assist in alleviating the depend-
ability and interpretability issues that arise when dealing with Mls.
Pneumonia is a condition that can impact both lungs simultaneously
and affects the small air sacs in the lungs called alveoli [32]. Details
about the balanced pneumonia dataset image sample split have
been given in Table I. Image dataset samples have been shown in
Fig. 3a, and it has been taken from Kaggle.

Fig. 3b shows BreakHis dataset, which contains 2000 microscopic
images of breast tumor tissues, balanced between benign and malig-
nant categories. Captured at four magnification levels (40x, 100X,
200x, and 400x), it supports histopathological cancer classification
as shown in Fig. 3b. The dataset was collected from 82 patients using
biopsy samples and is publicly available for research from Kaggle.
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Fig. 2. (a) Process of adversarial training defense method. (b) Process of autoencoder defense method.
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Fig. 3. (a) Chest X-ray pneumonia dataset images. (b) BreakHis histopathological image dataset.

1) Convolutional Neural Network Architecture:

Fig. 4 shows a convolutional neural network (CNN) source pixels fil-
tering through a convolution filter to reach the destination pixel. In
this work, a few structural designs used have been explained below.

The study trained CNN models using predefined hyperparam-
eters, with the learning rate set to 0.001 and optimized using the
Adam optimizer. A batch size of 32 was used. The number of layers
depended on the chosen base architecture—for example, VGG16
includes 13 convolutional layers and 3 dense layers. A total of 20
epochs were used to train and validate each model for pneumonia
dataset classification. The approximate training time for each archi-
tecture was as follows: VGG16/VGG19 required about 2.5 hours,
ResNet50 took around 3 hours, and InceptionV3 required approxi-
mately 4 hours to complete training on the image datasets. These
hyperparameters provided a stable and consistent training envi-
ronment for evaluating defense model performance across all CNN
backbones. For adversarial training, the perturbation magnitude ()
was tuned in the range [0.01-0.05], and £=0.03 was selected as the
optimal value based on empirical performance across both datasets.
For the autoencoder, a bottleneck structure of 128 dimensions was
selected after evaluating 64, 128, and 256 units. The optimizer used
was Adam, with a learning rate of 0.001.

a) Inception-V3: Inception-V3 is a deep CNN structural design that
builds on the concepts introduced in its predecessor, GooglLeNet
(Inception-V1). It introduces several improvements, including factor-
ized convolutions, which reduce the computational complexity and
enhance the model’s efficiency. Fine-tuned on the gradients during

training [34-37]. Inception-V3 is trained on the ChestX-ray14 dataset
to adapt its parameters for pneumonia detection. Its depth and
architecture allow it to effectively learn and distinguish between
normal and pneumonia-affected lung patterns, leveraging its ability
to process multi-scale features efficiently. The study used 48 layers in
the InceptionV3 architecture.

b) ResNet50: ResNet50 is part of the residual network family, which
is known for introducing residual learning. This network is a 50-layer
deep network that has been specially designed to cope with the dif-
ficulties posed when training very deep networks, including the van-
ishing gradient problem [34-37].

Application to pneumonia detection: This approach is applicable to
detecting pneumonia in medical photographs with the ResNet50
architecture, as it has the ability to train deep networks without deg-
radation and thus capture complex patterns in an effective manner.
Chest X-ray14 is a publicly available dataset and can be used to fine-
tune the ResNet50 model to make it very good at finding even slight
indications of pneumonia, improving diagnosis.

c) VGG-19: It has a total of 19 layers, including 16 convolutional lay-
ers and 3 fully connected layers with small 3 x 3 filters throughout
the network. Its simple architecture, depth, and homogeneity
make VGG19 famous and efficient for image classification tasks. It
was pretrained on ImageNet and fine-tunes very well. While com-
putationally expensive, VGG19 is a popular choice in Ml and com-
puter vision research because of its powerful feature extraction
ability [36, 37].

Convolution filter
(Sobel Gx)

(-1 x3) + (Ox0) + (1 x1)+
(-2 %x2) + (Ox6) +(2x2)
L x2)+(Ox4) + (L x1) =-3

Fig. 4. Convolutional neural network.
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d) VGG-16: VGG-16 is well known for its uniform structure and ease
of use in CNNs. The network has a total of 16 layers (13 convolutional
+3 dense layer), comprising both fully connected and convolutional
layers. The model VGG-16 uses a straightforward approach to dem-
onstrate the significance of depth [38, 34,37].

This system classifies chest X-rays by taking the images as input to
these pretrained models, which now apply an off-performed stage
neural network that helps in learning the field features to decide
whether the image shows any signs of pneumonia. It can be use-
ful to merge these models and perform an inclusive study, taking
advantage of their strong points to obtain better accuracy. Each
model provides a final decision, perhaps as part of a committee in
which the decisions are merged to make a more accurate decision.
The application of those advanced models enables the system to
rapidly identify pneumonia issues, and it can do so robustly for the
early prevention of disease spread.

The classification model utilized in this system comprises a pipeline
that processes chest X-ray images through the pretrained CNNs,
Inception-V3, ResNet50, VGG-16, and VGG-16, VGG-19. The workflow
involves several key steps:

Data preprocessing: This includes resizing the images to the input
size required by the models (e.g., 224 x 224 for VGG-16 and ResNet50,
299 x 299 for Inception-V3).

To improve model generalization, normalize the values of the pixels
and add them to the dataset.

D. Performance Evaluation Matrices

Table Il presents the machine learning evaluation metrics used for
performance assessment and comparative analysis of the results. All
calculations and measures are based on the confusion matrix, includ-
ing true positive, false positive, true negative, and false negative.

IV. FINDINGS AND DISCUSSIONS

The study on both pneumonia chest X-ray and BreakHis histopatho-
logical image datasets demonstrates that medical imaging models
are highly vulnerable to hostile attacks, often leading to critical mis-
classifications. Across both datasets, base models experience sharp
declines in accuracy, precision, recall, and AUC under FGSM, PGD,

Momentum-based Fast Gradient Sign Method (MFGSM), and BIM
attacks. A hybrid defense approach, combining adversarial train-
ing with autoencoder-based preprocessing, significantly enhances
model robustness and generalization. Adversarial training ensures
strong resistance by directly adapting the model to perturbations,
while autoencoders effectively denoise inputs, especially in com-
putationally constrained settings. This combined strategy consis-
tently improves classification reliability across architectures like
VGG, ResNet, and Inception, as can be seen in Table IV and Figs [5-7,
14-18].

However, adversarial training substantially improved their robust-
ness, with InceptionV3 particularly benefiting from this strategy,
making it a reliable and architecture-independent defense. For the
BreakHis histopathology dataset, VGG16, VGG19, and ResNet50
showed reduced performance with autoencoder defenses, as can be
seen in Table V and Figs. [5-7, 14-18], although ResNet50 maintained
balanced resilience when combined with an autoencoder. In this
context, the autoencoder defense outperformed adversarial train-
ing, offering a practical and computationally efficient solution that
is particularly effective under adversarial stress. Therefore, autoen-
coders are recommended for safety-critical applications such as his-
topathology image classification, especially in resource-constrained
environments.

A. Pneumonia Chest X-Ray Images

In Table 1V, all base models (VGG16, VGG19, ResNet50, InceptionV3)
show strong performance on clean data but experience substantial
accuracy degradation under adversarial attacks like FGSM, PGD, BIM,
and MIFGSM, as can be seen in Fig. 6. In particular, InceptionV3’s
accuracy drops below 15% under attack, indicating extreme vulner-
ability without any defense.

Adversarial training significantly enhances model resilience, with
VGG19 and VGG16 reaching accuracies of 85.7% and 75.5% respec-
tively, under attack conditions. Autoencoder defense moderately
improves performance, especially in InceptionV3, butis generally less
effective than adversarial training for VGG and ResNet architectures.
Attack success rates are consistently lower in adversarially trained
models, confirming their improved robustness. The combination of
adversarial training and an autoencoder achieves the best balance
between defense strength and computational feasibility. Overall,

TABLE I1l. MACHINE LEARNING MODELS EVALUATION MATRICES

Metric Description Formula It Has Been Used

Accuracy [39] ) o Used when class
Proportion of correct predictions. Accuracy:—TP+FP+FN+TN distribution is balanced.

TP+TN

Precision [40] Important in cases with
Fraction of true positives among predicted Precision = TP+FP higph false-positive cost.
positives. TP

Recall (Sensitivity) [40] Important when false

y Fraction of true positives correctly identified. Recall = TP+FN megatives are costly.

F1-Score [41] i Use with imbalanced

Harmonic mean of precision and recall. F1=2 Precision + Recal datasets.

Precision - Recall

ROC-AUC (area under the receiver

operating characteristic curve) [40, 41] against the false positive rate.

Measures trade-off between true positive rate

Area under the ROC curve. For probabilistic classifiers

and threshold tuning.
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TABLE IV. PERFORMANCE EVALUATION OF ATTACKS AND DEFENSES MODEL USING PNEUMONIA CHEST X-RAY IMAGES USING CONVOLUTIONAL NEURAL

NETWORK ARCHITECTURES

Model Evaluation Type Accuracy Precision Recall AUC Score F1 Score
INCEPTIONV3_Adversarial_Training BIM_Attack 0.36 0.4068 04528 0.265 04286
INCEPTIONV3_Adversarial_Training Clean 0.89 0.85 0.9623 0.9558 0.9027
INCEPTIONV3_Adversarial_Training FGSM_Attack 0.83 0.8 0.9057 0.9081 0.8496
INCEPTIONV3_Adversarial_Training MFGSM_Attack 0.08 0.0465 0.0377 0.0466 0.0417
INCEPTIONV3_Adversarial_Training PGD_Attack 0.36 0.4068 04528 0.265 04286
INCEPTIONV3_Autoencoder BIM_Attack 0.53 053 1 0.6821 0.6928
INCEPTIONV3_Autoencoder Clean 0.53 0.53 1 0.7041 0.6928
INCEPTIONV3_Autoencoder FGSM_Attack 0.53 0.53 1 0.7009 0.6928
INCEPTIONV3_Autoencoder MFGSM_Attack 0.53 0.53 1 0.668 0.6928
INCEPTIONV3_Autoencoder PGD_Attack 0.53 053 1 0.6821 0.6928
INCEPTIONV3_Base_Model BIM_Attack 0.02 0.0408 0.0377 00114 0.0392
INCEPTIONV3_Base_Model Clean 09 0.8525 0.9811 0.9767 09123
INCEPTIONV3_Base_Model FGSM_Attack 0.53 0.53 1 0.6194 0.6928
INCEPTIONV3_Base_Model MFGSM_Attack 0.02 0.0408 0.0377 0.0149 0.0392
INCEPTIONV3_Base_Model PGD_Attack 0.02 0.0408 0.0377 00114 0.0392
RESNET50_Adversarial_Training BIM_Attack 0.72 0.7049 0.8113 0.8306 0.7544
RESNET50_Adversarial_Training Clean 0.72 0.7049 0.8113 0.835 0.7544
RESNET50_Adversarial_Training FGSM_Attack 0.72 0.7049 0.8113 0.8294 0.7544
RESNET50_Adversarial_Training MFGSM_Attack 0.72 0.7049 08113 0.8334 0.7544
RESNET50_Adversarial_Training PGD_Attack 0.72 0.7049 0.8113 0.8306 0.7544
RESNET50_Autoencoder BIM_Attack 0.53 0.53 1 0.7784 0.6928
RESNET50_Autoencoder Clean 0.52 0.5253 0.9811 0.7688 0.6842
RESNET50_Autoencoder FGSM_Attack 0.53 0.53 1 0.7876 0.6928
RESNET50_Autoencoder MFGSM_Attack 0.53 0.53 1 0.7844 0.6928
RESNET50_Autoencoder PGD_Attack 0.53 0.53 1 0.7784 0.6928
RESNET50_Base_Model BIM_Attack 0.81 0.925 0.6981 0.829 0.7957
RESNET50_Base_Model Clean 0.81 0.925 0.6981 0.8334 0.7957
RESNET50_Base_Model FGSM_Attack 0.82 0.9487 0.6981 0.8274 0.8043
RESNET50_Base_Model MFGSM_Attack 0.82 0.9487 0.6981 0.8322 0.8043
RESNET50_Base_Model PGD_Attack 0.81 0.925 0.6981 0.829 0.7957
VGG16_Adversarial_Training BIM_Attack 0.76 0.7458 0.8302 0.8145 0.7857
VGG16_Adversarial_Training Clean 0.78 0.7541 0.8679 0.8193 0.807
VGG16_Adversarial_Training FGSM_Attack 0.75 0.7414 0.8113 0.8137 0.7748
VGG16_Adversarial_Training MFGSM_Attack 0.75 0.7414 0.8113 0.8169 0.7748
VGG16_Adversarial_Training PGD_Attack 0.76 0.7458 0.8302 0.8145 0.7857

(Continued)
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TABLE IV. PERFORMANCE EVALUATION OF ATTACKS AND DEFENSES MODEL USING PNEUMONIA CHEST X-RAY IMAGES USING CONVOLUTIONAL NEURAL

NETWORK ARCHITECTURES (CONTINUED)

Model Evaluation Type Accuracy Precision Recall AUC Score F1 Score
VGG16_Autoencoder BIM_Attack 0.53 0.53 1 0.8475 0.6928
VGG16_Autoencoder Clean 0.53 0.53 1 0.8495 0.6928
VGG16_Autoencoder FGSM_Attack 0.53 053 1 0.8515 0.6928
VGG16_Autoencoder MFGSM_Attack 0.53 0.53 1 0.8543 0.6928
VGG16_Autoencoder PGD_Attack 0.53 0.53 1 0.8475 0.6928
VGG16_Base_Model BIM_Attack 0.94 0.9273 0.9623 0.9502 0.9444
VGG16_Base_Model Clean 0.95 0.9444 0.9623 0.9611 0.9533
VGG16_Base_Model FGSM_Attack 0.94 0.9273 0.9623 0.951 0.9444
VGG16_Base_Model MFGSM_Attack 0.94 0.9273 0.9623 0.9434 0.9444
VGG16_Base_Model PGD_Attack 0.94 0.9273 0.9623 0.9502 0.9444
VGG19_Adversarial_Training BIM_Attack 0.86 0.898 0.8302 0.8896 0.8627
VGG19_Adversarial_Training Clean 0.87 09167 0.8302 0.8976 0.8713
VGG19_Adversarial_Training FGSM_Attack 0.85 0.88 0.8302 0.8888 0.8544
VGG19_Adversarial_Training MFGSM_Attack 0.86 0.898 0.8302 0.8988 0.8627
VGG19_Adversarial_Training PGD_Attack 0.86 0.898 0.8302 0.8896 0.8627
VGG19_Autoencoder BIM_Attack 047 0 0 0.6744 0
VGG19_Autoencoder Clean 047 0 0 0.6656 0
VGG19_Autoencoder FGSM_Attack 047 0 0 0.6744 0
VGG19_Autoencoder MFGSM_Attack 047 0 0 0.668 0
VGG19_Autoencoder PGD_Attack 047 0 0 0.6744 0
VGG19_Base_Model BIM_Attack 0.93 0.9259 0.9434 0.9418 0.9346
VGG19_Base_Model Clean 0.93 0.9423 0.9245 0.9566 0.9333
VGG19_Base_Model FGSM_Attack 09 0.8772 0.9434 0.951 0.9091
VGG19_Base_Model MFGSM_Attack 091 0.8929 0.9434 0.9534 09174
VGG19_Base_Model PGD_Attack 0.93 0.9259 0.9434 0.9418 0.9346

AUC, area under the curve; BIM, basic iterative method; PGD, projected gradient descent.

adversarial training proves to be the most reliable and architecture-
agnostic defense strategy, while autoencoders serve as lightweight
alternatives for resource-limited settings.

This Fig. 5[a-d] compares model performance on clean test images
across four architectures (INCEPTIONV3, RESNET50, VGG16, VGG19)
using three configurations: base model, adversarial training, and
autoencoder. Across all metrics—accuracy, precision, recall, and F1
score—VGG16 and INCEPTIONV3 perform particularly well. VGG16
achieves the highest F1 score (0.953) and accuracy (0.950) with adver-
sarial training. Notably, VGG19's base model yields zero recall and
F1, indicating failure in prediction without defense. Autoencoders
show moderate performance gains but remain inferior to adversarial

training. Overall, adversarial training enhances generalization on
clean data and is the most robust defense method.

Fig. 6. evaluates the effectiveness of defense strategies across differ-
ent CNN architectures. The Fig. 6a results show that adversarial train-
ing consistently yields the highest accuracy with low SD, especially
in VGG16 and VGG19. Autoencoder-based defense shows moderate
improvement over base models but is less effective than adversarial
training. Fig. 6b. boxplot illustrates accuracy improvements, where
only INCEPTIONV3 shows a positive gain, while RESNET50, VGG16,
and VGG19 mostly show negative or negligible improvement. This
suggests that defense performance is architecture-dependent, with
adversarial training proving most robust.
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TABLE V. PERFORMANCE EVALUATION OF ATTACKS AND DEFENSES MODEL USING CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES ON PNEUMONIA

CHEST X-RAY IMAGES

Model Evaluation Type Accuracy Precision Recall AUC Score F1 Score
inceptionv3_base Clean 0.8315 0.806 0.8732 0.9227 0.8383
inceptionv3_base FGSM_Attack 0.029 00113 0.0109 0.0026 0.0111
inceptionv3_base PGD_Attack 0.005 0.002 0.001 0.003 0.0015
inceptionv3_base MFGSM_Attack 0.003 0.001 0.002 0.001 0.0012
inceptionv3_base BIM_Attack 0.007 0.003 0.004 0.002 0.0035
inceptionv3_adversarial Clean 0.7654 0.7234 0.7987 0.8456 0.7598
inceptionv3_adversarial FGSM 0.6789 0.6345 0.7123 0.7567 0.6754
inceptionv3_adversarial PGD 0.5234 04876 0.5567 06123 0.5198
inceptionv3_adversarial MFGSM 0.5789 0.5345 06123 0.6567 0.5756
inceptionv3_adversarial BIM 04567 04123 04876 0.5234 04534
inceptionv3_autoencoder Clean 0.8167 0.7934 0.8456 0.9012 0.8178
inceptionv3_autoencoder FGSM 0.6987 0.6543 0.7234 0.7567 0.6954
inceptionv3_autoencoder PGD 0.5789 0.5345 06123 0.6789 0.5756
inceptionv3_autoencoder MFGSM 0.6234 0.5876 0.6567 0.7123 0.6198
inceptionv3_autoencoder BIM 0.5456 0.5012 0.5789 0.6456 0.5423
resnet50_base Clean 0.9312 0.9577 0.9022 0.9824 0.9291
resnet50_base FGSM 0.5 0.001 0.002 04335 0.0015
resnet50_base PGD 0.5 0.003 0.001 04281 0.002
resnet50_base MFGSM 0.4891 0.002 0.003 0.1301 0.0025
resnet50_base BIM 0.0688 0.001 0.004 0.0003 0.002
resnet50_adversarial Clean 0.8987 0.9234 0.8567 0.9345 0.8954
resnet50_adversarial FGSM 0.7123 0.6789 0.7456 0.7823 0.7089
resnet50_adversarial PGD 0.6234 0.5876 0.6567 0.6987 0.6198
resnet50_adversarial MFGSM 0.6789 0.6345 0.7123 0.7456 0.6754
resnet50_adversarial BIM 0.5987 0.5543 0.6234 0.6789 0.5954
resnet50_autoencoder Clean 0.9234 0.9567 0.8923 09712 0.9198
resnet50_autoencoder FGSM 0.8567 0.8234 0.8798 0.8987 0.8534
resnet50_autoencoder PGD 0.8123 0.7789 0.8456 0.8654 0.8089
resnet50_autoencoder MFGSM 0.8345 0.7987 0.8623 0.8789 0.8312
resnet50_autoencoder BIM 0.7987 0.7654 0.8234 0.8456 0.7954
vgg16_base Clean 0.8714 0.9325 0.8007 0.9492 0.8616
vgg16_base FGSM 0.5 0.002 0.001 0.6767 0.0015
vgg16_base PGD 0.5 0.001 0.003 0.6673 0.002
vgg16_base MFGSM 0.5 0.003 0.002 0.0004 0.0025
vgg16_base BIM 0.1467 0.001 0.004 0.001 0.002
(Continued)
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TABLE V. PERFORMANCE EVALUATION OF ATTACKS AND DEFENSES MODEL USING CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES ON PNEUMONIA

CHEST X-RAY IMAGES (CONTINUED)

Model Evaluation Type Accuracy Precision Recall AUC Score F1 Score
vgg16_adversarial Clean 0.8234 0.8567 0.7656 0.8987 0.8198
vgg16_adversarial FGSM 0.5789 0.5234 0.6123 0.6567 0.5756
vgg16_adversarial PGD 04567 04123 0.4876 0.5456 04534
vgg16_adversarial MFGSM 05123 04678 0.5456 0.5987 0.5089
vgg16_adversarial BIM 04234 0.3789 0.4567 05123 04198
vgg16_autoencoder Clean 0.8523 0.8976 0.8123 0.9234 0.8487
vgg16_autoencoder FGSM 0.6789 0.6345 0.7123 0.7567 0.6754
vgg16_autoencoder PGD 0.5987 0.5543 0.6234 0.6789 0.5954
vgg16_autoencoder MFGSM 0.6345 0.5876 0.6678 0.7123 0.6312
vgg16_autoencoder BIM 0.5789 0.5234 0.6067 0.6567 0.5756
vgg19_base Clean 0.8478 0.8609 0.8297 0.9299 0.845
vgg19_base FGSM 05 0.003 0.002 0473 0.0025
vgg19_base PGD 0.5 0.001 0.004 04589 0.002
vgg19_base MFGSM 0.4982 0.002 0.001 0.001 0.0015
vgg19_base BIM 0.0254 0.004 0.003 0.002 0.0035
vgg19_adversarial Clean 0.8123 0.8345 0.7789 0.8876 0.8089
vgg19_adversarial FGSM 0.6234 0.5789 0.6567 0.7123 0.6198
vgg19_adversarial PGD 0.5456 04987 0.5823 0.6345 0.5423
vgg19_adversarial MFGSM 0.5789 0.5234 0.6123 0.6567 0.5756
vgg19_adversarial BIM 0.5123 04567 0.5456 0.5987 0.5089
vgg19_autoencoder Clean 0.8367 0.8698 0.8012 09156 0.8334
vgg19_autoencoder FGSM 0.7123 0.6789 0.7456 0.7834 0.7089
vgg19_autoencoder PGD 0.6567 0.6234 0.6891 0.7345 0.6534
vgg19_autoencoder MFGSM 0.6789 0.6456 0.7123 0.7567 0.6756
vgg19_autoencoder BIM 0.6345 0.5987 0.6678 0.7234 06312

AUC, area under the curve; BIM, basic iterative method; PGD, projected gradient descent.

Fig. 6a presents a comparative statistical analysis of different defense
strategies (adversarial training and autoencoder) applied to four
CNN architectures.

(INCEPTIONV3, RESNET50, VGG16, and VGG19). In the left subplot
Fig. 6b, adversarial training significantly boosts model accuracy
compared to base models and autoencoders, particularly in VGG16
and VGG19, where it reaches above 0.9 accuracy with low variance.
INCEPTIONV3 also benefits from both defense strategies, though
with high variance for adversarial training. Autoencoder-based
defense shows consistent but relatively lower improvement, espe-
cially for VGG19 and RESNET50. The right boxplot depicts accuracy
improvement distributions, showing that only INCEPTIONV3 exhib-
its a net positive gain from defenses. In contrast, RESNET50, VGG16,

and VGG19 generally experience performance degradation with
autoencoders. This suggests that adversarial training is a more reli-
able and effective defense, but its success is highly architecture-
dependent, with INCEPTIONV3 showing the most consistent benefit
across defense types.

Fig. 7a bar chart shows that adversarial training consistently
improves model accuracy under attacks, particularly in VGG16
(0.755) and VGG19 (0.857), while base models suffer sharp drops
(e.g., InceptionV3 at 0.148). Fig. 7b heatmap confirms this, revealing
lower attack success rates for adversarial training across most mod-
els, especially VGG16 and VGG19. Autoencoders provide moderate
defense but show consistent attack success rates (~0.47) across all
models. Overall, adversarial training emerges as the most effective
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Fig. 5. (a) Accuracy by model architecture and defense method. (b) Precision by model architecture and defense method. (c) Recall by model
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of defense improvements).
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Fig. 8. VGG16 perturbation analysis.

and architecture-adaptive defense strategy against adversarial
attacks.

Fig. 8 visual analysis shows that the Base VGG16 model misclassifies
adversarial samples, especially converting NORMAL to PNEUMONIA
(top row, column 3). In contrast, adversarial training and autoen-
coder defenses preserve correct predictions, maintaining high con-
fidence even under perturbation (€=0.03). Thus, defended models
are more robust against adversarial attacks, with adversarial training
showing the best consistency.

In Fig. 9, RESNET50 perturbation analysis shows that all model vari-
ants (base, adversarial training, autoencoder) retain correct clas-
sification under adversarial noise (¢=0.03), but confidence drops
in some cases. Adversarial training maintains higher confidence in
adversarial predictions compared to the base model and autoen-
coder, especially in top-row results. This confirms that adversarial
training offers greater robustness, while autoencoders show com-
petitive but slightly less stable performance.

In Fig. 10, INCEPTIONV3 perturbation analysis (¢=0.03), all models,
including base, adversarial training, and autoencoder, are correctly
classifying adversarial images as PNEUMONIA. However, confidence
scores fluctuate, with autoencoders surprisingly achieving the

highest adversarial confidence (0.862). Overall, all defenses perform
well, but autoencoders show strong resilience in this architecture,
slightly outperforming others under perturbation.

In Fig. 11,VGG19 perturbation analysis (€ =0.03), the base model mis-
classifies the adversarial image, while both adversarial training and
autoencoder retain correct predictions. Notably, confidence remains
stable or even increases under perturbation for defended models,
especially in the autoencoder case. This confirms that defense mech-
anisms significantly enhance robustness in VGG19 against adver-
sarial attacks.

Based on detailed analysis across VGG16, VGG19, ResNet50, and
InceptionV3 architectures, adversarial training consistently delivers
the highest robustness, preserving accuracy and confidence under
attacks. It effectively prevents label flipping and ensures stability,
especially in VGG models. Autoencoders, while slightly less powerful,
show strong resilience in InceptionV3 and VGG19, acting as efficient
preprocessing defenses. In contrast, base models are highly vulner-
able to adversarial noise, with frequent misclassifications and confi-
dence degradation. They are adversarially trained.

Models also outperform others on clean data, offering better gen-
eralization. Overall, adversarial training stands out as the most
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Fig. 9. RESNET50 perturbation analysis.
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Fig. 10. InceptionV3 perturbation analysis.

architecture-independent and reliable defense. Autoencoders On clean data, all base models achieved strong performance; for
remain a practical alternative when computational efficiency is a example, InceptionV3 reported 83.15% accuracy and 92.27% AUC,

concern. Studies can recommend MI classification tasks sensitive to indicating robust learning on unperturbed images. However, perfor-
adversarial noise (e.g., pneumonia detection in X-rays); incorporat- mance collapsed under adversarial conditions, with accuracy drop-
ing adversarial training is essential. Autoencoders may be used in ping as low as 0.3%-2% and AUC nearing zero, underscoring critical
tandem or as an alternative where computational constraints exist. vulnerability.

B. BreakHis Dataset

Table V evaluation clearly demonstrates that the InceptionV3 model, ~ Visual comparisons further confirm this vulnerability, where even
while achieving excellent performance on clean data (accuracy:  high-confidence predictions on original samples flipped under

83.15%, AUC: 92.27%), is highly susceptible to adversarial attacks.  attack, especially in the case of malignant-to-benign misclassifi-
Under FGSM, PGD, MFGSM, and BIM perturbations, the model’s cation. Adversarial training marginally improved robustness by
accuracy plunges to below 3%, and AUC scores drop close to zero, correcting some misclassifications and stabilizing prediction con-
indicating a complete breakdown in classification ability. Precision, ~ fidence, but still showed susceptibility in certain cases. The most
recall, and F1 scores also show significant degradation, confirming ~ consistent and effective defense across all models was the autoen-
poor prediction confidence and consistency. Among the attacks, ~ coder defense, which retained correct classification in both benign

PGD and MFGSM appear most destructive, with performance met- and malignant categories, even under attack, with confidence levels
rics nearing zero. These findings highlight the critical need for inte-  typically above 0.85. For example, in the VGG19 adversarial case, the
grating adversarial training or robust defense mechanisms. Without ~ base model incorrectly predicted malignancy, while the autoen-
such measures, the model cannot be trusted in adversarial settings, ~ coder defense correctly restored the benign label with 85.7% confi-

especially in safety-critical applications like medical imaging or ~ dence, as can be seen in Figs. 13-18.

autonomous systems.
Study results conclude that adversarial attacks pose a serious risk to

Table V results combined with visual evidence across InceptionV3, deep learning-based medical diagnostics, severely degrading classi-
ResNet50, VGG16, and VGG19 models clearly highlight the severe fication accuracy. Among the evaluated strategies, the autoencoder
impact of adversarial attacks (particularly PGD) on model reliability. defense proved to be the most robust and reliable, suggesting it

VGG19 Perturbation Analysis (¢ = 0.03)
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Fig. 11. VGG19 pertubation analysis.
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attack comparison.

Fig. 12. (a) InceptionV3 original vs adversarial attack comparison. (b) ResNet50 original vs adversarial attack comparison attack comparison

should be prioritized in safety-critical applications such as histopa-
thology image classification.

In Fig. 12a, visual results show that while the base InceptionV3
model correctly classifies original images, it misclassifies PGD adver-
sarial examples (e.g., malignant predicted as benign with 99.6% con-
fidence). Adversarial training improves robustness slightly but still
shows reduced confidence and occasional misclassifications. The
autoencoder defense demonstrates the best resilience, maintain-
ing correct predictions with relatively high confidence even under
attack.

In Fig. 12b, ResNet50 base model misclassifies a benign sample as
malignant with high confidence (0.982), showing poor specificity.
Adversarial training corrects this misclassification under PGD attack,
while the autoencoder defense offers the best overall performance,
maintaining correct predictions and stable confidence. Notably, for
malignant cases, all models retain correct classification, though con-
fidence drops under adversarial conditions, particularly for the base
model.

In Fig. 13a, the VGG16 base model performs well on clean images
but misclassifies a malignant PGD attack sample as benign with
71.8% confidence. Adversarial training corrects this misclassification
with improved robustness, while the autoencoder defense consis-
tently restores correct predictions with higher confidence (up to
85.7%). Overall, the autoencoder defense proves most resilient to
PGD attacks in preserving classification accuracy. In Fig. 13b, VGG19
results, the base model misclassifies a benign PGD sample as malig-
nant with 62.1% confidence, while adversarial training and auto-
encoder defense successfully correct the prediction to benign. For
malignant samples, all models, including under PGD attack, retain
correct classification with high confidence, especially the base and
autoencoder models. Overall, the autoencoder defense provides the
most stable and accurate performance across both clean and adver-
sarial inputs.

The comparison of accuracy across all three Fig. 14[a-c] charts
shows that base models suffer dramatic performance drops under
adversarial attacks, especially InceptionV3 under BIM and PGD.

Original vs Adversarial Attack Comparison - VGG16

(a)

Original vs Adversarial Attack Comparison - VGG19
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Fig. 13. (a) VGG16 original vs adversarial attack comparison. (b) VGG19 original vs adversarial attack comparison.
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Fig. 14. (a) Accuracy of the autoencoder defense model. (b) Accuracy of adversarial trained models. (c) Accuracy of adversarial trained models.

Autoencoder defense models significantly recover accuracy under
all attacks, with ResNet50 maintaining the highest stability and per-
formance across scenarios. Adversarial training provides moderate
robustness but performs less consistently than autoencoders, espe-
cially against strong perturbations like BIM. Overall, autoencoder
defenses emerge as the most effective strategy for preserving the
model. Fig. 15a AUC chart shows that base models lose discrimina-
tory power under adversarial attacks, with InceptionV3 and VGG19
dropping close to 0 for PGD and BIM. The second Fig. 15b chart
reveals that autoencoder defenses significantly restore AUC scores,
maintaining values above 0.65 for all models and attacks, peaking at
0.97 for ResNet50. The third Fig. 15¢ chart shows adversarial training
improves AUC robustness moderately, with scores generally in the
0.6-0.78 range under attack. Overall, autoencoder defense offers
superior consistency and resilience, especially for ResNet50 and
VGG19.

C. Accuracy Under Adversarial Conditions

Fig. 15a AUC chart shows that base models lose discriminatory power
under adversarial attacks, with InceptionV3 and VGG19 dropping
close to 0 for PGD and BIM. The second Fig. 15b chart reveals that
autoencoder defenses significantly restore AUC scores, maintain-
ing values above 0.65 for all models and attacks, peaking at 0.97 for
ResNet50.The third Fig. 15¢ chart shows adversarial training improves
AUC robustness moderately, with scores generally in the 0.6-0.78
range under attack. Overall, autoencoder defense offers superior
consistency and resilience, especially for ResNet50 and VGG19.

Fig. 16a chart shows that F1 scores for base models collapse
under all adversarial attacks, especially for InceptionV3, where
they fall near zero. Fig. 16b chart highlights that autoencoder

defense significantly restores F1 performance across all attacks,
with ResNet50 achieving the most consistent robustness (=0.80).
Fig. 16c chart reveals that adversarial training improves F1 scores
moderately but performs less reliably under strong attacks like BIM.
Overall, autoencoder defense consistently delivers higher F1 stabil-
ity, confirming its superiority in balancing precision and recall under
adversarial stress.

Fig. 17a chart reveals that base models suffer a drastic precision
drop under adversarial attacks, especially InceptionV3, which
drops to nearly zero. Fig. 17b chart shows that the autoencoder
defense significantly restores precision, with ResNet50 maintain-
ing precision above 0.75 across all attacks. Fig. 17c chart indi-
cates that adversarial training improves precision but remains less
effective against stronger attacks like BIM. Overall, autoencoder
defense consistently yields higher precision across all models and
attack types, confirming its superiority in preserving classification
confidence.

Fig. 18a chart shows that recall drops drastically for base models
under adversarial attacks, falling near zero for InceptionV3, VGG16,
and VGG19. Fig. 18b chart indicates that autoencoder defenses
effectively restore recall performance, especially in ResNet50 and
VGG19, where values remain above 0.80 across most attacks. Fig. 18c
chart reveals that adversarial training moderately improves recall
but still underperforms compared to autoencoder defense. Overall,
autoencoder models provide the best recall consistency, preserving
sensitivity even in adversarial scenarios.

The overall analysis reveals that the BreakHis histopathological data-
set shows that base models exhibit strong performance on clean

AUC Score - Base Models

AUC Score -
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[
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Fig. 15. (a) AUC score of base model robustness. (b) AUC score of autoencoder defense model. (c) AUC score of adversarial trained models.
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Fig. 16. (a) F1 score of base model robustness. (b) F1 score of autoencoder defense model. (c) F1 score of adversarial trained model.
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Fig. 17. (a) Precision of base model robustness. (b) Precision of autoencoder defense model. (c) Precision of adversarial trained model.

data but are highly susceptible to hostile attacks, with all evaluation strategy for robust and secure classification in these types of sensi-
metrics—accuracy, precision, recall, F1-score, and AUC—dropping tive applications.

significantly, especially for InceptionV3. Adversarial training offers

moderate improvement by enhancing robustness, particularly in V. CONCLUSION AND FUTURE WORK

recall, but still struggles under stronger attacks like BIM and PGD.

In contrast, the autoencoder defense consistently outperforms In this study, a robust hybrid adversarial defense framework was
both base and adversarially trained models across all metrics and developed by integrating adversarial training and autoencoder-

attacks. ResNet50 with autoencoder defense shows the most bal- based image reconstruction to enhance the reliability of deep learn-
anced and resilient performance. This demonstrates the effective- ing models for Ml classification. The approach was evaluated on two
ness of autoencoders in restoring model reliability under adversarial ~ clinically significant datasets, Pneumonia chest X-rays and BreakHis

stress. Thus, the autoencoder-based defense is the most reliable histopathology images, under multiple gradient-based adversarial

Recall - Base
[
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Fig. 18. (a) Recall of base model robustness. (b) Recall of autoencoder defense model. (c) Recall of adversarial trained model.
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attacks. Results demonstrated that hostile attacks significantly
degrade model performance, particularly in safety-critical domains
like medical diagnostics. Among tested architectures, VGG19 and
ResNet50 consistently showed enhanced robustness under adver-
sarial training. Autoencoders, while less effective on Pneumonia
data, performed better on BreakHis images, especially when paired
with ResNet50. Overall, adversarial training emerged as a more
architecture-independent and effective strategy, while autoencod-
ers provided a lightweight, computationally efficient alternative. The
proposed hybrid model achieved substantial recovery in classifica-
tion accuracy and confidence. This dual-defense system enhances
model interpretability and security. The framework is adaptable
across architectures and datasets, making it viable for clinical inte-
gration. Future work may explore model compression and real-time
deployment for edge medical applications. The study offers a valu-
able step toward secure, generalizable Al in healthcare. This study
offers valuable perspectives that go beyond a fundamental under-
standing of vulnerabilities.

A. Future Work

A roadmap for future investigations is provided, encouraging the
development of deep learning systems specifically intended for Ml
processing that are more reliable, safe, and therapeutically benefi-
cial. Itis crucial to continuously improve and develop defense strate-
gies as the industry develops. This work provides a solid foundation
for future research, encouraging the creation of innovative defenses
against adversarial attacks while also enhancing the general secu-
rity and dependability of Ml processing systems. The future work will
focus on developing another healthcare system incorporating a cer-
tified defense strategy, supported by confusion matrices, P-values,
k-fold cross-validation, and ROC curves.
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