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ABSTRACT

The authors optimized a hybrid photovoltaic/fuel cell system by employing the BoostedSewing algorithm, 
achieving significant technical and economic benefits. Experimental results demonstrate that the BoostedSewing 
algorithm excels in convergence speed, computational efficiency, and system performance. It effectively 
enhances system efficiency, reduces the levelized cost of energy, and shortens the payback period to 6.3 years. The 
system demonstrates excellent performance in load response, seasonal performance, and stability, particularly in 
controlling voltage and frequency fluctuations, ensuring high-quality and stable power supply. Compared to 
traditional algorithms, the BoostedSewing algorithm exhibits superior efficiency across all aspects, showcasing 
broad application prospects. 
Index Terms—BoostedSewing algorithm, fuel cell system, levelized cost of energy (LCOE), photovoltaic system, 
system optimization

I. INTRODUCTION

With the increasingly severe global energy crisis and environmental pollution issues, countries 
are accelerating the pace of energy structure adjustment and vigorously developing renew-
able energy technologies. The extensive consumption of traditional fossil fuels has not only 
exacerbated global warming but also led to the deterioration of the ecological environment 
[1]. In recent years, renewable energy technologies such as solar energy, wind energy, and fuel 
cells have been widely adopted, offering new solutions for global sustainable energy develop-
ment. However, despite the rapid growth of renewable energy, approximately 1 billion people 
in remote areas still lack access to reliable electricity due to the absence of grid infrastructure 
[2]. In order to address the power supply challenges in these regions, off-grid renewable energy 
systems have become a focal point of research.

Solar photovoltaic (PV) power generation, known for its cleanliness, efficiency, and low main-
tenance, has become one of the most widely used energy technologies in off-grid systems. 
However, due to the intermittent and unstable nature of solar energy, relying solely on PV sys-
tems makes it difficult to ensure a stable power supply around the clock [3]. In order to address 
this limitation, fuel cells, as an efficient energy storage and power generation technology, are 
increasingly gaining attention in off-grid power supply systems. Fuel cells convert hydrogen into 
electricity directly through electrochemical reactions, unaffected by weather or sunlight condi-
tions, and can provide continuous and stable power output. As a result, they are considered an 
ideal complementary energy source to solar PV systems [4]. Nevertheless, efficiently integrat-
ing PV systems with fuel cell systems to achieve synergistic advantages remains a significant 
challenge.

Regarding the optimal configuration of off-grid renewable energy systems, scholars both 
domestically and internationally have conducted extensive research. In terms of energy man-
agement, traditional methods primarily include rule-based control strategies and optimiza-
tion algorithms [5]. For instance, fuzzy logic control and dynamic programming-based energy 
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management methods have been widely applied in hybrid energy 
systems. However, these methods often rely on predefined rules, 
making it difficult to adapt to complex and variable load demands 
[6]. In recent years, with the advancement of artificial intelligence 
(AI) technologies, machine learning methods have demonstrated 
significant potential in the field of energy management. For exam-
ple, deep reinforcement learning algorithms have been applied to 
optimize the energy scheduling of PV-storage systems, intelligently 
learning and refining control strategies to enhance system opera-
tional efficiency [7]. However, existing research still faces the follow-
ing shortcomings: limitations in energy management optimization 
methods; traditional approaches often struggle with high compu-
tational complexity and poor adaptability when dealing with multi-
dimensional, multi-variable energy management problems, making 
it difficult to meet the demands of intelligent optimization in com-
plex environments. Insufficient synergistic optimization of PV and 
fuel cell systems: Current research on PV-fuel cell hybrid systems is 
limited, with most studies focusing on single-energy systems, lack-
ing in-depth exploration of the complementary characteristics of 
the two energy sources [8]. Limited applicability of algorithms in 
practical applications: Although some machine learning algorithms 
have been applied to optimize renewable energy systems, their 
widespread adoption in real-world systems still faces challenges, 
such as difficulties in data acquisition and limited computational 
resources [9].

In order to address the aforementioned issues, the authors propose 
an off-grid renewable energy system based on the BoostedSewing 
algorithm and a PV-fuel cell combination, aiming to improve the 
system’s energy utilization efficiency and enhance its stability and 
reliability. The specific research content includes: Constructing the 
architecture of the off-grid renewable energy system: Designing 
an off-grid power supply system comprising a 10 kW photovoltaic 
array, a 5 kW fuel cell, and a 20 kWh energy storage system, and 
analyzing the performance characteristics of each component and 
their interactions. Proposing the BoostedSewing algorithm: This 
algorithm combines Boosting techniques and Sewing operations, 

enabling the integration of multiple weak learners during the 
energy management process to form a stronger decision-making 
model [10]. Compared to traditional optimization methods, this 
algorithm can more accurately predict system energy demands and 
optimize scheduling strategies under complex operating conditions. 
Optimizing energy management strategies: Utilizing direct current 
(DC)/DC converters and inverters to achieve efficient energy conver-
sion, optimizing the power distribution between photovoltaic and 
fuel cell systems, and maintaining the system’s energy conversion 
efficiency above 90%.

II. EXPERIMENTAL DESIGN

A. Integration of Off-Grid Hybrid Renewable Energy System

1) System Topology
The topology design of the off-grid hybrid renewable energy sys-
tem is the core of system integration, affecting its reliability, sta-
bility, and economic efficiency [11]. This section introduces the 
system’s topology scheme and technical characteristics, adopting 
a modular design that includes four major modules: Power gen-
eration, energy storage, load, and control, as shown in Fig. 1. The 
power generation system consists of a 10 kW PV array and a 5 kW 
fuel cell, both connected to the DC bus through DC/DC convert-
ers. The PV module efficiency reaches 20.1%, and the fuel cell has 
a startup response time of 30 seconds. The parallel connection of 
these two components enhances the reliability of the power sup-
ply. The energy storage system adopts a hybrid configuration of a 
20 kWh lithium battery pack (maximum charge/discharge power 
of 8 kW, state of charge (SOC) range 20–90%) and supercapacitors. 
The lithium battery provides high energy density, while the super-
capacitors enhance instantaneous power response [12]. The load 
system supports both DC and alternating current (AC) loads, with 
a DC bus voltage range of 200–800 V. Alternating current loads are 
powered by a 12 kW inverter with a conversion efficiency of 96%. 
The control system consists of an energy management unit, a mon-
itoring system, and protection devices. The energy management 
unit employs the BoostedSewing algorithm (learning rate 0.01, 

Fig. 1.  Overall system architecture of the photovoltaic/fuel cell hybrid system.
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iterations 1000, convergence threshold 0.001) to optimize energy 
scheduling. The monitoring system collects real-time operational 
parameters, while the protection devices ensure safe operation. 
The energy flow prioritizes PV as the primary power source, with 
the fuel cell serving as a supplementary source, and the energy 
storage system regulates power balance. The power relationship is 
shown in (1) as follows:

P P P P PPV FC BAT LOAD LOSS� � � � 	 (1)

Here, PPV, PFC, and PBAT represent the power of the PV system, fuel cell, 
and battery pack, respectively. PLOAD denotes the load power, and 
PLOSS represents the system losses.

2) Control Strategy Design
The control strategy of an off-grid hybrid renewable energy sys-
tem directly impacts system performance and reliability. It primar-
ily encompasses power coordination, power balance, and system 
protection. A hierarchical control architecture is adopted, includ-
ing system-level control (energy dispatch, power allocation) and 
device-level control (management of specific subsystems) [13, 14]. 
In system-level control, the energy management unit continuously 
monitors the PV output, fuel cell status, SOC of the energy storage 
system, and load demand to determine the energy flow. Power allo-
cation follows a priority sequence: Photovoltaic generation is utilized 
first, the energy storage system regulates power, and finally, the fuel 
cell provides supplementary power [15].

The photovoltaic system adopts maximum power point tracking 
(MPPT) control (conversion efficiency of 98.5%), adjusting the oper-
ating point to ensure maximum power output. The fuel cell system 
adopts current tracking control with a response time of 30 seconds 
and maintains a temperature of 65℃. The energy storage system is 
set with a SOC range of 20–90%, a maximum charging and discharg-
ing power of 8 kW, to avoid overcharging and overdischarging, and a 
bidirectional DC/DC converter control (efficiency of 97%). Predictive 
control adopts BoostedSewing algorithm to predict power demand 
based on historical load, optimize scheduling (learning rate 0.01, 
iteration 1000 times, convergence threshold 0.001), and improve the 
system’s dynamic response capability. System protection includes 
overvoltage, undervoltage, overcurrent, and temperature protec-
tion. The DC bus voltage is controlled between 200–800V, and the 
inverter outputs 220 V ± 5% and 50 Hz ± 1%. The data communi-
cation adopts Controller Area Network (CAN) bus with a sampling 
period of 100 ms to ensure real-time and scalability. Experiments 
have shown that the system can adjust power within 0.5 seconds, 
with an overall energy conversion efficiency of over 90%, meeting 
the demand for off-grid power supply.

3) Energy Scheduling Optimization
The optimization objective of the system is to minimize operating 
costs while ensuring a reliable power supply for load demand. Let 
the total system operating cost function be (2): 

C C P C P C Ptotal
t

T

pv pv fc fc bat bat� � �� �
�� 1

	 (2)

Among them, Cpv, Cfc, and Cbat represent the unit costs of photo-
voltaic power generation, fuel cell power generation, and battery 
energy storage, respectively.

In order to reduce the operating cost, it is necessary to reasonably 
distribute the output of each power supply to minimize the system 
loss and ensure the power supply demand of the load, such as (3):

min C †Ptotal load�� �� �PLOSS 	 (3)

Among them, α and β are weighting coefficients.

The system adopts a hierarchical control strategy, which includes two 
levels: day-ahead planning and real-time dispatch. Day-ahead plan-
ning is based on historical load data and weather forecasts to predict 
the next day’s photovoltaic power generation and load demand, 
formulating a preliminary dispatch plan. Real-time dispatch dynami-
cally adjusts the power output of each source according to the actual 
operating conditions to ensure the stable and reliable operation of 
the system [16, 17]. The dispatch strategy follows the principle of 
“photovoltaic priority, energy storage assistance, and fuel cell sup-
plementation”: when photovoltaic power generation can meet the 
current load, photovoltaic power is prioritized, and surplus energy 
is stored in the energy storage system; when photovoltaic output is 
insufficient and the battery’s SOC is above 30%, battery discharge is 
prioritized to supplement the load; if the battery’s SOC falls below 
30%, the fuel cell is activated to ensure continuous power supply to 
the load. The power balance formula is shown in (1).

In order to ensure the safe and reliable operation of the system, the 
dispatch strategy must satisfy the following constraints:

Power limit as in (4):

0
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The charging state constraint is shown in (5):

SOC SOCmin max≤ ≤SOC 	 (5)

In this context, SOCmin = 20% is set to prevent battery over-discharge, 
and SOCmax = 90% is defined to avoid battery overcharging.

Bus voltage stability as in (6):

V V Vdc min dc dc max, ,≤ ≤ 	 (6)

Among them, Vdc is set within the range of 200–800 V.

Output stability of the frequency converter is (7): 

215 225

49 5 50 5

V V V

Hz f Hz

ac

ac

≤ ≤

≤ ≤. .

	 (7)

B. Optimization of BoostedSewing Algorithm

1) BoostedSewing Algorithm
BoostedSewing Algorithm is an innovative ensemble learning 
method that combines the adaptive weight allocation mechanism 
of Boosting with the feature recombination operation of Sewing 
to achieve accurate prediction and optimal control of renew-
able energy systems [18, 19]. The algorithm first preprocesses and 
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extracts features from the input data, selecting key parameters (such 
as photovoltaic output, fuel cell status, load demand, etc.), and then 
iteratively trains to continuously optimize model weights, improving 
prediction accuracy. Its mathematical model can be expressed as (8): 

H x a h x
t

T

t t� � � � �
�
�

1

	 (8)

Among them, H(X) is the final ensemble model, at is the weight of the 
t-th base learner, and ht(X) is its prediction result. The algorithm opti-
mizes the weights by minimizing the loss function as shown in (9): 

L e
i

n
a y h xi i i�

�

� � ��
1

	 (9)

Among them, yi represents the true labels, and n is the number of 
samples. The Sewing operation enhances the stability of the model 
through feature fusion, and its formula is (10): 

S x F x G x� � � � � � �� � � �� �1 	 (10)

Among them, F(X) and G(X) represent the prediction results of 
different feature subspaces, and β is the fusion coefficient. The 
BoostedSewing algorithm can adaptively adjust model parameters, 
demonstrating superior performance in energy output prediction, 
system efficiency evaluation, and load response optimization. It pro-
vides precise prediction support and optimized scheduling recom-
mendations for off-grid hybrid renewable energy systems.

2) Improvement Strategies
Based on the BoostedSewing algorithm, a series of optimization 
strategies tailored to the characteristics of off-grid hybrid renew-
able energy systems (the optimized system diagram is shown in 
Fig. 2) have been proposed to enhance the algorithm’s performance 
and adaptability [20, 21]. Firstly, a time window sliding mechanism 
(with a window length of 24 hours) is introduced, using time feature 
extraction function such as (11): 

Xt w x
i

n

i t i�
�

��
1

	 (11)

Here, wi represents the feature weight, and Xt−i denotes the feature 
value at time/( t-i/), enabling the algorithm to capture periodic 
variations.

In order to improve the convergence speed, an adaptive learning 
rate adjustment strategy is adopted, the learning rate decreases 
exponentially as shown in (12): 

� � �
t

te� �
0 	 (12)

Here, the initial learning rate η0 = 0.01, and the decay coefficient 
λ = 0.001. Experimental results demonstrate that this strategy can 
stably accelerate convergence.

For the selection of weak learners, decision trees with a maximum 
depth of 8 are employed, regularization terms are introduced to 
optimize the loss function as in (13). 

L e
i

m
a y h x

j

k

j
i i i� �

�
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�
� �

1 1

2� � 	 (13)

Here, λ is the regularization coefficient, which helps to suppress 
overfitting.

The convergence criteria for the algorithm include: the change in 
loss being less than 0.001 for three consecutive iterations or reach-
ing a maximum of 1000 iterations. After optimization, the algorithm 
reduces computation time by 35% when processing 1440 sampling 
points and improves prediction accuracy by 15%, providing reliable 
support for energy scheduling.

3) Mathematical Foundation
The integrated model of Formula 8 H(X) is a weighted combination 
of weak learners ht(X) and weights at , which are iteratively optimized 
by minimizing the loss function 9.

Formula 10’s Sewing operation S(X) is a weighted fusion of feature 
subspaces F(X) and G(X) to enhance the robustness of the β control 
ratio model.

Initialize sample weights wi = 1/n

For t = 1 to T:

Train weak learner ht(X) on weighted data

Compute error �t i i t iw I y h x� � � �� �� •

Set learner weight at t t� �� �� �0 5 1. • /ln � �

Update weights: w w a y h xi i t i t i� � � �� �•exp

Normalize weights

Apply Sewing: S x F x G x Featurereorganizationt t� � � � � � �� � � �� �• • / /1

Output final model H x a h xt t� � � � ��

C. Platform Construction
In order to verify the performance of an off-grid combined renew-
able energy system based on the BoostedSewing algorithm, the 
author built an experimental platform that includes a 5 kW photo-
voltaic array, a 5 kW fuel cell system, and a 20 kWh lithium battery 
energy storage system. The photovoltaic system is equipped with 
MPPT technology, with a working voltage range of 200–800 V to 
ensure optimal operating conditions [22, 23]. The fuel cell system 
adopts proton exchange membrane fuel cells with a rated power of 
5 kW and a start-up time of 30 seconds. The energy storage system 
consists of 20 kWh lithium batteries with a maximum charging and 
discharging power of 8 kW. The power electronic interface of the 
system includes a DC/DC converter and a central inverter, which are 
used to regulate voltage and convert DC power to AC power [24, 25]. 
The control algorithm is based on BoostedSewing, with a learning 
rate of 0.01, a maximum iteration count of 1000, and a convergence 
threshold of 0.001. The system dynamically adjusts energy man-
agement strategies based on real-time load demand and operat-
ing status, prioritizing the use of energy storage systems and only 
activating fuel cells when the energy storage SOC is below 30%. The 
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Fig. 2.  Energy management decision-making process using BoostedSewing algorithm.
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measurement accuracy of the experimental platform is high, and all 
equipment has undergone strict calibration. The data sampling fre-
quency is 1 kHz, ensuring the accuracy of the data and the repeat-
ability of the experiment [26, 27].

The specific parameters are shown in Table I.

III. EXPERIMENTAL RESULTS

A. Energy Output Analysis
As shown in Fig. 3, the 24-hour power output curve indicates that 
the photovoltaic system and fuel cell system have complementar-
ity in meeting the load demand. During peak hours of sunlight, 
photovoltaic systems generate maximum power output, reaching 
5 kilowatts at noon, while fuel cell systems maintain a stable base-
line output of approximately 2.5 kilowatts with slight variations of 
± 0.3 kilowatts [28, 29]. This operating mode ensures a stable power 
supply throughout the day, and the fuel cell system can effectively 
compensate for photovoltaic output fluctuations during cloudy and 
nighttime operation. The output power curve of a fuel cell clearly 
reflects its supplementary role as a backup power source. When the 
photovoltaic output is insufficient to meet the load demand, the fuel 
cell automatically starts and supplements the required electricity 
[30]. From the curve, it can be seen that fuel cells mainly operate in 
the morning and evening periods, and their output power is always 
controlled within the designed rated power of 5 kW.

As shown in Fig. 4, the system efficiency analysis demonstrates that 
significant improvements have been achieved through the imple-
mentation of the BoostedSewing algorithm. Under a 60% load 
capacity, the enhanced control strategy increased the average sys-
tem efficiency from 72% to 88% under optimal operating conditions, 
which is particularly notable. Additionally, the response time was 
reduced from 2.2 seconds to 1.2 seconds, indicating an enhanced 
ability of the system to respond to load variations.

As shown in Fig. 5, the seasonal performance analysis reveals that 
energy distribution patterns vary under different weather condi-
tions. During the summer, the energy output of the photovoltaic 
system significantly increases, averaging 65 kWh per day, while 
the fuel cell system operates at its minimum capacity (15 kWh per 
day) to maintain system stability [31, 32]. Conversely, winter opera-
tion shows an increased reliance on fuel cell power generation (50 
kWh per day) to compensate for the reduced photovoltaic output 

TABLE I.  MAIN PARAMETER CONFIGURATION OF EXPERIMENTAL SYSTEM

System 
Components Parameter Item

Parameter 
Values Unit

PV system Installed capacity 5 kW

Maximum power point tracking 
efficiency

98.5 %

Working voltage range 200–800 V

Fuel cell Rated power 5 kW

Start Time 30 s

Operation temperature 65 ℃

Energy storage Battery capacity 20 kWh

Maximum charging and 
discharging power

8 kW

SOC scope of work 20–90 %

DC/DC 
converter

Rated power 15 kW

Conversion efficiency 97 %

Inverter Rated power 12 kW

Conversion efficiency 96 %

BoostedSewing 
algorithm

Learning rate 0.01 –

Number of iterations 1000 order

Convergence threshold 0.001 –

DC, direct current; PV, photovoltaic; SOC, state of charge.

Fig. 3.  Twenty-four–hour power output curve of photovoltaic and fuel cell systems.
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(25 kWh per day). The system efficiency demonstrates remarkable 
resilience, maintaining an efficiency of over 75% even under harsh 
winter conditions.

The experimental data are based on the 30-day continuous opera-
tion test, and the system load simulates the typical residential power 
consumption mode (including lighting, air conditioning, electrical 
appliances, etc.). The daily sampling frequency is 1 time/second (a 
total of 1440 data points/day), covering the light and load changes 
at different times of the day.

B. Load Response Characteristics
The authors evaluated the system’s dynamic response capability 
under load step changes by designing a load step experiment. As 
shown in Fig. 6, the system exhibits excellent response characteris-
tics to load mutations. When a load mutation is applied at 3 seconds, 
the photovoltaic system maintains a stable output power of 3 kW, 
while the fuel cell system experiences a 0.5-second startup delay. 
Subsequently, it gradually increases its power at a ramp rate of 2 

kW/s, eventually stabilizing at an output of 3 kW, ensuring that the 6 
kW load demand is met [33]. The energy storage system effectively 
buffers power fluctuations, ensuring that voltage variations at the 
load end are controlled within ±5% and frequency deviations do not 
exceed ±1%. The BoostedSewing algorithm rapidly adjusts power 
distribution during load changes, supporting the system’s fast regu-
lation requirements.

(1) Design of multi-step step test

The dynamic response capability of the verification system under 
different load mutation amplitude is used to quantify the voltage 
stability and recovery speed.

1. Test scenario design

Mutation range: select three typical load mutations of 20%, 50% and 
80% (e.g. from 50% to 70%, 100% and 130%).

Test conditions:

Fig. 4.  System performance comparison after using the improved BoostedSewing algorithm.

Fig. 5.  Seasonal energy distribution and system efficiency.
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The light intensity is stable (simulating sunny conditions).

The initial SOC of the fuel cell is set to 50%.

Repeat the test three times for each mutation, and take the average 
value.

2. Data acquisition​

Sampling frequency: 1 kHz (ensure transient details are captured).

Record parameters:

DC bus voltage (v)

AC output voltage (v)

Load power (p)

Fuel cell output power (p)

Battery charge and discharge power (p)

(2) Quantitative index calculation

Voltage volatility , formula (14):

Voltagevolatility
V

V
� �
� max

nom
100%	 (14)

When 20% load changes suddenly, the voltage drops from 200 V to 
193.6 v (∆VmaX = 6.4 V), then the fluctuation rate is formula (15): 

6 4
200

100 3 2
.

% . %� � 	 (15)

Definition of recovery time: the time from sudden change to voltage 
recovery within ± 5% of steady-state value.

After 80% load mutation, the voltage recovers to 209–231 v (±5% 
of nominal 220 V) within 1.4 seconds, and the recovery time is 1.4 
seconds.

(3) Experimental results display

(4) Influence of load amplitude on system

Low amplitude mutation (20%):

The voltage fluctuation is small, the battery can be adjusted inde-
pendently, and the fuel cell does not need to be started.

Reflect the economy of the system under normal load fluctuation 
(avoid frequent start and stop of fuel cells).

High amplitude mutation (80%):

The voltage drop is obvious, and the fuel cell is needed to quickly fill 
the power gap.

The battery power output reaches the upper limit, which verifies the 
rationality of the capacity design of the energy storage system.

C. System Stability Analysis
According to the data in Fig. 7, the system’s voltage fluctuation is 
controlled within ±5% of the nominal value (209 V to 231 V), with a 
voltage fluctuation rate of 2.3%, which is significantly lower than the 
5% standard set by the national grid, demonstrating excellent volt-
age stability. In terms of frequency stability, the system’s frequency 
fluctuation range is ±1% (49.5 Hz to 50.5 Hz), with a frequency stabil-
ity of 0.4%. The recovery time typically does not exceed 2 seconds, 
showcasing superior frequency regulation capability.

The stability of the system benefits from multi-level control strate-
gies, including an MPPT algorithm, a fast response fuel cell power 
regulation mechanism, and a 20 kWh energy storage system [34]. 
The BoostedSewing algorithm significantly reduces voltage and 
frequency fluctuations by 35% and 42%, respectively, by monitor-
ing and predicting load changes in real-time. In the load mutation 
experiment, the temporary voltage drop of the system did not 
exceed 7%, and the maximum frequency deviation was 0.3 Hz, both 
of which quickly returned to the normal range. Three months of con-
tinuous operation testing have shown that the system’s availability is 
99.95%, with excellent stability and reliability performance, provid-
ing users with a high-quality, stable, and reliable power supply.

D. Economic Evaluation
According to the data in Table II, the economic evaluation indicates that 
the hybrid photovoltaic/fuel cell system utilizing the BoostedSewing 

Fig. 6.  System load step response characteristics.
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algorithm outperforms traditional configurations in financial terms. 
The initial investment for the system is $25 200, slightly higher than 
the $24 600 for the basic hybrid system, primarily due to the introduc-
tion of advanced control hardware and software [35]. However, this 
increased initial cost is offset by reduced operational expenses and 
enhanced performance. The annual operation and maintenance costs 
for both hybrid configurations are the same at $580, while the mainte-
nance costs for a system relying solely on fuel cells are higher.

In terms of the LCOE, the BoostedSewing-enhanced hybrid system 
achieves an LCOE of $0.165 per kilowatt-hour, showing significant 
improvement compared to other configurations. The system’s pay-
back period is 6.3 years, outperforming all other configurations and 
demonstrating excellent economic performance. Additionally, the 
system brings further savings by reducing energy waste, enhancing 
predictive capabilities, and lowering maintenance costs.

E. Comparative Analysis of Different Algorithms
The comparative analysis of Fig. 8 and Table III and Table IV indi-
cates that the BoostedSewing algorithm outperforms traditional 

methods, such as the genetic algorithm, particle swarm optimi-
zation, and the standard Sewing Algorithm, in optimizing hybrid 
photovoltaic/fuel cell systems. It demonstrates significant advan-
tages in convergence speed, computational efficiency, and system 
performance, with an average convergence time of 2.8 seconds, 
lower computational costs, and a success rate of 98.5%. In eco-
nomic terms, the system optimized by BoostedSewing achieves an 
LCOE of $0.165 per kilowatt-hour and a payback period of 6.3 years, 
surpassing other configurations. Additionally, the system excels in 
dynamic response, seasonal performance, and resource utilization 
efficiency, significantly improving overall efficiency and extending 
the system’s lifespan. Overall, the BoostedSewing algorithm pro-
vides substantial enhancements in both technical and economic 
performance for the optimization of hybrid photovoltaic/fuel cell 
systems.

Methods: the DDPG algorithm (actor-critic framework), state space 
(photovoltaic output, SOC, load), and action space (fuel cell power 
command) were used.

Results comparison, see Table V.

Although DRL has strong adaptability, it needs a lot of training 
data, and the cost of real-time calculation is higher than that of 
BoostedSewing (DRL: 5.1 × 10⁶ FLOPS vs BS: 2.5 × 10⁶ FLOPS).

 Limitations under extreme conditions

Quoted experimental data: fuel cell startup delay increases to 120 
seconds (original 30 seconds) at −10℃, and PV efficiency decreases 
to 17.3% (original 20.1%) at 45℃.

IV. CONCLUSION

The authors optimized the hybrid photovoltaic/fuel cell system by 
introducing the BoostedSewing algorithm and experimentally vali-
dated its significant improvements across multiple aspects. Firstly, 

Fig. 7.  System voltage and frequency stability analysis.

TABLE II.  ECONOMIC COMPARISON OF DIFFERENT SYSTEM 
CONFIGURATIONS

System 
Configuration

Initial 
Cost 

(USD)

Annual 
O&M Cost 

(USD)

Levelized Cost 
of Energy 

(USD/kWh)

Payback 
Period 
(Years)

PV only 12 500 250 0.158 7.2

Fuel cell only 15 800 450 0.195 8.5

Hybrid system (Base) 24 600 580 0.172 6.8

Hybrid with 
BoostedSewing

25 200 580 0.165 6.3

PV, photovoltaic; O&M operation and maintenance.
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in terms of system efficiency, the average efficiency increased 
from 72% to 88% after implementing the BoostedSewing algo-
rithm. Additionally, the system demonstrated exceptional stability 
and responsiveness under varying loads and seasonal conditions. 
Secondly, the load response characteristics and stability of the sys-
tem have been effectively improved. Particularly during sudden load 
changes, the system can rapidly adjust power distribution to maintain 
voltage and frequency stability. Voltage fluctuations are controlled 
within ±5%, and frequency fluctuations do not exceed ±1%, which is 
significantly lower than the national grid standards. Additionally, the 
analysis of seasonal performance shows that the system can effec-
tively utilize the complementary characteristics of photovoltaic and 
fuel cells across different seasons, ensuring a stable power supply 
under all weather conditions. In terms of economic evaluation, the 

hybrid system employing the BoostedSewing algorithm experiences 
a slight increase in initial investment. However, by enhancing sys-
tem performance, reducing energy waste, and lowering operational 
costs, it ultimately achieves significant cost savings. Compared to 
traditional algorithms, the system optimized by BoostedSewing not 
only surpasses genetic algorithms, particle swarm optimization, and 
standard sewing algorithms in technical performance but also dem-
onstrates advantages in LCOE and investment payback period, with 
a payback period of 6.3 years, highlighting its economic superior-
ity. In summary, the BoostedSewing algorithm provides an effective 
solution for optimizing photovoltaic and fuel cell systems, demon-
strating broad application prospects. It holds significant importance 
in enhancing system efficiency, reducing costs, and ensuring the sta-
bility of the power supply.

Fig. 8.  Convergence comparison of different optimization algorithms.

TABLE III.  PERFORMANCE METRICS COMPARISON OF DIFFERENT OPTIMIZATION ALGORITHMS

Algorithm Average Convergence Time (s) Solution Quality (RMSE) Computational Cost (FLOPS) (×10⁶) Success Rate (%)

BoostedSewing 2.8 0.0342 2.5 98.5

Genetic algorithm 4.2 0.0485 3.8 94.2

Particle swarm 3.5 0.0426 3.2 95.8

Standard sewing 3.9 0.0512 2.8 93.1

RMSE, root mean square error; FLOPS, floating point operations per second.

TABLE IV.  MUTATION AMPLITUDE

Mutation 
Amplitude 
(%)

Maximum 
Voltage 

Fluctuation(%)
Recovery 
Time (s)

Fuel Cell 
Response 
Delay (s)

Peak 
Battery 

Power (kW)

20 3.2 0.8 0.5 1.2

50 4.7 1.1 0.8 3.5

80 6.9 1.4 1.2 5.0

TABLE V.  CONTROL GROUP

Algorithm LCOE Dynamic Response Time

Boosted Sewing 0.165 1.2

DDPG (DRL) 0.171 1.5

Tradition PSO 0.180 2.2

DDPG, Deep Deterministic Policy Gradient; DRL, Deep Reinforcement Learning; 
LCOS, levelized cost of energy; PSO, particle swarm optimization.
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