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WHAT IS ALREADY KNOWN ON THIS
TOPIC?

« Off-grid areas need stable power; PV is
clean but intermittent, fuel cells are stable
but costly. They are highly complementary,
yet  system-level  optimization is
insufficient. Traditional optimization lacks
adaptability; Al methods show promise
but face practical limits.

WHAT THIS STUDY ADDS ON THIS
TOPIC?

« Proposes the BoostedSewing algorithm,
combining Boosting and Sewing for
more accurate prediction and scheduling.
Validates a PV +fuel cell + storage system,
raising efficiency to 88%, improving
response, and  stabilizing  voltage/
frequency. Enhances economics, reducing
LCOE to 0.165 USD/kWh and shortening
payback to 6.3 years.

Corresponding Author:
Wenjia Du

E-mail:
WenjiaDu5@126.com

Received: April 14, 2025

Revision Requested: May 31, 2025
Last Revision Received: June 19, 2025
Accepted: July 18,2025

Publication Date: October 21, 2025

DOI: 10.5152/electrica.2025.25104

Content of this journal is licensed
under a Creative Commons
Attribution-NonCommercial 4.0
International License.

ABSTRACT

The authors optimized a hybrid photovoltaic/fuel cell system by employing the BoostedSewing algorithm,
achieving significant technical and economic benefits. Experimental results demonstrate that the BoostedSewing
algorithm excels in convergence speed, computational efficiency, and system performance. It effectively
enhances system efficiency, reduces the levelized cost of energy, and shortens the payback period to 6.3 years. The
system demonstrates excellent performance in load response, seasonal performance, and stability, particularly in
controlling voltage and frequency fluctuations, ensuring high-quality and stable power supply. Compared to
traditional algorithms, the BoostedSewing algorithm exhibits superior efficiency across all aspects, showcasing
broad application prospects.

Index Terms—BoostedSewing algorithm, fuel cell system, levelized cost of energy (LCOE), photovoltaic system,
system optimization

I. INTRODUCTION

With the increasingly severe global energy crisis and environmental pollution issues, countries
are accelerating the pace of energy structure adjustment and vigorously developing renew-
able energy technologies. The extensive consumption of traditional fossil fuels has not only
exacerbated global warming but also led to the deterioration of the ecological environment
[1]. In recent years, renewable energy technologies such as solar energy, wind energy, and fuel
cells have been widely adopted, offering new solutions for global sustainable energy develop-
ment. However, despite the rapid growth of renewable energy, approximately 1 billion people
in remote areas still lack access to reliable electricity due to the absence of grid infrastructure
[2]. In order to address the power supply challenges in these regions, off-grid renewable energy
systems have become a focal point of research.

Solar photovoltaic (PV) power generation, known for its cleanliness, efficiency, and low main-
tenance, has become one of the most widely used energy technologies in off-grid systems.
However, due to the intermittent and unstable nature of solar energy, relying solely on PV sys-
tems makes it difficult to ensure a stable power supply around the clock [3]. In order to address
this limitation, fuel cells, as an efficient energy storage and power generation technology, are
increasingly gaining attention in off-grid power supply systems. Fuel cells convert hydrogen into
electricity directly through electrochemical reactions, unaffected by weather or sunlight condi-
tions, and can provide continuous and stable power output. As a result, they are considered an
ideal complementary energy source to solar PV systems [4]. Nevertheless, efficiently integrat-
ing PV systems with fuel cell systems to achieve synergistic advantages remains a significant
challenge.

Regarding the optimal configuration of off-grid renewable energy systems, scholars both
domestically and internationally have conducted extensive research. In terms of energy man-
agement, traditional methods primarily include rule-based control strategies and optimiza-
tion algorithms [5]. For instance, fuzzy logic control and dynamic programming-based energy
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management methods have been widely applied in hybrid energy
systems. However, these methods often rely on predefined rules,
making it difficult to adapt to complex and variable load demands
[6]. In recent years, with the advancement of artificial intelligence
(Al) technologies, machine learning methods have demonstrated
significant potential in the field of energy management. For exam-
ple, deep reinforcement learning algorithms have been applied to
optimize the energy scheduling of PV-storage systems, intelligently
learning and refining control strategies to enhance system opera-
tional efficiency [7]. However, existing research still faces the follow-
ing shortcomings: limitations in energy management optimization
methods; traditional approaches often struggle with high compu-
tational complexity and poor adaptability when dealing with multi-
dimensional, multi-variable energy management problems, making
it difficult to meet the demands of intelligent optimization in com-
plex environments. Insufficient synergistic optimization of PV and
fuel cell systems: Current research on PV-fuel cell hybrid systems is
limited, with most studies focusing on single-energy systems, lack-
ing in-depth exploration of the complementary characteristics of
the two energy sources [8]. Limited applicability of algorithms in
practical applications: Although some machine learning algorithms
have been applied to optimize renewable energy systems, their
widespread adoption in real-world systems still faces challenges,
such as difficulties in data acquisition and limited computational
resources [9].

In order to address the aforementioned issues, the authors propose
an off-grid renewable energy system based on the BoostedSewing
algorithm and a PV-fuel cell combination, aiming to improve the
system’s energy utilization efficiency and enhance its stability and
reliability. The specific research content includes: Constructing the
architecture of the off-grid renewable energy system: Designing
an off-grid power supply system comprising a 10 kW photovoltaic
array, a 5 kW fuel cell, and a 20 kWh energy storage system, and
analyzing the performance characteristics of each component and
their interactions. Proposing the BoostedSewing algorithm: This
algorithm combines Boosting techniques and Sewing operations,

enabling the integration of multiple weak learners during the
energy management process to form a stronger decision-making
model [10]. Compared to traditional optimization methods, this
algorithm can more accurately predict system energy demands and
optimize scheduling strategies under complex operating conditions.
Optimizing energy management strategies: Utilizing direct current
(DC)/DC converters and inverters to achieve efficient energy conver-
sion, optimizing the power distribution between photovoltaic and
fuel cell systems, and maintaining the system’s energy conversion
efficiency above 90%.

Il. EXPERIMENTAL DESIGN
A. Integration of Off-Grid Hybrid Renewable Energy System

1) System Topology

The topology design of the off-grid hybrid renewable energy sys-
tem is the core of system integration, affecting its reliability, sta-
bility, and economic efficiency [11]. This section introduces the
system’s topology scheme and technical characteristics, adopting
a modular design that includes four major modules: Power gen-
eration, energy storage, load, and control, as shown in Fig. 1. The
power generation system consists of a 10 kW PV array and a 5 kW
fuel cell, both connected to the DC bus through DC/DC convert-
ers. The PV module efficiency reaches 20.1%, and the fuel cell has
a startup response time of 30 seconds. The parallel connection of
these two components enhances the reliability of the power sup-
ply. The energy storage system adopts a hybrid configuration of a
20 kWh lithium battery pack (maximum charge/discharge power
of 8 kW, state of charge (SOC) range 20-90%) and supercapacitors.
The lithium battery provides high energy density, while the super-
capacitors enhance instantaneous power response [12]. The load
system supports both DC and alternating current (AC) loads, with
a DC bus voltage range of 200-800 V. Alternating current loads are
powered by a 12 kW inverter with a conversion efficiency of 96%.
The control system consists of an energy management unit, a mon-
itoring system, and protection devices. The energy management
unit employs the BoostedSewing algorithm (learning rate 0.01,
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Fig. 1. Overall system architecture of the photovoltaic/fuel cell hybrid system.
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iterations 1000, convergence threshold 0.001) to optimize energy
scheduling. The monitoring system collects real-time operational
parameters, while the protection devices ensure safe operation.
The energy flow prioritizes PV as the primary power source, with
the fuel cell serving as a supplementary source, and the energy
storage system regulates power balance. The power relationship is
shown in (1) as follows:

Pov + Pec + Poar = PLoap + PLoss (1)

Here, P,,, P., and P;,; represent the power of the PV system, fuel cell,
and battery pack, respectively. P ,,, denotes the load power, and
P oss represents the system losses.

2) Control Strategy Design

The control strategy of an off-grid hybrid renewable energy sys-
tem directly impacts system performance and reliability. It primar-
ily encompasses power coordination, power balance, and system
protection. A hierarchical control architecture is adopted, includ-
ing system-level control (energy dispatch, power allocation) and
device-level control (management of specific subsystems) [13, 14].
In system-level control, the energy management unit continuously
monitors the PV output, fuel cell status, SOC of the energy storage
system, and load demand to determine the energy flow. Power allo-
cation follows a priority sequence: Photovoltaic generation is utilized
first, the energy storage system regulates power, and finally, the fuel
cell provides supplementary power [15].

The photovoltaic system adopts maximum power point tracking
(MPPT) control (conversion efficiency of 98.5%), adjusting the oper-
ating point to ensure maximum power output. The fuel cell system
adopts current tracking control with a response time of 30 seconds
and maintains a temperature of 65°C. The energy storage system is
set with a SOC range of 20-90%, a maximum charging and discharg-
ing power of 8 kW, to avoid overcharging and overdischarging, and a
bidirectional DC/DC converter control (efficiency of 97%). Predictive
control adopts BoostedSewing algorithm to predict power demand
based on historical load, optimize scheduling (learning rate 0.01,
iteration 1000 times, convergence threshold 0.001), and improve the
system’s dynamic response capability. System protection includes
overvoltage, undervoltage, overcurrent, and temperature protec-
tion. The DC bus voltage is controlled between 200-800V, and the
inverter outputs 220 V £ 5% and 50 Hz + 1%. The data communi-
cation adopts Controller Area Network (CAN) bus with a sampling
period of 100 ms to ensure real-time and scalability. Experiments
have shown that the system can adjust power within 0.5 seconds,
with an overall energy conversion efficiency of over 90%, meeting
the demand for off-grid power supply.

3) Energy Scheduling Optimization

The optimization objective of the system is to minimize operating
costs while ensuring a reliable power supply for load demand. Let
the total system operating cost function be (2):

-
Ctotal = Zt:1(CpVva + Cchfc + Cbathat) (2)

Among them, C, C., and C,, represent the unit costs of photo-

voltaic power generation, fuel cell power generation, and battery
energy storage, respectively.

In order to reduce the operating cost, it is necessary to reasonably
distribute the output of each power supply to minimize the system
loss and ensure the power supply demand of the load, such as (3):

MiN(Crotat+ ¢ Poss —1Pload ) 3)
Among them, a and B are weighting coefficients.

The system adopts a hierarchical control strategy, which includes two
levels: day-ahead planning and real-time dispatch. Day-ahead plan-
ning is based on historical load data and weather forecasts to predict
the next day’s photovoltaic power generation and load demand,
formulating a preliminary dispatch plan. Real-time dispatch dynami-
cally adjusts the power output of each source according to the actual
operating conditions to ensure the stable and reliable operation of
the system [16, 17]. The dispatch strategy follows the principle of
“photovoltaic priority, energy storage assistance, and fuel cell sup-
plementation”: when photovoltaic power generation can meet the
current load, photovoltaic power is prioritized, and surplus energy
is stored in the energy storage system; when photovoltaic output is
insufficient and the battery’s SOC is above 30%, battery discharge is
prioritized to supplement the load; if the battery’s SOC falls below
30%, the fuel cell is activated to ensure continuous power supply to
the load. The power balance formula is shown in (1).

In order to ensure the safe and reliable operation of the system, the
dispatch strategy must satisfy the following constraints:

Power limit as in (4):
0<P,< Pp"VmX
0< P, <PI™ )

max max
_Pbat < })bat < Pbat

The charging state constraint is shown in (5):
SOCin £SOC L SOC 0x 5)

In this context, SOC,;,=20% is set to prevent battery over-discharge,
and SOC,_,,=90% is defined to avoid battery overcharging.

Bus voltage stability as in (6):

Vite,min < Ve <Vae, max (6)
Among them, V,_is set within the range of 200-800 V.

Output stability of the frequency converter is (7):

215V <V, <225V

49.5Hz < f,. <50.5Hz

B. Optimization of BoostedSewing Algorithm

1) BoostedSewing Algorithm

BoostedSewing Algorithm is an innovative ensemble learning
method that combines the adaptive weight allocation mechanism
of Boosting with the feature recombination operation of Sewing
to achieve accurate prediction and optimal control of renew-
able energy systems [18, 19]. The algorithm first preprocesses and
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extracts features from the input data, selecting key parameters (such
as photovoltaic output, fuel cell status, load demand, etc.), and then
iteratively trains to continuously optimize model weights, improving
prediction accuracy. Its mathematical model can be expressed as (8):

T

H(x):Za,ht(x) (8)

t=1

Among them, H(X) is the final ensemble model, a, is the weight of the
t-th base learner, and h,(X) is its prediction result. The algorithm opti-
mizes the weights by minimizing the loss function as shown in (9):

L — ze*ai}’ihi(x) (9)
i=1

Among them, y, represents the true labels, and n is the number of
samples. The Sewing operation enhances the stability of the model
through feature fusion, and its formula is (10):

S(x)=BF(x)+(1-)G(x) (10)

Among them, F(X) and G(X) represent the prediction results of
different feature subspaces, and B is the fusion coefficient. The
BoostedSewing algorithm can adaptively adjust model parameters,
demonstrating superior performance in energy output prediction,
system efficiency evaluation, and load response optimization. It pro-
vides precise prediction support and optimized scheduling recom-
mendations for off-grid hybrid renewable energy systems.

2) Improvement Strategies

Based on the BoostedSewing algorithm, a series of optimization
strategies tailored to the characteristics of off-grid hybrid renew-
able energy systems (the optimized system diagram is shown in
Fig. 2) have been proposed to enhance the algorithm’s performance
and adaptability [20, 21]. Firstly, a time window sliding mechanism
(with a window length of 24 hours) is introduced, using time feature
extraction function such as (11):

Xt:zWiXH' an
i

Here, w, represents the feature weight, and X,_, denotes the feature
value at time/( t-i/), enabling the algorithm to capture periodic
variations.

In order to improve the convergence speed, an adaptive learning
rate adjustment strategy is adopted, the learning rate decreases
exponentially as shown in (12):

ne=noe (12)

Here, the initial learning rate n,=0.01, and the decay coefficient
A=0.001. Experimental results demonstrate that this strategy can
stably accelerate convergence.

For the selection of weak learners, decision trees with a maximum
depth of 8 are employed, regularization terms are introduced to
optimize the loss function as in (13).

m k
_ ~ajyihi(x) 2
L= ie +A EIGJ (13)
= j=

Here, A is the regularization coefficient, which helps to suppress
overfitting.

The convergence criteria for the algorithm include: the change in
loss being less than 0.001 for three consecutive iterations or reach-
ing a maximum of 1000 iterations. After optimization, the algorithm
reduces computation time by 35% when processing 1440 sampling
points and improves prediction accuracy by 15%, providing reliable
support for energy scheduling.

3) Mathematical Foundation

The integrated model of Formula 8 H(X) is a weighted combination
of weak learners h(X) and weights a,, which are iteratively optimized
by minimizing the loss function 9.

Formula 10’s Sewing operation S(X) is a weighted fusion of feature
subspaces F(X) and G(X) to enhance the robustness of the 3 control
ratio model.

Initialize sample weights w,=1/n

Fort=1toT:

Train weak learner h,(X) on weighted data

Compute error g, = Zwi-l(yi #h, (xi))

Set learner weight a, = O.S-In((lfs[)/sr)

Update weights: w; < w; -exp(—ary,»h, (x,»))

Normalize weights

Apply Sewing: S(x) =B+ (x)+(1-B):G, (x)/ /Featurereorganization

Output final model H(x)=Za:h, (x)

C. Platform Construction

In order to verify the performance of an off-grid combined renew-
able energy system based on the BoostedSewing algorithm, the
author built an experimental platform that includes a 5 kW photo-
voltaic array, a 5 kW fuel cell system, and a 20 kWh lithium battery
energy storage system. The photovoltaic system is equipped with
MPPT technology, with a working voltage range of 200-800 V to
ensure optimal operating conditions [22, 23]. The fuel cell system
adopts proton exchange membrane fuel cells with a rated power of
5 kW and a start-up time of 30 seconds. The energy storage system
consists of 20 kWh lithium batteries with a maximum charging and
discharging power of 8 kW. The power electronic interface of the
system includes a DC/DC converter and a central inverter, which are
used to regulate voltage and convert DC power to AC power [24, 25].
The control algorithm is based on BoostedSewing, with a learning
rate of 0.01, a maximum iteration count of 1000, and a convergence
threshold of 0.001. The system dynamically adjusts energy man-
agement strategies based on real-time load demand and operat-
ing status, prioritizing the use of energy storage systems and only
activating fuel cells when the energy storage SOC is below 30%. The
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Fig. 2. Energy management decision-making process using BoostedSewing algorithm.
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The specific parameters are shown in Table I.
TABLE I. MAIN PARAMETER CONFIGURATION OF EXPERIMENTAL SYSTEM

11l. EXPERIMENTAL RESULTS

System Parameter
Components Parameter Item Values Unit A.Energy Output Analysis
PV system Installed capacity 5 kw As shown in Fig. 3, the 24-hour power output curve indicates that
Moximurm bower boint trackin o8 o the photovoltaic system and fuel cell system have complementar-
efhcioncy powerp 9 : 0 ity in meeting the load demand. During peak hours of sunlight,
photovoltaic systems generate maximum power output, reaching
Working voltage range 200-800 Vv 5 kilowatts at noon, while fuel cell systems maintain a stable base-
line output of approximately 2.5 kilowatts with slight variations of
Fuel cell Rated power > kW + 0.3 kilowatts [28, 29]. This operating mode ensures a stable power
Start Time 30 S supply throughout the day, and the fuel cell system can effectively
compensate for photovoltaic output fluctuations during cloudy and
Operation temperature 65 c nighttime operation. The output power curve of a fuel cell clearly
Energy storage _ Battery capacity 20 Wh reflects its s.uppleme.nt.ary role. as a backup power source. When the
photovoltaic output is insufficient to meet the load demand, the fuel
Maximum charging and 8 kw cell automatically starts and supplements the required electricity
discharging power [30]. From the curve, it can be seen that fuel cells mainly operate in
SOC scope of work 20-90 % the morning‘an‘d evening periods, and their output power is always
controlled within the designed rated power of 5 kW.
DC/DC Rated power 15 kW
converter As shown in Fig. 4, the system efficiency analysis demonstrates that
Conversion efficiency 97 % significant improvements have been achieved through the imple-
Inverter Rated power - W mentation of the BoostedSewing algorithm. Under a 60% load
capacity, the enhanced control strategy increased the average sys-
Conversion efficiency 96 % tem efficiency from 72% to 88% under optimal operating conditions,
) , which is particularly notable. Additionally, the response time was
Sl(;%srtifﬁ;ewmg Learning rate 001 ~ reduced from 2.2 seconds to 1.2 seconds, indicating an enhanced
Number of iterations 1000 order ability of the system to respond to load variations.
Convergence threshold 0.001 - As shown in Fig. 5, the seasonal performance analysis reveals that

DC, direct current; PV, photovoltaic; SOC, state of charge.

energy distribution patterns vary under different weather condi-
tions. During the summer, the energy output of the photovoltaic

measurement accuracy of the experimental platform is high, and all
equipment has undergone strict calibration. The data sampling fre-
quency is 1 kHz, ensuring the accuracy of the data and the repeat-
ability of the experiment [26, 27].

system significantly increases, averaging 65 kWh per day, while
the fuel cell system operates at its minimum capacity (15 kWh per
day) to maintain system stability [31, 32]. Conversely, winter opera-
tion shows an increased reliance on fuel cell power generation (50
kWh per day) to compensate for the reduced photovoltaic output

Power Output (kW)

= PV Output
— Fuel Cell Qutput

10

12 14 18 20 2
Time (hours)

Fig. 3. Twenty-four-hour power output curve of photovoltaic and fuel cell systems.
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Fig. 4. System performance comparison after using the improved BoostedSewing algorithm.

(25 kWh per day). The system efficiency demonstrates remarkable
resilience, maintaining an efficiency of over 75% even under harsh
winter conditions.

The experimental data are based on the 30-day continuous opera-
tion test, and the system load simulates the typical residential power
consumption mode (including lighting, air conditioning, electrical
appliances, etc.). The daily sampling frequency is 1 time/second (a
total of 1440 data points/day), covering the light and load changes
at different times of the day.

B. Load Response Characteristics

The authors evaluated the system’s dynamic response capability
under load step changes by designing a load step experiment. As
shown in Fig. 6, the system exhibits excellent response characteris-
tics to load mutations. When a load mutation is applied at 3 seconds,
the photovoltaic system maintains a stable output power of 3 kW,
while the fuel cell system experiences a 0.5-second startup delay.
Subsequently, it gradually increases its power at a ramp rate of 2

kW/s, eventually stabilizing at an output of 3 kW, ensuring that the 6
kW load demand is met [33]. The energy storage system effectively
buffers power fluctuations, ensuring that voltage variations at the
load end are controlled within £5% and frequency deviations do not
exceed +1%. The BoostedSewing algorithm rapidly adjusts power
distribution during load changes, supporting the system’s fast regu-
lation requirements.

(1) Design of multi-step step test

The dynamic response capability of the verification system under
different load mutation amplitude is used to quantify the voltage
stability and recovery speed.

1. Test scenario design

Mutation range: select three typical load mutations of 20%, 50% and
80% (e.g. from 50% to 70%, 100% and 130%).

Test conditions:

PV Energy
mmm Fuel Cell Energy
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30 1

Energy Distribution (kWh/day)

—e— System Efficiency | 0.88

r 0.86

o
®
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©
~
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Fig. 5. Seasonal energy distribution and system efficiency.
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Fig. 6. System load step response characteristics.

The light intensity is stable (simulating sunny conditions).

The initial SOC of the fuel cell is set to 50%.

Repeat the test three times for each mutation, and take the average
value.

2. Data acquisition

Sampling frequency: 1 kHz (ensure transient details are captured).
Record parameters:

DC bus voltage (v)

AC output voltage (v)

Load power (p)

Fuel cell output power (p)

Battery charge and discharge power (p)

(2) Quantitative index calculation

Voltage volatility , formula (14):

Voltagevolatility:%xwo% (14)
nom

When 20% load changes suddenly, the voltage drops from 200V to

193.6 v (AV,,aX=6.4V), then the fluctuation rate is formula (15):

ﬂ><1OO%:3.2% (15)
200

Definition of recovery time: the time from sudden change to voltage
recovery within + 5% of steady-state value.

After 80% load mutation, the voltage recovers to 209-231 v (£5%
of nominal 220 V) within 1.4 seconds, and the recovery time is 1.4
seconds.

(3) Experimental results display

(4) Influence of load amplitude on system
Low amplitude mutation (20%):

The voltage fluctuation is small, the battery can be adjusted inde-
pendently, and the fuel cell does not need to be started.

Reflect the economy of the system under normal load fluctuation
(avoid frequent start and stop of fuel cells).

High amplitude mutation (80%):

The voltage drop is obvious, and the fuel cell is needed to quickly fill
the power gap.

The battery power output reaches the upper limit, which verifies the
rationality of the capacity design of the energy storage system.

C. System Stability Analysis

According to the data in Fig. 7, the system’s voltage fluctuation is
controlled within £5% of the nominal value (209 V to 231 V), with a
voltage fluctuation rate of 2.3%, which is significantly lower than the
5% standard set by the national grid, demonstrating excellent volt-
age stability. In terms of frequency stability, the system’s frequency
fluctuation range is £1% (49.5 Hz to 50.5 Hz), with a frequency stabil-
ity of 0.4%. The recovery time typically does not exceed 2 seconds,
showcasing superior frequency regulation capability.

The stability of the system benefits from multi-level control strate-
gies, including an MPPT algorithm, a fast response fuel cell power
regulation mechanism, and a 20 kWh energy storage system [34].
The BoostedSewing algorithm significantly reduces voltage and
frequency fluctuations by 35% and 42%, respectively, by monitor-
ing and predicting load changes in real-time. In the load mutation
experiment, the temporary voltage drop of the system did not
exceed 7%, and the maximum frequency deviation was 0.3 Hz, both
of which quickly returned to the normal range. Three months of con-
tinuous operation testing have shown that the system’s availability is
99.95%, with excellent stability and reliability performance, provid-
ing users with a high-quality, stable, and reliable power supply.

D. Economic Evaluation
According to the datainTable ll, the economic evaluation indicates that
the hybrid photovoltaic/fuel cell system utilizing the BoostedSewing
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System Voltage and Frequency Stability Analysis
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Fig. 7. System voltage and frequency stability analysis.

algorithm outperforms traditional configurations in financial terms.
The initial investment for the system is $25 200, slightly higher than
the $24 600 for the basic hybrid system, primarily due to the introduc-
tion of advanced control hardware and software [35]. However, this
increased initial cost is offset by reduced operational expenses and
enhanced performance. The annual operation and maintenance costs
for both hybrid configurations are the same at $580, while the mainte-
nance costs for a system relying solely on fuel cells are higher.

In terms of the LCOE, the BoostedSewing-enhanced hybrid system
achieves an LCOE of $0.165 per kilowatt-hour, showing significant
improvement compared to other configurations. The system’s pay-
back period is 6.3 years, outperforming all other configurations and
demonstrating excellent economic performance. Additionally, the
system brings further savings by reducing energy waste, enhancing
predictive capabilities, and lowering maintenance costs.

E. Comparative Analysis of Different Algorithms
The comparative analysis of Fig. 8 and Table Ill and Table IV indi-
cates that the BoostedSewing algorithm outperforms traditional

TABLE Il. ECONOMIC COMPARISON OF DIFFERENT SYSTEM
CONFIGURATIONS

Initial Annual Levelized Cost Payback
System Cost O&M Cost of Energy Period
Configuration (USD) (USD) (USD/kWh) (Years)
PV only 12 500 250 0.158 7.2
Fuel cell only 15 800 450 0.195 85
Hybrid system (Base) 24 600 580 0172 6.8
Hybrid with 25200 580 0.165 6.3

BoostedSewing

PV, photovoltaic; O&M operation and maintenance.

methods, such as the genetic algorithm, particle swarm optimi-
zation, and the standard Sewing Algorithm, in optimizing hybrid
photovoltaic/fuel cell systems. It demonstrates significant advan-
tages in convergence speed, computational efficiency, and system
performance, with an average convergence time of 2.8 seconds,
lower computational costs, and a success rate of 98.5%. In eco-
nomic terms, the system optimized by BoostedSewing achieves an
LCOE of $0.165 per kilowatt-hour and a payback period of 6.3 years,
surpassing other configurations. Additionally, the system excels in
dynamic response, seasonal performance, and resource utilization
efficiency, significantly improving overall efficiency and extending
the system’s lifespan. Overall, the BoostedSewing algorithm pro-
vides substantial enhancements in both technical and economic
performance for the optimization of hybrid photovoltaic/fuel cell
systems.

Methods: the DDPG algorithm (actor-critic framework), state space
(photovoltaic output, SOC, load), and action space (fuel cell power
command) were used.

Results comparison, see Table V.

Although DRL has strong adaptability, it needs a lot of training
data, and the cost of real-time calculation is higher than that of
BoostedSewing (DRL: 5.1 x 10° FLOPS vs BS: 2.5 x 10° FLOPS).

Limitations under extreme conditions

Quoted experimental data: fuel cell startup delay increases to 120
seconds (original 30 seconds) at —10°C, and PV efficiency decreases
to 17.3% (original 20.1%) at 45°C.

IV. CONCLUSION

The authors optimized the hybrid photovoltaic/fuel cell system by
introducing the BoostedSewing algorithm and experimentally vali-
dated its significant improvements across multiple aspects. Firstly,
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Fig. 8. Convergence comparison of different optimization algorithms.

TABLE Ill. PERFORMANCE METRICS COMPARISON OF DIFFERENT OPTIMIZATION ALGORITHMS

Algorithm Average Convergence Time (s) Solution Quality (RMSE) Computational Cost (FLOPS) (x10°) Success Rate (%)
BoostedSewing 2.8 0.0342 25 98.5
Genetic algorithm 42 0.0485 38 94.2
Particle swarm 35 0.0426 32 95.8
Standard sewing 39 0.0512 2.8 93.1

RMSE, root mean square error; FLOPS, floating point operations per second.

in terms of system efficiency, the average efficiency increased
from 72% to 88% after implementing the BoostedSewing algo-
rithm. Additionally, the system demonstrated exceptional stability
and responsiveness under varying loads and seasonal conditions.
Secondly, the load response characteristics and stability of the sys-
tem have been effectively improved. Particularly during sudden load
changes, the system can rapidly adjust power distribution to maintain
voltage and frequency stability. Voltage fluctuations are controlled
within £5%, and frequency fluctuations do not exceed +1%, which is
significantly lower than the national grid standards. Additionally, the
analysis of seasonal performance shows that the system can effec-
tively utilize the complementary characteristics of photovoltaic and
fuel cells across different seasons, ensuring a stable power supply
under all weather conditions. In terms of economic evaluation, the

TABLE IV. MUTATION AMPLITUDE

Mutation Maximum Fuel Cell Peak
Amplitude Voltage Recovery  Response Battery
(%) Fluctuation(%) Time (s) Delay (s) Power (kW)
20 32 038 0.5 12

50 4.7 1.1 0.8 35

80 6.9 14 1.2 50

hybrid system employing the BoostedSewing algorithm experiences
a slight increase in initial investment. However, by enhancing sys-
tem performance, reducing energy waste, and lowering operational
costs, it ultimately achieves significant cost savings. Compared to
traditional algorithms, the system optimized by BoostedSewing not
only surpasses genetic algorithms, particle swarm optimization, and
standard sewing algorithms in technical performance but also dem-
onstrates advantages in LCOE and investment payback period, with
a payback period of 6.3 years, highlighting its economic superior-
ity. In summary, the BoostedSewing algorithm provides an effective
solution for optimizing photovoltaic and fuel cell systems, demon-
strating broad application prospects. It holds significant importance
in enhancing system efficiency, reducing costs, and ensuring the sta-
bility of the power supply.

TABLE V. CONTROL GROUP

Algorithm LCOE Dynamic Response Time
Boosted Sewing 0.165 12
DDPG (DRL) 0171 1.5
Tradition PSO 0.180 22

DDPG, Deep Deterministic Policy Gradient; DRL, Deep Reinforcement Learning;
LCOS, levelized cost of energy; PSO, particle swarm optimization.




Electrica 2025; 25:1-12
Du et al. BoostedSewing Algorithm and PV-Fuel Cell

Data Availability Statement: The data that support the findings of this
study are available on request from the corresponding author.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - H.R,; Design — H.J.; Supervision - H.P;
Resources — H.R.; Materials — H.P; Data Collection and/or Processing - W.D.;
Analysis and/or Interpretation — D.J,; Literature Search - J.L,; Writing - W.D,;
Critical Review - J.L.

Declaration of Interests: The authors have no conflicts of interest to
declare.

Funding: This research conduct with financial support of Medium and
low voltage power network optimization interconnection device (No.
YNKJXM20220094).

REFERENCES

1.

S. Baek, H. Lee, Y. S. Lee, I. S. Chang, and I. G. Choi, “A redox-enzyme
integrated microbial fuel cell design using the surface display system in
Shewanella oneidensis MR-1," ACS Appl. Mater. Interfaces, vol. 17, no. 1,
pp. 1167-1178, 2025. [CrossRef]

K. D. Christy, N. Sengottuvelan, J. Sathiyamootthy, T. N. J. I. Edison, and
A. Senthilkumar, “Power benefitted bioremediation of hexavalent chro-
mium ions in biochar blended soil microbial fuel cell,” Biomass Convers.
Biorefin., vol. 15, no. 4, pp. 5739-5752, 2025. [CrossRef]

Y. Zhu, J. Xie, M. Zhu, J. Zhang, and M. Li, “The effects of the geometry
of a current collector with an equal open ratio on output power of a
direct methanol fuel cell,” ENERGY, vol. 121, no. 5, pp. 1161-1172, 2024.
[CrossRef]

G. Soyturk, O. Kizilkan, M. A. Ezan, and C. O. Colpan, “Design, modeling,
and analysis of a PV/T and PEM fuel cell based hybrid energy system for
an off-grid house,” Int. J. Hydrog. Energy, vol. 67, pp. 1181-1193, 2024.
[CrossRef]

A. S. Roshani, E. Assareh, A. Ershadi, and M. Carvalho, “Optimization of a
hybrid renewable energy system for off-grid residential communities
using numerical simulation, response surface methodology, and life
cycle assessment,” Renew. Energy, vol. 236, p. 25, 2024. [CrossRef]

M. Afkar, R. Gavagsaz-Ghoachani, W. Saksiri, M. Phattanasak, and S.
Pierfederici, “Enhancement of the commandable areas of a modular
DC-DC converter with anti-windup synthesis in fuel cell systems,” IEEE
Access, vol. 12, p. 95673-95683, 2024. [CrossRef]

S.Sun et al., “A new pathway to integrate novel coal-to-methanol system
with solid oxide fuel cell and electrolysis cell,” Energy, vol. 304, p. 14,
2024. [CrossRef]

C.Fu et al., “Exergy-water-carbon-cost nexus of a biomass-syngas-fueled
fuel cell system integrated with organic Rankine cycle,” Renew. Energy,
vol. 231, p. 12, 2024. [CrossRef]

M. M. Sebdani, and E. Kjeang, “In-situ pressure differential-accelerated
mechanical fatigue testing and modeling of a reinforced fuel cell mem-
brane,” Polym. Test., vol. 136, p. 15, 2024.

A. C. Frey, D. Bosak, J. Stonham, C. M. Sangan, and O. J. Pountney, “Liquid
cooling of fuel cell powered aircraft: The effect of coolants on thermal
management,” J. Eng. Gas Turbines Power, vol. 146, no. 11, p. 12, 2024.
[CrossRef]

C.Wang, Z. Yu, H. Wu, and D. Wang, “Optimization design of trapezoidal
flow field proton exchange membrane fuel cell combined with compu-
tational fluid dynamics, surrogate model, and multi-objective optimiza-
tion algorithm,” lonics, vol. 30, no. 6, pp. 3375-3389, 2024. [CrossRef]
Y. Zhou et al.,, “Data-driven cost-optimal energy management of postal-
delivery fuel cell electric vehicle with intelligent dual-loop battery state-
of-charge planner,’ Energy, vol. 290, p. 19, 2024. [CrossRef]

P. Murugeswari, S. Selvaperumal, and S. Nagalakshmi, “Design analysis
of hybrid solar-wind renewable energy systems using water strider opti-
mization,” Phys. Scr., vol. 99, no. 3, p. 15, 2024.

K. Qiu, and E. Entchev, “Modeling, design and optimization of integrated
renewable energy systems for electrification in remote communities,”
Sustainable Energy res, vol. 11, no. 1, pp. 1-11, 2024. [CrossRef]

S. Rekik, and S. E. Alimi, “Prioritizing sustainable renewable energy sys-
tems in Tunisia: An integrated approach using hybrid multi-criteria

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

decision analysis,” Energy Explor. Exploit., vol. 42, no. 3, pp. 1047-1076,
2024. [CrossRef]

I. Animah, P. Adjei, and E. K. Djamesi, “Techno-economic feasibility
assessment model for integrating hybrid renewable energy systems
into power systems of existing ships: A case study of a patrol boat," J.
Mar. Eng. Technol., vol. 22, no. 1, pp. 22-37, 2023. [CrossRef]

Y. Matsunami et al., “Load-leveling model predictive control for building
energy systems with renewable energy and a storage battery,” Trans.
Soc. Heat. Air Cond. Sanit. Eng. Jpn., vol. 48, no. 315, pp. 1-11, 2023.

D. V. S. Reddy, S. Thangavel, and M. Golla, “A soft-switched high-gain
interleaved DC-DC converter with coupled inductors for renewable
energy systems,” Iran. J. Sci. Technol. Trans. Electr. Eng., vol. 48, no. 2,
pp. 911-927, 2024. [CrossRef]

A. Al-Quraan, and B. Al-Mhairat, “Sizing and energy management of
standalone hybrid renewable energy systems based on economic pre-
dictive control,’ Energy Convers. Manag., vol. 300, p. 19, 2024. [CrossRef]
A.D. Asmedianova, A. S. Bagishev, O. A. Logutenko, and A. . Titkov, “The
fabrication of inkjet-3D-printed NiO-Ce0.8Gd0.202-Based Anode for a
Solid-Oxide Fuel Cell and Study of Its Microstructure,” Russ. J. Electro-
chem., vol. 60, no. 3, pp. 162-168, 2024. [CrossRef]

M. M. Khayyat, and B. Sami, “Energy community management based
on artificial intelligence for the implementation of renewable energy
systems in smart homes,” Electronics, vol. 13, no. 2, p. 27, 2024.
[CrossRef]

A. K. Mishra, L. H. A. Fezaa, Y. S. Bisht, C. S. Nivedha, R. Senthil Kumar,
and S. Sasipriya, “Hybrid renewable energy systems: An integrated
approach to rural electrification,” E3S Web of Conf.,, vol. 540, p. 12,
2024. [CrossRef]

D. Gerring, “Renewable energy systems for building designers: Funda-
mentals of net zero and high performance design,” Energy Future, vol. 11,
no. 1/2, p. 64, 2023.

C. Ravina, “Optimizing renewable energy systems: Harnessing nature’s
resources efficiently,” Glob. J. Technol. Optim., vol. 14, no. 5, p. 2, 2023.
S. Verma, Y. L. Kameswari, and S. Kumar, “A review on environmental
parameters monitoring systems for power generation estimation from
renewable energy systems,’BioNanoScience, vol. 14,no. 4, pp. 3864-3888,
2024. [CrossRef]

S. Senthilkumar, K. Balachander, and V. M. M. Mansoor, “A hybrid tech-
nique for impact of hybrid renewable energy systems on reliability of
distribution power system,” Energy, vol. 306, p. 12, 2024. [CrossRef]

Y. Bourek, E. M. B. Messini, C. Ammari, M. Guenoune, B. Chabira, and B.
K. Saha, “A hybrid renewable energy system for Hassi Messaoud region
of Algeria: Modeling and optimal sizing,” Energy Storage Sav., vol. 4, no. 1,
pp. 56-69, 2025. [CrossRef]

R. L. Meena, A. Bhattacharya, and D. K. Khatod, “Novel control strategy
for CESS integrated DC microgrid with on grid and off grid application,’
Arab. J. Sci. Eng., vol. 48, no. 11, p. 14681-14696, 2023. [CrossRef]

J. You, X. A. Walter, I. Gajda, J. Greenman, and . leropoulos, “Impact of
disinfectant on the electrical outputs of urine-fed ceramic and mem-
brane-less microbial fuel cell cascades,” Int. J. Hydrog. Energy, vol. 57,
pp. 759-763, 2024. [CrossRef]

X. Zhang, and Y. Zhou, “Waste-to-energy (W2E) for renewable-battery-
FCEV-building multi-energy systems with combined thermal/power,
absorption chiller and demand-side flexibility in subtropical climates,’
Energy Build., vol. 307, p. 24, 2024. [CrossRef]

N. A. A. Jalil et al., “Exploring the role and potential of epoxidized natural
rubber in enhancing polymer electrolyte membranes for fuel cells: An
overview,” lonics, vol. 31, no. 1, pp. 117-140, 2025. [CrossRef]

M. H. Ibrahim, M. A. Ibrahim, and S. I. Khather, “Hydrogen solar pump in
nocturnal irrigation: A sustainable solution for arid environments,’
Energy Convers. Manag., vol. 304, p. 14, 2024. [CrossRef]

C. A. Ramos-Paja, J. P. Villegas-Ceballos, and A. J. Saavedra-Montes,
“Microinverter power system to feed grid-isolated AC loads using fuel
cells,” Iran. J. Sci. Technol. Trans. Electr. Eng., vol. 49, no. 1, pp. 89-107,
2025. [CrossRef]

A. Ueno et al,, “Synthesis and characterization of zirconium oxide-based
catalysts for the oxygen reduction reaction via the heat treatment of
zirconium polyacrylate in an ammonia atmosphere,”J. Mater. Sci., vol. 60,
no. 6, pp. 2774-2785, 2025. [CrossRef]

A. K. Kyatsandra, S. Kumar, K. Sarita, A.S. S.Vardhan, A. S. S. Vardhan, and
R. K. Saket, “Innovative design and development of biological fuel cell-
based energy conversion system,” J. Inst. Eng. India B, vol. 104, no. 5,
pp. 1119-1131, 2023. [CrossRef]


https://doi.org/10.1021/acsami.4c16868
https://doi.org/10.1007/s13399-024-05507-3
https://doi.org/10.32604/ee.2024.041205
https://doi.org/10.1016/j.ijhydene.2023.11.291
https://doi.org/10.1016/j.renene.2024.121425
https://doi.org/10.1109/ACCESS.2024.3423456
https://doi.org/10.1016/j.energy.2024.132125
https://doi.org/10.1016/j.renene.2024.120988
https://doi.org/10.1115/1.4066047
https://doi.org/10.1007/s11581-024-05494-5
https://doi.org/10.1016/j.energy.2023.130141
https://doi.org/10.1186/s40807-024-00103-5
https://doi.org/10.1177/01445987231226337
https://doi.org/10.1080/20464177.2022.2087272
https://doi.org/10.1007/s40998-024-00705-1
https://doi.org/10.1016/j.enconman.2023.117948
https://doi.org/10.1134/S1023193524030030
https://doi.org/10.3390/electronics13020380
https://doi.org/10.1051/e3sconf/202454001013
https://doi.org/10.1007/s12668-024-01358-4
https://doi.org/10.1016/j.energy.2024.132383
https://doi.org/10.1016/j.enss.2024.10.002
https://doi.org/10.1007/s13369-023-07796-8
https://doi.org/10.1016/j.ijhydene.2024.01.042
https://doi.org/10.1016/j.enbuild.2024.113949
https://doi.org/10.1007/s11581-024-05987-3
https://doi.org/10.1016/j.enconman.2024.118219
https://doi.org/10.1007/s40998-024-00759-1
https://doi.org/10.1007/s10853-025-10620-3
https://doi.org/10.1007/s40031-023-00920-0

Electrica 2025; 25: 1-12
Du et al. BoostedSewing Algorithm and PV-Fuel Cell

Wenjia Du was born in Kunming City, Yunnan Province, in 1985. He obtained his Bachelor of Engineering in Electrical
Engineering and Automation from Kunming University of Science and Technology in July 2008. Since August 2020, he
has been serving as the Deputy General Manager of the Office/Dali Xiangyun Power Supply Bureau. His research interests
include power dispatching.

Honggian Ji was born in Dali City, Yunnan Province, in 1976. He obtained a Bachelor of Management in Law from the
Yunnan Administrative College of the Yunnan Provincial Party School in December 2009. Since April 2019, he has been
serving as the manager of the Planning and Production Department / Dali Xiangyun Power Supply Bureau. His research
interests include distribution network management and scheduling.

Haodong Peng was born in Xianning City, Hubei Province, in 1994. He obtained his Bachelor of Engineering in Power
Systems and Automation from Kunming Institute of Technology in Yunnan Province in June 2021. Since February 2024,
he has been serving as the Safety Management Specialist at Liuchang Power Supply Office / Dali Xiangyun Power Supply
Bureau. His research interests include smart grids and digital technologies.

Hongxian Rui was born in Dali City, Yunnan Province, in 1992. He obtained his Bachelor of Engineering in Electrical
Engineering and Automation from Kunming University of Science and Technology in August 2010. Since November 2024,
he has been working as a team leader at the Yingpiao Command Center / Dali Xiangyun Power Supply Bureau. His research
interests include new energy storage technologies for power systems.

Jun Li was born in Dali City, Yunnan Province, in 1978. He graduated from the Central Radio and TV University with a
major in Business Administration in November 2005. Since September 2021, he has been serving as the manager of the

Marketing Department at Dali Xiangyun Power Supply Bureau. His research interests include distribution network market-
ing management.



