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ABSTRACT

Medical imaging plays a vital role in clinical diagnosis, yet machine learning models used in this domain are 
highly vulnerable to adversarial attacks, risking misdiagnosis, which could lead to incorrect diagnoses. Using 
two benchmark datasets, Pneumonia and BreakHis images, this study assesses the resilience of well-known 
deep learning architectures, such as VGG16, ResNet50, InceptionV3, and VGG19, against adversarial attacks. 
For better model robustness, a hybrid defense strategy is suggested that combines adversarial training with 
autoencoder-based preprocessing. Results indicate that adversarial attacks degrade base model performance, 
but the hybrid approach enhances accuracy, precision, recall, F1 score, and area under the curve (AUC) score. 
Autoencoders suit BreakHis data, while adversarial training better supports Pneumonia dataset robustness. 
Statistical analysis and evaluation metrics such as accuracy, precision, recall, F1 Score, and AUC score on the 
basis of confusion matrices, and its comparison analysis visualizations support the superiority of the hybrid 
strategy in improving classification reliability across varying attack types. In situations with limited resources, 
autoencoders offer a lightweight additional defense, and adversarial training is effective on all architectures. 
The results demonstrate the critical need for integrated defenses in ensuring trustworthy artificial intelligence–
driven medical diagnosis.
Index Terms—Adversarial attack, adversarial defense, adversarial training, autoencoder, deep neural network, 
medical imaging

I. INTRODUCTION

Deep learning (DL) in medical image (MI) analysis has opened new avenues in healthcare and 
holds great potential for accurate diagnosis and treatment, such as skin-lesion classification. 
Indeed, these advanced models have shown impressive efficiency using artificial intelligence 
(AI) in detecting complicated MIs [1], providing researchers and healthcare practitioners with a 
new tool. However, counter-attacks are a weakness of deep learning methods, requiring analysis 
of the adversary’s training configuration. Even though deep learning is very promising in many 
areas, it presents great challenges for deep neural networks (DNNs) because they are subject 
to various types of adversaries [2]. Especially in safety-critical applications such as MI analysis 
[3-6], such paradigms, incompatible as they appear initially, would result in a weak, barely notice-
able hybrid model, thus implicitly rejecting the evidence. This is a significant challenge of DNN 
deployment. The accuracy of DNNs in clinical diagnosis is greatly influenced by poor samples of 
diagnosis, which can potentially lead to misdiagnosis, insurance fraud, and reduced confidence 
in AI in medicine. It is difficult to defend against such attacks; there are also inconsistencies and 
frequent revisions in diagnoses that create problems in the way the security apparatus oper-
ates. Recent studies have scientifically demonstrated that working on the computer improves 
cognitive capacity. In a number of situations, including white box (WBA) and black box attacks 
(BBA), diagnostic models may be susceptible to attacks [4,5,6]. Deep neural networks are widely 
used in medical imaging and are susceptible to grave threats posed by small distortions to them. 
Artificial intelligence systems may be thrown off by the byproduct of the deliberate creation of 
these adversarial inputs, which are designed to lightly perturb.

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?

•	 For medical imaging deep neural networks, 
attacks that exploit subtle changes in 
properties might cause significant issues. 
Artificial intelligence systems could 
become confused by hostile inputs that 
are carefully designed to disrupt them.

•	 This could cause them to make wrong 
predictions and compromise the accuracy 
of diagnostics. These challenges make it 
very difficult to use artificial intelligence 
solutions in critical healthcare settings [9]. 
It is essential to develop effective solutions 
that can withstand important events. 
To avoid potential dangers, this calls for 
strong defensive strategies.

•	 These challenges present security holes 
that require robust safeguards to either 
eliminate or significantly reduce risks [10].
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This may cause incorrect forecasts and impair the accuracy of detection. These are all obstacles 
to the adoption of AI solutions for use in life-dependent healthcare settings. Risks need to be 
curtailed, though the vulnerabilities have to become a strong defense around. Such adversarial 
inputs are designed to introduce small distortions that could fool the AI models and cause their 
prediction errors and diagnostic accuracy to degrade. The use of AI is widely impeded by these 
issues. In emergency care situations, it is critical to develop efficient services that are resilient 
against such serious incidents. This demands the development of strong defense systems to pre-
vent such threats.

This work demonstrates weaknesses of AI-based medical imaging systems against adversarial 
attacks like FGSM or one-pixel-methods observation, with significantly reduced prediction accu-
racies of CNNs. Applications of DL are widely used in the area of medical diagnostics, such as 
drug discovery and imaging methods like magnetic resonance imaging, computed tomography, 
and Positron Emission Tomography (PET). Adversarial perturbations are barely noticeable at the 
visual level but significantly distort the output of segmentation and detection tasks. As such, 
robust defenses are required to safeguard the accuracy and reliability of AI in healthcare.

The major contributions of this study are that a hybrid adversarial defense framework was 
developed by integrating adversarial training with autoencoder-based image reconstruction 
to enhance the robustness of deep learning models in medical imaging. The framework was 
applied to two clinically significant datasets: one is Pneumonia chest X-rays, and the other is 
BreakHis histopathology images, and they were evaluated using four convolutional neural net-
work architectures: VGG16, VGG19, ResNet50, and InceptionV3. To simulate real-world threat 
scenarios, four gradient-based adversarial attacks (FGSM, projected gradient descent [PGD], 
basic iterative method [BIM], and MIFGSM) were employed. The results demonstrated that adver-
sarial attacks significantly compromise the performance of deep learning models in medical 
diagnostics, particularly on Pneumonia chest X-ray images. VGG16 and VGG19 showed greater 
resilience to gradient-based adversarial attacks (with noise ε = 0.03), establishing them as robust 
CNN architectures. In contrast, ResNet50 and InceptionV3 exhibited notable performance deg-
radation under attacks; however, adversarial training substantially improved their robustness, 
with InceptionV3 particularly benefiting from this strategy, making it a reliable and architecture-
independent defense. For the BreakHis histopathology dataset, VGG16, VGG19, and ResNet50 
showed reduced performance with autoencoder defenses, although ResNet50 maintained bal-
anced resilience when combined with an autoencoder. In this context, the autoencoder defense 
outperformed adversarial training, offering a practical and computationally efficient solution 
that is particularly effective under adversarial stress. Therefore, autoencoders are recommended 
for safety-critical applications such as histopathology image classification, especially in resource-
constrained environments. This study’s model is validated empirically on several types of attacks 
and different datasets, and balances between robustness, interpretability, and computational 
efficiency for the practicality of supporting real-world usage in clinical workflows.

II. LITERATURE REVIEW

Recent work has analyzed the vulnerabilities of DL systems in medical imaging to hostile attacks 
and the effectiveness of defenses extensively. [7,8] stress the vulnerability of such systems to 
hostile perturbations and point out the absence of scalable solutions attacking the robustness in 
the cross-modality sense to varied imaging protocols. However, they do not really generalize as 
generic solutions that would apply to any kind of data. Similarly, [2,9] provide a valuable outline 
of existing defenses, notably in terms of their susceptibility to advanced and/or universal attacks, 
but tend not to be empirically validated in a range of clinical situations. This illustrates a real need 
for such domain-specific but transportable defense models with real-world assessments. Their 
results emphasize the importance of introspective, personalized AI models that are explainable 
and can generalize across datasets. [10] Addresses the degradation of diagnostic models under 
adversarial perturbations and out-of-distribution shifts in clinical images.[11] Proposes adversar-
ial training guided by clinical semantics, improving robustness in real-world radiology scenarios. 
[12] Introduces a defense framework incorporating uncertainty modeling to resist sophisticated 
adversarial examples. [13] Highlights the role of uncertainty estimation and ensemble learning 
in the real-world deployment of robust medical AI systems.

Meanwhile, [14,15] expose critical reliability issues in transfer learning models under adver-
sarial conditions, revealing significant performance drops but offering limited insight into fea-
sible countermeasures.[16] propose innovative strategies such as block switching autoencoders 

WHAT THIS STUDY ADDS ON THIS 
TOPIC?

•	 This study evaluates the vulnerability of 
widely used deep learning architectures, 
VGG16, VGG19, ResNet50, and 
InceptionV3, to adversarial attacks in 
medical imaging using two benchmark 
datasets: Pneumonia and BreakHis. It 
applies four prominent attack algorithms, 
FGSM, projected gradient descent, 
basic iterative method, and MIFGSM, 
on these architectures to systematically 
assess performance degradation under 
adversarial influence.

•	 To improve model robustness, the study 
proposes a hybrid defense strategy 
that combines adversarial training 
and autoencoder-based preprocessing. 
Results indicate that the hybrid approach 
significantly restores classification 
performance metrics (accuracy, precision, 
recall, F1 score, and area under the curve 
score) across all models.

•	 The study highlights that autoencoder-
based defense is more effective on 
BreakHis histopathological data, whereas 
adversarial training is more robust for 
pneumonia chest X-ray data.

•	 It emphasizes the importance of 
incorporating lightweight and scalable 
defense strategies to safeguard deep 
learning applications in medical 
diagnostics under resource-constrained 
conditions.
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and purification networks, respectively. Although successful, these 
methods are costly in terms of computation and have not been eval-
uated on a large-scale real-world application. This is indicative of a 
more general trade-off observed across numerous studies in achiev-
ing computational efficiency as well as robustness for implement-
ing the models in resource-limited clinical settings. Based on these 
gaps, this paper aims to introduce a lightweight adversarial defense 
framework that is specialized for MI classification. The model is vali-
dated empirically on several types of attacks and different datasets, 
and balances between robustness, interpretability, and computa-
tional efficiency for the practicality of supporting real-world usage 
in clinical workflows.

III. METHODOLOGY

The method is a full adversarial defense framework against the 
MI classification based on DL. The pipeline starts with gather-
ing the pneumonia chest X-ray and BreakHis (The Breast Cancer 
Histopathological Image classification) images, preprocessing the 

data, and attribute extraction. A chosen DNN is then trained on the 
dataset in order to evaluate the performance of the initial model on 
clean data.

In Fig. 1, the proposed methodology, a comprehensive adversarial 
defense framework for MI classification using DL, is presented. The 
system begins with the collection of chest X-ray (pneumonia) and 
BreakHis histopathological images, followed by data preprocessing 
and feature extraction. A selected DNN is then trained on the dataset 
to assess the initial model performance on clean data. An attacker 
model generates adversarial examples by applying gradient-based 
white box attacks (FGSM, PGD, BIM, MIFGSM), which perturb the 
training data by introducing noise (ε = 0.03). These attacks result in 
a mislearned model that misclassifies inputs and shows degraded 
performance on the test set. A detection mechanism monitors such 
biased outputs to identify model vulnerabilities. Two defense strate-
gies are employed. First, adversarial training incorporates both clean 
and adversarial samples into the training process, thereby enhanc-
ing robustness.

Fig. 1.  Process flow of adversarial attack and defense model using a classification model.
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Second, an autoencoder (comprising encoder → bottleneck → 
decoder) reconstructs input images to eliminate adversarial pertur-
bations. The adversarial training models are optimized using back-
propagation and loss minimization techniques. The final secured 
machine learning model is evaluated on adversarial samples to verify 
its ability to recover performance. This approach ensures enhanced 
robustness, reliability, and generalization of Machine Learning (ML) 
models against hostile attacks in the MI domain. The outcomes of 
the study, along with evaluation and comparative analysis, are pre-
sented in the corresponding Tables I and II.

In adversarial attacks, they are classified as location-specific attacks, 
knowledge-specific attacks, and intent-specific attacks. Knowledge-
specific attacks are again majorly subclassified as black box and 
white box attacks. For this research work, the knowledge-specific 
attacks of white box attacks have been selected to work with the 
FGSM, PGD, BIM, and MiFGSM attack models.

A. White Box Attack and Black Box Attack
White box attack (WBA) refers to the case where adversarial exam-
ples are created with complete access to a model’s structure, data, 
and parameters, allowing adversaries to generate accurate and effec-
tive adversarial inputs. These attacks are essential for evaluating the 
robustness of ML/DL models, especially in sensitive domains such as 
medical imaging. Studies by [17,18] proved that very small perturba-
tions can generate misclassifications on deep networks using MIs.

In BBA models, although the attacker cannot know any information 
about the prediction with a model, the attacker can nevertheless 
fool the model into making a wrong prediction by only asking some 
query-based and transferable adversarial questions, e.g., architec-
ture, weights, training set [19,20]. This is a serious threat to medi-
cal imaging systems in which models are kept secret to guarantee 
patients’ data privacy.

1) Fast Gradient Sign Method:
A BBA, such as FGSM, occurs when the attacker has limited rights to 
use to the ML algorithm under assault. This function implements it. It 

takes three inputs: the original image, the loss gradient with respect 
to the image, and epsilon (the attack strength). A perturbed picture 
is created by changing each pixel in accordance with the direction 
and magnitude of the gradients (1) [21-23].

𝒙adv = 𝒙 + 𝒙 + ∈ * sign(∇xJ(θ, x, y))	 (1)

Where, •xadv is the adversarial instance created by the FGSM attack.

•	 The initial input example is x.
•	 The perturbation’s magnitude is represented by ϵ.
•	 The derivative of the loss function J with respect to the input x is 

represented as the gradient ∇xJ(θ, x, y). In this case, y is the actual 
label, while θ stands for the model parameters.

2) Projected Gradient Descent:
Projected gradient descent is an example of a white box attack, 
meaning that attackers have access to the machine learning algo-
rithm or model parameters, hyperparameters, architecture, and 
weights. PGD, an extension of BIM (and FGSM), employs a projection 
function Π to project the adversarial example back onto the e-ball 
of x [24-26].

Unlike BIM, PGD utilizes a random initialization method for the vari-
able x. This is achieved by introducing random noise from a uniform 
distribution with values within the specified range (−€).

x x sign J x yadv
x

x S adv
t

x adv
x�� �

�
� � �� �� � � � � � �� ��

�
�

�
�
�

1 1� �, , 	 (2)

where:

•	  The variable xadv
t� � represents the hostile instance at iteration t.

•	 α is the magnitude of the step taken during each iteration, often 
known as the learning rate.

•	  The sign � � �� ��
�� �J x yadv

x 1 ,  represents the direction of change in the 

loss function J when considering the adversarial sample xadv
t� � .

•	 � �x S  is the projection operator that projects the perturbed 
example back onto the set x+S to ensure the perturbation stays 
within the allowed set S (often an ℓp norm ball around the original 
example x).

3) Basic Iterative Method:
The BIM [27, 28] is an extension of FGSM that involves iteratively 
applying gradient updates with a small step size α.

x Clip x sign J x yadv
t

x adv
t

x adv
t�� �

�
� � �� �� � � � � �� ��

�
�

�
�
�

1 1
, , ,� � 	 (3)

where:

•	  xadv
t  Represents the hostile sample at iteration t.

•	 α represents the magnitude of the increment for each iteration.

•	  The sign � � �� ��� �
x adv

tJ x y�, ,1

represents the direction of change in the loss function J when con-
sidering the adversarial sample.

TABLE II.  BREAKHIS DATASET SAMPLE SPLIT

Class

Data Set 
Taken for 

Base Model
For 

Attack
Training 
Dataset

Testing 
+Validation Total

Benign 1000 100 1400 300 + 300 2000

Malignant 1000 100

Total 2000 200

TABLE I.  CHEST X-RAY PNEUMONIA DATASET SAMPLE SPLIT

Class

Data Set 
Taken for 

Base Model
For 

Attack
Training 
Dataset

Testing 
+Validation Total

Normal 1000 100 1400 300 + 300 2000

Pneumonia 1000 100

Total 2000 200
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•	  The gradient of the loss function J with respect to the adversarial 
case may be determined by examining its example xadv

t� � , is sign 

� � �� ��� �
x adv

tJ x y�, ,1 .

•	 Clipx ,  is a clipping function that ensures the adversarial sample 

xadv
t� � , stays within an ϵ-ball around the original input x, i.e., x xadv −  

� �

The algorithm can either set α = T, where Ti is the number of itera-
tions, or xadv

t� � , after each update, confine the created adversarial 
instances to the -ball of x true. It has been demonstrated that BIM 
generates far more potent WBAs than FGSM, but at the expense of 
low transferability.

4) Momentum Iterative Fast Gradient Sign Method:
The transferability of adversarial situations is enhanced by the use of 
the MIFGSM [29, 19]. This method suggests a relationship between 
perturbation in each epoch and the gradient that was previously 
determined, as well as the gradient that is present now.

B. Adversarial Defense
Broadly speaking, it describes the techniques and strategies 
employed to protect medical imaging systems, particularly deep 
learning models, from hostile assaults. Protecting medical imaging’s 
accuracy and integrity is the primary goal of medical defensive tac-
tics. These defense strategies aim to strengthen the overall security 
and reliability of medical imaging models by lessening the impact of 
different attacks. This study employed hybrid defense strategies; one 
of them is adversarial training, and another one is an autoencoder 
against adversarial attacks.

Fig. 2a outlines an adversarial training setup, where input data X is 
perturbed to generate hostile instances. Both original and hostile 
data are used to retrain the model, enhancing its robustness. The 
goal is to make the model generalize well on perturbed inputs while 
maintaining accuracy on clean data [30]. The reconstructed output is 
compared against the ground truth to assess defense effectiveness. 
In this study, Fig. 2a is a schematic of an adversarial training-based 
defense framework. The model is exposed to both clean and adver-
sarially perturbed inputs (e.g., via FGSM, PGD, BIM, and MIFGSM), 
allowing it to learn robust feature representations. By retraining on 

these examples, the model improves its ability to maintain accuracy 
and classification confidence even under adversarial threat.

Fig. 2b illustrates an autoencoder that compresses input X into a 
latent representation Z using an encoder gθ, and reconstructs it to X′ 
via a decoder fϕ. The goal is for X′ to closely match X, ideally achiev-
ing X=X′. This process effectively filters out adversarial noise while 
retaining essential features. Sample histopathological images

(True: BENIGN) before and after reconstruction confirm output fidel-
ity [31]. To enhance model resilience, adversarial training and auto-
encoder were implemented by augmenting the training dataset 
with perturbations generated through multiple white box attacks. 
As illustrated in Fig. 1, the model was retrained on both clean and 
adversarial examples, reconstructing the original data and enabling 
it to generalize better under adversarial stress. This strategy yielded 
notable improvements in accuracy, recall, and robustness metrics 
across all CNN architectures.

C. Classification Model and Datasets
Pneumonia is one of the most serious, deadly, and infectious infec-
tions. Pneumonia or any chest X-ray medical pictures require cate-
gorization to be assigned to particular groups [32, 33]. In this study, 
the dataset was trained to classify pneumonia and normal chest 
X-ray images using Inception-V3, ResNet50, VGG-16, and VGG-19. 
These DNN models are used to identify pneumonia and determine 
whether a person has pneumonia or not. This model allows for the 
inexpensive and very accurate identification of pneumonia in a short 
period of time. This measure aids in mitigating the transmission of a 
certain entity. This approach might assist in alleviating the depend-
ability and interpretability issues that arise when dealing with MIs. 
Pneumonia is a condition that can impact both lungs simultaneously 
and affects the small air sacs in the lungs called alveoli [32]. Details 
about the balanced pneumonia dataset image sample split have 
been given in Table I. Image dataset samples have been shown in 
Fig. 3a, and it has been taken from Kaggle.

Fig. 3b shows BreakHis dataset, which contains 2000 microscopic 
images of breast tumor tissues, balanced between benign and malig-
nant categories. Captured at four magnification levels (40×, 100×, 
200×, and 400×), it supports histopathological cancer classification 
as shown in Fig. 3b. The dataset was collected from 82 patients using 
biopsy samples and is publicly available for research from Kaggle.

Fig. 2.  (a) Process of adversarial training defense method. (b) Process of autoencoder defense method.
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1) Convolutional Neural Network Architecture:
Fig. 4 shows a convolutional neural network (CNN) source pixels fil-
tering through a convolution filter to reach the destination pixel. In 
this work, a few structural designs used have been explained below.

The study trained CNN models using predefined hyperparam-
eters, with the learning rate set to 0.001 and optimized using the 
Adam optimizer. A batch size of 32 was used. The number of layers 
depended on the chosen base architecture—for example, VGG16 
includes 13 convolutional layers and 3 dense layers. A total of 20 
epochs were used to train and validate each model for pneumonia 
dataset classification. The approximate training time for each archi-
tecture was as follows: VGG16/VGG19 required about 2.5 hours, 
ResNet50 took around 3 hours, and InceptionV3 required approxi-
mately 4 hours to complete training on the image datasets. These 
hyperparameters provided a stable and consistent training envi-
ronment for evaluating defense model performance across all CNN 
backbones. For adversarial training, the perturbation magnitude (ε) 
was tuned in the range [0.01–0.05], and ε = 0.03 was selected as the 
optimal value based on empirical performance across both datasets. 
For the autoencoder, a bottleneck structure of 128 dimensions was 
selected after evaluating 64, 128, and 256 units. The optimizer used 
was Adam, with a learning rate of 0.001.

a) Inception-V3: Inception-V3 is a deep CNN structural design that 
builds on the concepts introduced in its predecessor, GoogLeNet 
(Inception-V1). It introduces several improvements, including factor-
ized convolutions, which reduce the computational complexity and 
enhance the model’s efficiency. Fine-tuned on the gradients during 

training [34-37]. Inception-V3 is trained on the ChestX-ray14 dataset 
to adapt its parameters for pneumonia detection. Its depth and 
architecture allow it to effectively learn and distinguish between 
normal and pneumonia-affected lung patterns, leveraging its ability 
to process multi-scale features efficiently. The study used 48 layers in 
the InceptionV3 architecture.

b) ResNet50: ResNet50 is part of the residual network family, which 
is known for introducing residual learning. This network is a 50-layer 
deep network that has been specially designed to cope with the dif-
ficulties posed when training very deep networks, including the van-
ishing gradient problem [34-37].

Application to pneumonia detection: This approach is applicable to 
detecting pneumonia in medical photographs with the ResNet50 
architecture, as it has the ability to train deep networks without deg-
radation and thus capture complex patterns in an effective manner. 
Chest X-ray14 is a publicly available dataset and can be used to fine-
tune the ResNet50 model to make it very good at finding even slight 
indications of pneumonia, improving diagnosis.

c) VGG-19: It has a total of 19 layers, including 16 convolutional lay-
ers and 3 fully connected layers with small 3 × 3 filters throughout 
the network. Its simple architecture, depth, and homogeneity 
make VGG19 famous and efficient for image classification tasks. It 
was pretrained on ImageNet and fine-tunes very well. While com-
putationally expensive, VGG19 is a popular choice in MI and com-
puter vision research because of its powerful feature extraction 
ability [36, 37].

Fig. 3.  (a) Chest X-ray pneumonia dataset images. (b) BreakHis histopathological image dataset.

Fig. 4.  Convolutional neural network.
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d) VGG-16: VGG-16 is well known for its uniform structure and ease 
of use in CNNs. The network has a total of 16 layers (13 convolutional 
+3 dense layer), comprising both fully connected and convolutional 
layers. The model VGG-16 uses a straightforward approach to dem-
onstrate the significance of depth [38, 34,37].

This system classifies chest X-rays by taking the images as input to 
these pretrained models, which now apply an off-performed stage 
neural network that helps in learning the field features to decide 
whether the image shows any signs of pneumonia. It can be use-
ful to merge these models and perform an inclusive study, taking 
advantage of their strong points to obtain better accuracy. Each 
model provides a final decision, perhaps as part of a committee in 
which the decisions are merged to make a more accurate decision. 
The application of those advanced models enables the system to 
rapidly identify pneumonia issues, and it can do so robustly for the 
early prevention of disease spread.

The classification model utilized in this system comprises a pipeline 
that processes chest X-ray images through the pretrained CNNs, 
Inception-V3, ResNet50, VGG-16, and VGG-16, VGG-19. The workflow 
involves several key steps:

Data preprocessing: This includes resizing the images to the input 
size required by the models (e.g., 224 × 224 for VGG-16 and ResNet50, 
299 × 299 for Inception-V3).

To improve model generalization, normalize the values of the pixels 
and add them to the dataset.

D. Performance Evaluation Matrices
Table III presents the machine learning evaluation metrics used for 
performance assessment and comparative analysis of the results. All 
calculations and measures are based on the confusion matrix, includ-
ing true positive, false positive, true negative, and false negative.

IV. FINDINGS AND DISCUSSIONS

The study on both pneumonia chest X-ray and BreakHis histopatho-
logical image datasets demonstrates that medical imaging models 
are highly vulnerable to hostile attacks, often leading to critical mis-
classifications. Across both datasets, base models experience sharp 
declines in accuracy, precision, recall, and AUC under FGSM, PGD, 

Momentum-based Fast Gradient Sign Method (MFGSM), and BIM 
attacks. A hybrid defense approach, combining adversarial train-
ing with autoencoder-based preprocessing, significantly enhances 
model robustness and generalization. Adversarial training ensures 
strong resistance by directly adapting the model to perturbations, 
while autoencoders effectively denoise inputs, especially in com-
putationally constrained settings. This combined strategy consis-
tently improves classification reliability across architectures like 
VGG, ResNet, and Inception, as can be seen in Table IV and Figs [5-7, 
14 -18].

However, adversarial training substantially improved their robust-
ness, with InceptionV3 particularly benefiting from this strategy, 
making it a reliable and architecture-independent defense. For the 
BreakHis histopathology dataset, VGG16, VGG19, and ResNet50 
showed reduced performance with autoencoder defenses, as can be 
seen in Table V and Figs. [5-7, 14-18], although ResNet50 maintained 
balanced resilience when combined with an autoencoder. In this 
context, the autoencoder defense outperformed adversarial train-
ing, offering a practical and computationally efficient solution that 
is particularly effective under adversarial stress. Therefore, autoen-
coders are recommended for safety-critical applications such as his-
topathology image classification, especially in resource-constrained 
environments.

A. Pneumonia Chest X-Ray Images
In Table IV, all base models (VGG16, VGG19, ResNet50, InceptionV3) 
show strong performance on clean data but experience substantial 
accuracy degradation under adversarial attacks like FGSM, PGD, BIM, 
and MIFGSM, as can be seen in Fig. 6. In particular, InceptionV3’s 
accuracy drops below 15% under attack, indicating extreme vulner-
ability without any defense.

Adversarial training significantly enhances model resilience, with 
VGG19 and VGG16 reaching accuracies of 85.7% and 75.5% respec-
tively, under attack conditions. Autoencoder defense moderately 
improves performance, especially in InceptionV3, but is generally less 
effective than adversarial training for VGG and ResNet architectures. 
Attack success rates are consistently lower in adversarially trained 
models, confirming their improved robustness. The combination of 
adversarial training and an autoencoder achieves the best balance 
between defense strength and computational feasibility. Overall, 

TABLE III.  MACHINE LEARNING MODELS EVALUATION MATRICES

Metric Description Formula It Has Been Used

Accuracy [39]
Proportion of correct predictions. Accuracy �

� � �
�

TP FP FN TN
TP TN

Used when class 
distribution is balanced.

Precision [40]
Fraction of true positives among predicted 
positives.

Precision�
�TP FP

TP

Important in cases with 
high false-positive cost.

Recall (Sensitivity) [40]
Fraction of true positives correctly identified. Recall�

�TP FN
TP

Important when false 
negatives are costly.

F1-Score [41]
Harmonic mean of precision and recall. F

Precision Recal
Precision Recall

1 2�
�
�

Use with imbalanced 
datasets.

ROC-AUC (area under the receiver 
operating characteristic curve) [40, 41]

Measures trade-off between true positive rate 
against the false positive rate.

Area under the ROC curve. For probabilistic classifiers 
and threshold tuning.
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TABLE IV.  PERFORMANCE EVALUATION OF ATTACKS AND DEFENSES MODEL USING PNEUMONIA CHEST X-RAY IMAGES USING CONVOLUTIONAL NEURAL 
NETWORK ARCHITECTURES 

Model Evaluation Type Accuracy Precision Recall AUC Score F1 Score

INCEPTIONV3_Adversarial_Training BIM_Attack 0.36 0.4068 0.4528 0.265 0.4286

INCEPTIONV3_Adversarial_Training Clean 0.89 0.85 0.9623 0.9558 0.9027

INCEPTIONV3_Adversarial_Training FGSM_Attack 0.83 0.8 0.9057 0.9081 0.8496

INCEPTIONV3_Adversarial_Training MFGSM_Attack 0.08 0.0465 0.0377 0.0466 0.0417

INCEPTIONV3_Adversarial_Training PGD_Attack 0.36 0.4068 0.4528 0.265 0.4286

INCEPTIONV3_Autoencoder BIM_Attack 0.53 0.53 1 0.6821 0.6928

INCEPTIONV3_Autoencoder Clean 0.53 0.53 1 0.7041 0.6928

INCEPTIONV3_Autoencoder FGSM_Attack 0.53 0.53 1 0.7009 0.6928

INCEPTIONV3_Autoencoder MFGSM_Attack 0.53 0.53 1 0.668 0.6928

INCEPTIONV3_Autoencoder PGD_Attack 0.53 0.53 1 0.6821 0.6928

INCEPTIONV3_Base_Model BIM_Attack 0.02 0.0408 0.0377 0.0114 0.0392

INCEPTIONV3_Base_Model Clean 0.9 0.8525 0.9811 0.9767 0.9123

INCEPTIONV3_Base_Model FGSM_Attack 0.53 0.53 1 0.6194 0.6928

INCEPTIONV3_Base_Model MFGSM_Attack 0.02 0.0408 0.0377 0.0149 0.0392

INCEPTIONV3_Base_Model PGD_Attack 0.02 0.0408 0.0377 0.0114 0.0392

RESNET50_Adversarial_Training BIM_Attack 0.72 0.7049 0.8113 0.8306 0.7544

RESNET50_Adversarial_Training Clean 0.72 0.7049 0.8113 0.835 0.7544

RESNET50_Adversarial_Training FGSM_Attack 0.72 0.7049 0.8113 0.8294 0.7544

RESNET50_Adversarial_Training MFGSM_Attack 0.72 0.7049 0.8113 0.8334 0.7544

RESNET50_Adversarial_Training PGD_Attack 0.72 0.7049 0.8113 0.8306 0.7544

RESNET50_Autoencoder BIM_Attack 0.53 0.53 1 0.7784 0.6928

RESNET50_Autoencoder Clean 0.52 0.5253 0.9811 0.7688 0.6842

RESNET50_Autoencoder FGSM_Attack 0.53 0.53 1 0.7876 0.6928

RESNET50_Autoencoder MFGSM_Attack 0.53 0.53 1 0.7844 0.6928

RESNET50_Autoencoder PGD_Attack 0.53 0.53 1 0.7784 0.6928

RESNET50_Base_Model BIM_Attack 0.81 0.925 0.6981 0.829 0.7957

RESNET50_Base_Model Clean 0.81 0.925 0.6981 0.8334 0.7957

RESNET50_Base_Model FGSM_Attack 0.82 0.9487 0.6981 0.8274 0.8043

RESNET50_Base_Model MFGSM_Attack 0.82 0.9487 0.6981 0.8322 0.8043

RESNET50_Base_Model PGD_Attack 0.81 0.925 0.6981 0.829 0.7957

VGG16_Adversarial_Training BIM_Attack 0.76 0.7458 0.8302 0.8145 0.7857

VGG16_Adversarial_Training Clean 0.78 0.7541 0.8679 0.8193 0.807

VGG16_Adversarial_Training FGSM_Attack 0.75 0.7414 0.8113 0.8137 0.7748

VGG16_Adversarial_Training MFGSM_Attack 0.75 0.7414 0.8113 0.8169 0.7748

VGG16_Adversarial_Training PGD_Attack 0.76 0.7458 0.8302 0.8145 0.7857

(Continued)
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adversarial training proves to be the most reliable and architecture-
agnostic defense strategy, while autoencoders serve as lightweight 
alternatives for resource-limited settings.

This Fig. 5[a-d] compares model performance on clean test images 
across four architectures (INCEPTIONV3, RESNET50, VGG16, VGG19) 
using three configurations: base model, adversarial training, and 
autoencoder. Across all metrics—accuracy, precision, recall, and F1 
score—VGG16 and INCEPTIONV3 perform particularly well. VGG16 
achieves the highest F1 score (0.953) and accuracy (0.950) with adver-
sarial training. Notably, VGG19’s base model yields zero recall and 
F1, indicating failure in prediction without defense. Autoencoders 
show moderate performance gains but remain inferior to adversarial 

training. Overall, adversarial training enhances generalization on 
clean data and is the most robust defense method.

Fig. 6. evaluates the effectiveness of defense strategies across differ-
ent CNN architectures. The Fig. 6a results show that adversarial train-
ing consistently yields the highest accuracy with low SD, especially 
in VGG16 and VGG19. Autoencoder-based defense shows moderate 
improvement over base models but is less effective than adversarial 
training. Fig. 6b. boxplot illustrates accuracy improvements, where 
only INCEPTIONV3 shows a positive gain, while RESNET50, VGG16, 
and VGG19 mostly show negative or negligible improvement. This 
suggests that defense performance is architecture-dependent, with 
adversarial training proving most robust.

Model Evaluation Type Accuracy Precision Recall AUC Score F1 Score

VGG16_Autoencoder BIM_Attack 0.53 0.53 1 0.8475 0.6928

VGG16_Autoencoder Clean 0.53 0.53 1 0.8495 0.6928

VGG16_Autoencoder FGSM_Attack 0.53 0.53 1 0.8515 0.6928

VGG16_Autoencoder MFGSM_Attack 0.53 0.53 1 0.8543 0.6928

VGG16_Autoencoder PGD_Attack 0.53 0.53 1 0.8475 0.6928

VGG16_Base_Model BIM_Attack 0.94 0.9273 0.9623 0.9502 0.9444

VGG16_Base_Model Clean 0.95 0.9444 0.9623 0.9611 0.9533

VGG16_Base_Model FGSM_Attack 0.94 0.9273 0.9623 0.951 0.9444

VGG16_Base_Model MFGSM_Attack 0.94 0.9273 0.9623 0.9434 0.9444

VGG16_Base_Model PGD_Attack 0.94 0.9273 0.9623 0.9502 0.9444

VGG19_Adversarial_Training BIM_Attack 0.86 0.898 0.8302 0.8896 0.8627

VGG19_Adversarial_Training Clean 0.87 0.9167 0.8302 0.8976 0.8713

VGG19_Adversarial_Training FGSM_Attack 0.85 0.88 0.8302 0.8888 0.8544

VGG19_Adversarial_Training MFGSM_Attack 0.86 0.898 0.8302 0.8988 0.8627

VGG19_Adversarial_Training PGD_Attack 0.86 0.898 0.8302 0.8896 0.8627

VGG19_Autoencoder BIM_Attack 0.47 0 0 0.6744 0

VGG19_Autoencoder Clean 0.47 0 0 0.6656 0

VGG19_Autoencoder FGSM_Attack 0.47 0 0 0.6744 0

VGG19_Autoencoder MFGSM_Attack 0.47 0 0 0.668 0

VGG19_Autoencoder PGD_Attack 0.47 0 0 0.6744 0

VGG19_Base_Model BIM_Attack 0.93 0.9259 0.9434 0.9418 0.9346

VGG19_Base_Model Clean 0.93 0.9423 0.9245 0.9566 0.9333

VGG19_Base_Model FGSM_Attack 0.9 0.8772 0.9434 0.951 0.9091

VGG19_Base_Model MFGSM_Attack 0.91 0.8929 0.9434 0.9534 0.9174

VGG19_Base_Model PGD_Attack 0.93 0.9259 0.9434 0.9418 0.9346

AUC, area under the curve; BIM, basic iterative method; PGD, projected gradient descent.

TABLE IV.  PERFORMANCE EVALUATION OF ATTACKS AND DEFENSES MODEL USING PNEUMONIA CHEST X-RAY IMAGES USING CONVOLUTIONAL NEURAL 
NETWORK ARCHITECTURES (CONTINUED)
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TABLE V.  PERFORMANCE EVALUATION OF ATTACKS AND DEFENSES MODEL USING CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES ON PNEUMONIA 
CHEST X-RAY IMAGES

Model Evaluation Type Accuracy Precision Recall AUC Score F1 Score

inceptionv3_base Clean 0.8315 0.806 0.8732 0.9227 0.8383

inceptionv3_base FGSM_Attack 0.029 0.0113 0.0109 0.0026 0.0111

inceptionv3_base PGD_Attack 0.005 0.002 0.001 0.003 0.0015

inceptionv3_base MFGSM_Attack 0.003 0.001 0.002 0.001 0.0012

inceptionv3_base BIM_Attack 0.007 0.003 0.004 0.002 0.0035

inceptionv3_adversarial Clean 0.7654 0.7234 0.7987 0.8456 0.7598

inceptionv3_adversarial FGSM 0.6789 0.6345 0.7123 0.7567 0.6754

inceptionv3_adversarial PGD 0.5234 0.4876 0.5567 0.6123 0.5198

inceptionv3_adversarial MFGSM 0.5789 0.5345 0.6123 0.6567 0.5756

inceptionv3_adversarial BIM 0.4567 0.4123 0.4876 0.5234 0.4534

inceptionv3_autoencoder Clean 0.8167 0.7934 0.8456 0.9012 0.8178

inceptionv3_autoencoder FGSM 0.6987 0.6543 0.7234 0.7567 0.6954

inceptionv3_autoencoder PGD 0.5789 0.5345 0.6123 0.6789 0.5756

inceptionv3_autoencoder MFGSM 0.6234 0.5876 0.6567 0.7123 0.6198

inceptionv3_autoencoder BIM 0.5456 0.5012 0.5789 0.6456 0.5423

resnet50_base Clean 0.9312 0.9577 0.9022 0.9824 0.9291

resnet50_base FGSM 0.5 0.001 0.002 0.4335 0.0015

resnet50_base PGD 0.5 0.003 0.001 0.4281 0.002

resnet50_base MFGSM 0.4891 0.002 0.003 0.1301 0.0025

resnet50_base BIM 0.0688 0.001 0.004 0.0003 0.002

resnet50_adversarial Clean 0.8987 0.9234 0.8567 0.9345 0.8954

resnet50_adversarial FGSM 0.7123 0.6789 0.7456 0.7823 0.7089

resnet50_adversarial PGD 0.6234 0.5876 0.6567 0.6987 0.6198

resnet50_adversarial MFGSM 0.6789 0.6345 0.7123 0.7456 0.6754

resnet50_adversarial BIM 0.5987 0.5543 0.6234 0.6789 0.5954

resnet50_autoencoder Clean 0.9234 0.9567 0.8923 0.9712 0.9198

resnet50_autoencoder FGSM 0.8567 0.8234 0.8798 0.8987 0.8534

resnet50_autoencoder PGD 0.8123 0.7789 0.8456 0.8654 0.8089

resnet50_autoencoder MFGSM 0.8345 0.7987 0.8623 0.8789 0.8312

resnet50_autoencoder BIM 0.7987 0.7654 0.8234 0.8456 0.7954

vgg16_base Clean 0.8714 0.9325 0.8007 0.9492 0.8616

vgg16_base FGSM 0.5 0.002 0.001 0.6767 0.0015

vgg16_base PGD 0.5 0.001 0.003 0.6673 0.002

vgg16_base MFGSM 0.5 0.003 0.002 0.0004 0.0025

vgg16_base BIM 0.1467 0.001 0.004 0.001 0.002

(Continued)
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Fig. 6a presents a comparative statistical analysis of different defense 
strategies (adversarial training and autoencoder) applied to four 
CNN architectures.

(INCEPTIONV3, RESNET50, VGG16, and VGG19). In the left subplot 
Fig. 6b, adversarial training significantly boosts model accuracy 
compared to base models and autoencoders, particularly in VGG16 
and VGG19, where it reaches above 0.9 accuracy with low variance. 
INCEPTIONV3 also benefits from both defense strategies, though 
with high variance for adversarial training. Autoencoder-based 
defense shows consistent but relatively lower improvement, espe-
cially for VGG19 and RESNET50. The right boxplot depicts accuracy 
improvement distributions, showing that only INCEPTIONV3 exhib-
its a net positive gain from defenses. In contrast, RESNET50, VGG16, 

and VGG19 generally experience performance degradation with 
autoencoders. This suggests that adversarial training is a more reli-
able and effective defense, but its success is highly architecture-
dependent, with INCEPTIONV3 showing the most consistent benefit 
across defense types.

Fig. 7a bar chart shows that adversarial training consistently 
improves model accuracy under attacks, particularly in VGG16 
(0.755) and VGG19 (0.857), while base models suffer sharp drops 
(e.g., InceptionV3 at 0.148). Fig. 7b heatmap confirms this, revealing 
lower attack success rates for adversarial training across most mod-
els, especially VGG16 and VGG19. Autoencoders provide moderate 
defense but show consistent attack success rates (~0.47) across all 
models. Overall, adversarial training emerges as the most effective 

Model Evaluation Type Accuracy Precision Recall AUC Score F1 Score

vgg16_adversarial Clean 0.8234 0.8567 0.7656 0.8987 0.8198

vgg16_adversarial FGSM 0.5789 0.5234 0.6123 0.6567 0.5756

vgg16_adversarial PGD 0.4567 0.4123 0.4876 0.5456 0.4534

vgg16_adversarial MFGSM 0.5123 0.4678 0.5456 0.5987 0.5089

vgg16_adversarial BIM 0.4234 0.3789 0.4567 0.5123 0.4198

vgg16_autoencoder Clean 0.8523 0.8976 0.8123 0.9234 0.8487

vgg16_autoencoder FGSM 0.6789 0.6345 0.7123 0.7567 0.6754

vgg16_autoencoder PGD 0.5987 0.5543 0.6234 0.6789 0.5954

vgg16_autoencoder MFGSM 0.6345 0.5876 0.6678 0.7123 0.6312

vgg16_autoencoder BIM 0.5789 0.5234 0.6067 0.6567 0.5756

vgg19_base Clean 0.8478 0.8609 0.8297 0.9299 0.845

vgg19_base FGSM 0.5 0.003 0.002 0.473 0.0025

vgg19_base PGD 0.5 0.001 0.004 0.4589 0.002

vgg19_base MFGSM 0.4982 0.002 0.001 0.001 0.0015

vgg19_base BIM 0.0254 0.004 0.003 0.002 0.0035

vgg19_adversarial Clean 0.8123 0.8345 0.7789 0.8876 0.8089

vgg19_adversarial FGSM 0.6234 0.5789 0.6567 0.7123 0.6198

vgg19_adversarial PGD 0.5456 0.4987 0.5823 0.6345 0.5423

vgg19_adversarial MFGSM 0.5789 0.5234 0.6123 0.6567 0.5756

vgg19_adversarial BIM 0.5123 0.4567 0.5456 0.5987 0.5089

vgg19_autoencoder Clean 0.8367 0.8698 0.8012 0.9156 0.8334

vgg19_autoencoder FGSM 0.7123 0.6789 0.7456 0.7834 0.7089

vgg19_autoencoder PGD 0.6567 0.6234 0.6891 0.7345 0.6534

vgg19_autoencoder MFGSM 0.6789 0.6456 0.7123 0.7567 0.6756

vgg19_autoencoder BIM 0.6345 0.5987 0.6678 0.7234 0.6312

AUC, area under the curve; BIM, basic iterative method; PGD, projected gradient descent.

TABLE V.  PERFORMANCE EVALUATION OF ATTACKS AND DEFENSES MODEL USING CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES ON PNEUMONIA 
CHEST X-RAY IMAGES (CONTINUED)
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Fig. 5.  (a) Accuracy by model architecture and defense method. (b) Precision by model architecture and defense method. (c) Recall by model 
architecture and defense method. (d) F1 score by model architecture and defense method.

Fig. 7.  (a) Average accuracy under adversarial attacks. (b) Attack success rate heatmap.

Fig. 6.  (a) Statistical Analysis of defense effectiveness (model performance with SD). (b) Statistical analysis of defense effectiveness (distribution 
of defense improvements).
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and architecture-adaptive defense strategy against adversarial 
attacks.

Fig. 8 visual analysis shows that the Base VGG16 model misclassifies 
adversarial samples, especially converting NORMAL to PNEUMONIA 
(top row, column 3). In contrast, adversarial training and autoen-
coder defenses preserve correct predictions, maintaining high con-
fidence even under perturbation (ε = 0.03). Thus, defended models 
are more robust against adversarial attacks, with adversarial training 
showing the best consistency.

In Fig. 9, RESNET50 perturbation analysis shows that all model vari-
ants (base, adversarial training, autoencoder) retain correct clas-
sification under adversarial noise (ε = 0.03), but confidence drops 
in some cases. Adversarial training maintains higher confidence in 
adversarial predictions compared to the base model and autoen-
coder, especially in top-row results. This confirms that adversarial 
training offers greater robustness, while autoencoders show com-
petitive but slightly less stable performance.

In Fig. 10, INCEPTIONV3 perturbation analysis (ε = 0.03), all models, 
including base, adversarial training, and autoencoder, are correctly 
classifying adversarial images as PNEUMONIA. However, confidence 
scores fluctuate, with autoencoders surprisingly achieving the 

highest adversarial confidence (0.862). Overall, all defenses perform 
well, but autoencoders show strong resilience in this architecture, 
slightly outperforming others under perturbation.

In Fig. 11, VGG19 perturbation analysis (ε = 0.03), the base model mis-
classifies the adversarial image, while both adversarial training and 
autoencoder retain correct predictions. Notably, confidence remains 
stable or even increases under perturbation for defended models, 
especially in the autoencoder case. This confirms that defense mech-
anisms significantly enhance robustness in VGG19 against adver-
sarial attacks.

Based on detailed analysis across VGG16, VGG19, ResNet50, and 
InceptionV3 architectures, adversarial training consistently delivers 
the highest robustness, preserving accuracy and confidence under 
attacks. It effectively prevents label flipping and ensures stability, 
especially in VGG models. Autoencoders, while slightly less powerful, 
show strong resilience in InceptionV3 and VGG19, acting as efficient 
preprocessing defenses. In contrast, base models are highly vulner-
able to adversarial noise, with frequent misclassifications and confi-
dence degradation. They are adversarially trained.

Models also outperform others on clean data, offering better gen-
eralization. Overall, adversarial training stands out as the most 

Fig. 8.  VGG16 perturbation analysis.

Fig. 9.  RESNET50 perturbation analysis.
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architecture-independent and reliable defense. Autoencoders 
remain a practical alternative when computational efficiency is a 
concern. Studies can recommend MI classification tasks sensitive to 
adversarial noise (e.g., pneumonia detection in X-rays); incorporat-
ing adversarial training is essential. Autoencoders may be used in 
tandem or as an alternative where computational constraints exist.

B. BreakHis Dataset
Table V evaluation clearly demonstrates that the InceptionV3 model, 
while achieving excellent performance on clean data (accuracy: 
83.15%, AUC: 92.27%), is highly susceptible to adversarial attacks. 
Under FGSM, PGD, MFGSM, and BIM perturbations, the model’s 
accuracy plunges to below 3%, and AUC scores drop close to zero, 
indicating a complete breakdown in classification ability. Precision, 
recall, and F1 scores also show significant degradation, confirming 
poor prediction confidence and consistency. Among the attacks, 
PGD and MFGSM appear most destructive, with performance met-
rics nearing zero. These findings highlight the critical need for inte-
grating adversarial training or robust defense mechanisms. Without 
such measures, the model cannot be trusted in adversarial settings, 
especially in safety-critical applications like medical imaging or 
autonomous systems.

Table V results combined with visual evidence across InceptionV3, 
ResNet50, VGG16, and VGG19 models clearly highlight the severe 
impact of adversarial attacks (particularly PGD) on model reliability. 

On clean data, all base models achieved strong performance; for 
example, InceptionV3 reported 83.15% accuracy and 92.27% AUC, 
indicating robust learning on unperturbed images. However, perfor-
mance collapsed under adversarial conditions, with accuracy drop-
ping as low as 0.3%–2% and AUC nearing zero, underscoring critical 
vulnerability.

Visual comparisons further confirm this vulnerability, where even 
high-confidence predictions on original samples flipped under 
attack, especially in the case of malignant-to-benign misclassifi-
cation. Adversarial training marginally improved robustness by 
correcting some misclassifications and stabilizing prediction con-
fidence, but still showed susceptibility in certain cases. The most 
consistent and effective defense across all models was the autoen-
coder defense, which retained correct classification in both benign 
and malignant categories, even under attack, with confidence levels 
typically above 0.85. For example, in the VGG19 adversarial case, the 
base model incorrectly predicted malignancy, while the autoen-
coder defense correctly restored the benign label with 85.7% confi-
dence, as can be seen in Figs. 13-18.

Study results conclude that adversarial attacks pose a serious risk to 
deep learning-based medical diagnostics, severely degrading classi-
fication accuracy. Among the evaluated strategies, the autoencoder 
defense proved to be the most robust and reliable, suggesting it 

Fig. 10.  InceptionV3 perturbation analysis.

Fig. 11.  VGG19 pertubation analysis.
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should be prioritized in safety-critical applications such as histopa-
thology image classification.

In Fig. 12a, visual results show that while the base InceptionV3 
model correctly classifies original images, it misclassifies PGD adver-
sarial examples (e.g., malignant predicted as benign with 99.6% con-
fidence). Adversarial training improves robustness slightly but still 
shows reduced confidence and occasional misclassifications. The 
autoencoder defense demonstrates the best resilience, maintain-
ing correct predictions with relatively high confidence even under 
attack.

In Fig. 12b, ResNet50 base model misclassifies a benign sample as 
malignant with high confidence (0.982), showing poor specificity. 
Adversarial training corrects this misclassification under PGD attack, 
while the autoencoder defense offers the best overall performance, 
maintaining correct predictions and stable confidence. Notably, for 
malignant cases, all models retain correct classification, though con-
fidence drops under adversarial conditions, particularly for the base 
model.

In Fig. 13a, the VGG16 base model performs well on clean images 
but misclassifies a malignant PGD attack sample as benign with 
71.8% confidence. Adversarial training corrects this misclassification 
with improved robustness, while the autoencoder defense consis-
tently restores correct predictions with higher confidence (up to 
85.7%). Overall, the autoencoder defense proves most resilient to 
PGD attacks in preserving classification accuracy. In Fig. 13b, VGG19 
results, the base model misclassifies a benign PGD sample as malig-
nant with 62.1% confidence, while adversarial training and auto-
encoder defense successfully correct the prediction to benign. For 
malignant samples, all models, including under PGD attack, retain 
correct classification with high confidence, especially the base and 
autoencoder models. Overall, the autoencoder defense provides the 
most stable and accurate performance across both clean and adver-
sarial inputs.

The comparison of accuracy across all three Fig. 14[a-c] charts 
shows that base models suffer dramatic performance drops under 
adversarial attacks, especially InceptionV3 under BIM and PGD. 

Fig. 13.  (a) VGG16 original vs adversarial attack comparison. (b) VGG19 original vs adversarial attack comparison.

Fig. 12.  (a) InceptionV3 original vs adversarial attack comparison. (b) ResNet50 original vs adversarial attack comparison attack comparison 
attack comparison.
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Autoencoder defense models significantly recover accuracy under 
all attacks, with ResNet50 maintaining the highest stability and per-
formance across scenarios. Adversarial training provides moderate 
robustness but performs less consistently than autoencoders, espe-
cially against strong perturbations like BIM. Overall, autoencoder 
defenses emerge as the most effective strategy for preserving the 
model. Fig. 15a AUC chart shows that base models lose discrimina-
tory power under adversarial attacks, with InceptionV3 and VGG19 
dropping close to 0 for PGD and BIM. The second Fig. 15b chart 
reveals that autoencoder defenses significantly restore AUC scores, 
maintaining values above 0.65 for all models and attacks, peaking at 
0.97 for ResNet50. The third Fig. 15c chart shows adversarial training 
improves AUC robustness moderately, with scores generally in the 
0.6–0.78 range under attack. Overall, autoencoder defense offers 
superior consistency and resilience, especially for ResNet50 and 
VGG19.

C. Accuracy Under Adversarial Conditions
Fig. 15a AUC chart shows that base models lose discriminatory power 
under adversarial attacks, with InceptionV3 and VGG19 dropping 
close to 0 for PGD and BIM. The second Fig. 15b chart reveals that 
autoencoder defenses significantly restore AUC scores, maintain-
ing values above 0.65 for all models and attacks, peaking at 0.97 for 
ResNet50. The third Fig. 15c chart shows adversarial training improves 
AUC robustness moderately, with scores generally in the 0.6–0.78 
range under attack. Overall, autoencoder defense offers superior 
consistency and resilience, especially for ResNet50 and VGG19.

Fig. 16a chart shows that F1 scores for base models collapse 
under all adversarial attacks, especially for InceptionV3, where 
they fall near zero. Fig. 16b chart highlights that autoencoder 

defense significantly restores F1 performance across all attacks, 
with ResNet50 achieving the most consistent robustness (≥0.80). 
Fig. 16c chart reveals that adversarial training improves F1 scores 
moderately but performs less reliably under strong attacks like BIM. 
Overall, autoencoder defense consistently delivers higher F1 stabil-
ity, confirming its superiority in balancing precision and recall under 
adversarial stress.

Fig. 17a chart reveals that base models suffer a drastic precision 
drop under adversarial attacks, especially InceptionV3, which 
drops to nearly zero. Fig. 17b chart shows that the autoencoder 
defense significantly restores precision, with ResNet50 maintain-
ing precision above 0.75 across all attacks. Fig. 17c chart indi-
cates that adversarial training improves precision but remains less 
effective against stronger attacks like BIM. Overall, autoencoder 
defense consistently yields higher precision across all models and 
attack types, confirming its superiority in preserving classification 
confidence.

Fig. 18a chart shows that recall drops drastically for base models 
under adversarial attacks, falling near zero for InceptionV3, VGG16, 
and VGG19. Fig. 18b chart indicates that autoencoder defenses 
effectively restore recall performance, especially in ResNet50 and 
VGG19, where values remain above 0.80 across most attacks. Fig. 18c 
chart reveals that adversarial training moderately improves recall 
but still underperforms compared to autoencoder defense. Overall, 
autoencoder models provide the best recall consistency, preserving 
sensitivity even in adversarial scenarios.

The overall analysis reveals that the BreakHis histopathological data-
set shows that base models exhibit strong performance on clean 

Fig. 14.  (a) Accuracy of the autoencoder defense model. (b) Accuracy of adversarial trained models. (c) Accuracy of adversarial trained models.

Fig. 15.  (a) AUC score of base model robustness. (b) AUC score of autoencoder defense model. (c) AUC score of adversarial trained models.
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data but are highly susceptible to hostile attacks, with all evaluation 
metrics—accuracy, precision, recall, F1-score, and AUC—dropping 
significantly, especially for InceptionV3. Adversarial training offers 
moderate improvement by enhancing robustness, particularly in 
recall, but still struggles under stronger attacks like BIM and PGD. 
In contrast, the autoencoder defense consistently outperforms 
both base and adversarially trained models across all metrics and 
attacks. ResNet50 with autoencoder defense shows the most bal-
anced and resilient performance. This demonstrates the effective-
ness of autoencoders in restoring model reliability under adversarial 
stress. Thus, the autoencoder-based defense is the most reliable 

strategy for robust and secure classification in these types of sensi-
tive applications.

V. CONCLUSION AND FUTURE WORK

In this study, a robust hybrid adversarial defense framework was 
developed by integrating adversarial training and autoencoder-
based image reconstruction to enhance the reliability of deep learn-
ing models for MI classification. The approach was evaluated on two 
clinically significant datasets, Pneumonia chest X-rays and BreakHis 
histopathology images, under multiple gradient-based adversarial 

Fig. 16.  (a) F1 score of base model robustness. (b) F1 score of autoencoder defense model. (c) F1 score of adversarial trained model.

Fig. 17.  (a) Precision of base model robustness. (b) Precision of autoencoder defense model. (c) Precision of adversarial trained model.

Fig. 18.  (a) Recall of base model robustness. (b) Recall of autoencoder defense model. (c) Recall of adversarial trained model.
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attacks. Results demonstrated that hostile attacks significantly 
degrade model performance, particularly in safety-critical domains 
like medical diagnostics. Among tested architectures, VGG19 and 
ResNet50 consistently showed enhanced robustness under adver-
sarial training. Autoencoders, while less effective on Pneumonia 
data, performed better on BreakHis images, especially when paired 
with ResNet50. Overall, adversarial training emerged as a more 
architecture-independent and effective strategy, while autoencod-
ers provided a lightweight, computationally efficient alternative. The 
proposed hybrid model achieved substantial recovery in classifica-
tion accuracy and confidence. This dual-defense system enhances 
model interpretability and security. The framework is adaptable 
across architectures and datasets, making it viable for clinical inte-
gration. Future work may explore model compression and real-time 
deployment for edge medical applications. The study offers a valu-
able step toward secure, generalizable AI in healthcare. This study 
offers valuable perspectives that go beyond a fundamental under-
standing of vulnerabilities.

A. Future Work
A roadmap for future investigations is provided, encouraging the 
development of deep learning systems specifically intended for MI 
processing that are more reliable, safe, and therapeutically benefi-
cial. It is crucial to continuously improve and develop defense strate-
gies as the industry develops. This work provides a solid foundation 
for future research, encouraging the creation of innovative defenses 
against adversarial attacks while also enhancing the general secu-
rity and dependability of MI processing systems. The future work will 
focus on developing another healthcare system incorporating a cer-
tified defense strategy, supported by confusion matrices, P-values, 
k-fold cross-validation, and ROC curves.
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