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ABSTRACT

The authors propose a data security enhancement scheme for smart grids based on Federated Learning and 
Blockchain to address issues of data privacy leakage and tampering in edge computing environments within 
smart grids. In edge computing scenarios, traditional centralized model training is vulnerable to attacks and 
struggles to protect data privacy, with an attack success rate as high as 54.3%. By integrating Federated Learning 
and Blockchain technologies, the authors have constructed a secure architecture that enables the system to 
protect users’ electricity consumption data privacy without sharing raw data, while ensuring the integrity and 
security of the data transmission process. Experimental results show that the privacy leakage rate of the Federated 
Learning + Blockchain scheme is only 0.9%, compared to 60.2% for schemes without privacy protection. 
Additionally, the Federated Learning + Blockchain approach outperforms traditional solutions in terms of data 
transmission, processing time, Central Processing Unit (CPU) and memory consumption, and security, achieving a 
balance between performance and security.
Index Terms—Blockchain, data security, edge computing, federated learning, privacy protection, smart grid

I. INTRODUCTION

Smart grids, as a product of the deep integration of traditional power systems and information 
and communication technologies, achieve real-time monitoring and bidirectional interaction 
of power generation, transmission, and consumption by integrating sensors, smart meters, and 
data analysis tools. This significantly enhances energy efficiency and system reliability [1]. The 
importance of smart grids is increasingly prominent, as they are regarded as critical infrastruc-
ture for achieving energy transition and sustainable development (see Fig. 1). The introduction 
of edge computing further optimizes the responsiveness of smart grids by enabling distributed 
processing near the data source, reducing transmission latency, and alleviating the load on cen-
tral servers (see Fig. 2). However, the widespread distribution of edge devices and the decentral-
ized processing of data exacerbate security risks. Sensitive information such as user electricity 
consumption data and device status faces threats from cyberattacks, data tampering, and pri-
vacy breaches [2]. Existing centralized models rely on the sharing of raw data, making it diffi-
cult to balance privacy protection and computational efficiency in dynamic edge environments. 
There is an urgent need to explore innovative solutions that simultaneously address security, 
real-time performance, and scalability.

The smart grid and its data security have become a focal point of research in both academia and 
industry in recent years, particularly in the areas of data privacy and security (see Fig. 3). Many 
scholars have explored the critical challenges of data security in smart grids. Pasumponthevar 
and Jeyaraj proposed a false data intrusion detection framework based on Kalman reinforce-
ment learning, which enhances system resilience by dynamically optimizing detection strategies. 
Theoretical validation shows a significant improvement in the detection accuracy of false data 
injection attacks. However, this scheme does not fully consider the computational constraints 
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of edge devices, and the feasibility of deploying complex reinforce-
ment learning models in resource-constrained scenarios remains 
questionable [3]. Yang et  al. introduced the zero-trust architecture 

into the design of power system networks, reducing the risk of 
internal attacks through continuous identity verification and mini-
mum privilege access. Their research provides new insights for 

Fig. 1.  Schematic diagram of smart grid architecture.

Fig. 2.  Schematic diagram of edge computing integrated with smart grid.
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fine-grained access control in distributed environments. However, 
the framework lacks sufficient support for real-time performance 
in high-frequency data interaction scenarios and is not deeply inte-
grated with the characteristics of edge computing [4]. In the explo-
ration of blockchain technology applications, Pillai and Deshmukh 
designed a service-centric blockchain security model for smart grids, 
utilizing smart contracts to achieve data traceability and access con-
trol. However, their design relies on a high-throughput consensus 
mechanism, which is difficult to adapt to the low-bandwidth char-
acteristics of edge networks, leading to significantly increased trans-
action delays in practical scenarios [5]. Although existing research 
has made progress at the theoretical level, most solutions still face 
challenges such as insufficient computational resources in edge sce-
narios, weak protection during transmission, and a lack of compre-
hensive evaluation.

The existing shortcomings of the smart grid data security architec-
ture can be analyzed from multiple dimensions. There is a signifi-
cant contradiction between the limited computational resources 
of edge terminals and the complex security requirements. A typi-
cal manifestation is that privacy-preserving technologies such as 
homomorphic encryption, while effectively preventing data leak-
age, have a computationally intensive nature that severely conflicts 
with the lightweight characteristics of edge devices. This results in 
feasibility obstacles for security strategies in practical deployments 
[6, 7]. Current research excessively focuses on privacy protection 
during the model training phase but lacks effective mechanisms to 
address dynamic threats in the data transmission process. Although 
traditional static encryption methods can ensure the security of off-
line data, they struggle to adapt to the dynamic changes in edge 
network topology and the millisecond-level response requirements. 
Existing solutions reveal defects such as rigid defense strategies and 
delayed responses [8, 9]. Most security models lack systematic per-
formance evaluation across scenarios and fail to fully consider the 
nonlinear impact of physical layer delay jitter and device heteroge-
neity on detection accuracy. This results in a significant deviation 
between theoretical performance and actual effectiveness. Current 
security frameworks generally lack collaborative protection designs 
among end users, edge nodes, and cloud systems. This fragmented 
security paradigm severely weakens the overall resilience of the sys-
tem. Constructing a cross-layer collaborative and dynamically evolv-
ing defense system has become a critical challenge constraining the 
security upgrade of smart grids [10, 11].

Faced with the aforementioned issues, the primary objective of the 
author is to propose an efficient and secure data protection scheme 
aimed at addressing data privacy leakage and tampering in smart 
grids, particularly the challenges of real-time performance and effi-
ciency in edge computing scenarios. Specific research questions 
include how to conduct effective model training without sharing 
raw data, as well as how to utilize blockchain to ensure data immuta-
bility and secure transmission [12, 13]. The author’s contribution lies 
in the innovative integration of federated learning and blockchain 
technology, forming a novel security architecture. Compared to 
existing research, the author not only focuses on data privacy pro-
tection but also emphasizes efficiency in edge environments, pro-
viding a practical solution to meet the increasingly complex security 
demands of smart grids.

II. MODEL CONSTRUCTION

The system architecture proposed by the author aims to achieve 
efficient and secure data management in smart grids by leverag-
ing the advantages of edge devices, central servers, and blockchain 
technology. The system primarily consists of three components: 
edge devices, central servers, and the blockchain network [14]. 
Edge devices include various smart sensors, smart meters, and data 
acquisition terminals responsible for the real-time collection of grid 
operation data (such as current, voltage, and power). Equipped 
with certain computational capabilities, they can perform prelimi-
nary data processing and analysis locally. This reduces data trans-
mission latency, enhances the system’s rapid response capability, 
and optimizes power management strategies. The central server is 
responsible for centralized processing of data from edge devices, 
conducting in-depth data analysis and model training. It also man-
ages the federated learning process, sending the trained model 
parameters back to the edge devices. This ensures the privacy of 
user data while leveraging data from different devices to improve 
model accuracy (MA) [15, 16]. Blockchain technology is employed 
in this architecture to ensure the security and integrity of the data 
transmission process. All transmission records and data transac-
tions are recorded on the blockchain, forming an immutable histori-
cal data chain. This not only enhances data transparency but also 
strengthens resistance to data tampering and malicious attacks 
[17]. Additionally, the introduction of smart contracts enables 
automated execution of data access control, ensuring that only 

Fig. 3.  Analysis of current data security threats.
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authorized users can access specific data. The specific architecture 
is illustrated in Fig. 4.

Through this interactive architecture, the various components can 
efficiently collaborate, ensuring the security and privacy of data 
during collection, transmission, and storage. Edge devices rapidly 
process and provide feedback on information, the central server 
conducts in-depth analysis, and the blockchain offers a secure and 
transparent environment for data sharing [18]. This design not only 
enhances the data security of smart grids but also meets the require-
ments for real-time performance and scalability, laying a solid foun-
dation for further research and practical applications.

A. Federated Learning Model

1) Local Model Structure:
The structure of the local model typically depends on the specific 
application scenario and data type. In this study, a deep learning 
model suitable for power load forecasting and network traffic anom-
aly detection was selected. The model includes the following main 
components:

a) Input layer: Receives power load or network traffic data from edge 
devices. Input features may include historical load data, timestamps, 
weather conditions, etc.

b) Hidden layer: Utilizes multiple fully connected layers (or convolu-
tional layers) to extract features from the data. Each hidden layer 
employs an activation function (such as ReLU) to introduce non-lin-
earity, thereby enhancing the model’s expressive capability [19, 20].

c) Output layer: The structure of the output layer depends on the 
nature of the task. For power load forecasting, a linear regression 
output can be used; for network traffic anomaly detection, a binary 
classification output (normal or abnormal) can be employed.

The specific model structure can be expressed as (1): 

y f x� � �;� 	 (1)

where y is the output of the model, x is the input feature, and θ is the 
model parameter.

2) Loss Function:
The loss function is used to measure the discrepancy between the 
model’s predicted values and the true values. Selecting an appropri-
ate loss function is crucial for the training of the model. In this study, 
the following loss function was adopted:

Mean squared error: Used for the power load forecasting task, 
defined as (2):

L y y
N

y y
i

N

i i, ˘ ˘� � � �� �
�
�1

1

2
	 (2)

where y is the true value, y̆i  is the predicted value, and N is the num-
ber of samples.

Cross-entropy loss: Used for the network traffic anomaly detection 
task, defined as (3):

L y y
N

y y y y
i

N

i i i i, ˘ ˘ ˘� � � � � � � �� � �� ��� ��
�
�1

1 1
1

log log 	 (3)

3) Optimization Algorithm:
In order to effectively train the local model, a gradient descent-
based optimization algorithm was adopted. Specifically, the Adam 
optimization algorithm was chosen due to its superior convergence 
performance when handling large-scale data. The update rules of 
the Adam optimization algorithm are as follows:

The calculation gradient is (4):

� � �L w Dk
t

k, 	 (4)

Fig. 4.  System architecture diagram.
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The update mean and variance are given by (5) and (6):

m m L w Dt t k
t

k� � �� �� � ��� �1 1 11 , 	 (5)

v v L w Dt t k
t

k� � �� � � � �� ��� �2 1 2

2
1 , 	 (6)

The updated model parameters are given by (7):
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m

v
k
t

k
t t

t

� � �
�

1 �


	 (7)

Here, β1 and β2 are momentum decay parameters, η is the learning 
rate, and ∈ is a smoothing term to prevent division by zero.

4) Local Model Training Process:
Under the framework of federated learning, each edge device per-
forms local training based on the aforementioned model structure 
and algorithm. The specific process is as follows:

•	 Model initialization: Initialize using the global model parameters.
•	 Local training: Perform multiple rounds of training on the local 

dataset Dk, calculate and update the model parameters [21, 22].
•	 Model parameter upload: After completing the training, upload 

the updated model parameters to the central server instead of the 
raw data.

In this way, federated learning models effectively leverage the com-
putational capabilities of edge devices while protecting user privacy, 
enhancing the security and efficiency of smart grid data processing. 
The settings of hyperparameters for help outlinefederated learning 
was shown in Table 1.

B. Integration of Blockchain and Federated Learning
In this study, edge devices upload the trained local model param-
eters to the blockchain instead of directly sending them to the cen-
tral server. This process ensures the privacy of the uploaded model 
parameters by adding noise [23, 24]. The formula for uploading the 
model parameters can be expressed as:

Let wk
t  be the model parameters of the edge device at the ith itera-

tion. The model parameters uploaded to the blockchain can be 
expressed as (8):

w w Nk
t

k
t� � � � �1 20,� 	 (8)

Here, N(0,σ2) represents the Gaussian noise added to the model 
parameters, ensuring the privacy of the uploaded data.

Blockchain technology provides the characteristic of data immuta-
bility, enabling each model parameter update to be recorded and 
verified [25]. This mechanism ensures that each update is secure and 
reliable. Each time the model parameters are updated, the block-
chain will record the following information as (9):

Record=Hash timestamp device idwk
t�� �1, , _ 	 (9)

Here, Hash()performs a hash operation on the uploaded model 
parameters to ensure the secure storage of the data on the 
blockchain.

Through the blockchain, the central server or designated edge 
devices can obtain the model parameters from all participating 
devices and update the global model using an aggregation algo-
rithm. The update of the global model can be expressed as (10): 

w
K

wt

k

K

k
t�

�

�� �1

1

11
	 (10)

Here, K represents the number of participating edge devices. This 
formula generates a new global model by performing a weighted 
average of all valid model parameters.

By leveraging smart contract technology, the automation of model 
updates and data access control can be achieved. For instance, 
smart contracts can define certain conditions, and when these con-
ditions are met, data access or model updates are automatically 
executed [26, 27]. The execution conditions of smart contracts can 
be expressed as (11): 

if is valid update global modelwk
t�� ��1 	 (11)

This ensures that only valid model parameters can update the global 
model, thereby further enhancing the security and efficiency of the 
entire system.

Smart contract implements the logic to verify the validity of model 
parameters, digital signature, and device certificate.

Trigger conditions: When w wk
t

k
t� � �1  prevents abnormal updates,

Automatically aggregate: call the Aggregate()function to calculate 
the global model

Solidity example of a contract code snippet:

function verify Update(bytes32 hash, uint timestamp, address device 
ID) public {

require(registered Devices [device ID], "Unauthorized device");

require(block.timestamp - timestamp < THRESHOLD, "Expired 
update"); 

emit Update Verified(hash);

C. Data Privacy Protection Mechanism

1) Differential Privacy:
As shown in Fig. 5, differential privacy (DP) is a method of protect-
ing user data privacy by adding noise to query results. In federated 
learning, DP can be achieved by adding noise before uploading 

TABLE I.  SETTINGS OF HYPERPARAMETERS FOR FEDERATED LEARNING

Parameter Value

Number of local training rounds 5

Global aggregation rounds 100

Batch size 32

Learning rate (η) 0.001

Momentum attenuation (β 1/β ɑ) 0.9/0.999
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model parameters. This ensures that even if someone obtains the 
model parameters, they still cannot reverse-engineer the true data 
of any individual user [28, 29].

In order to achieve differential privacy, noise was added to the model 
parameters uploaded by each edge device. Specifically, it can be 
expressed as (12): 

w w Nk
t

k
t� � � � �1 20,� 	 (12)

Here, N(0,σ2) is noise that follows a Gaussian distribution, and its stan-
dard deviation σ can be set based on the privacy budget ε. The pri-
vacy budget controls the degree of noise added, thereby influencing 
the model’s usability and the effectiveness of user privacy protection.

2) Homomorphic Encryption:
As shown in Fig. 6, homomorphic encryption is a technology that 
allows computations to be performed on encrypted data without 
the need to decrypt it. This enables effective model training while 
ensuring data privacy.

In the context of federated learning, edge devices can use homo-
morphic encryption to encrypt model parameters, denoted as 
E wk

t� � , where E() represents the operation of encrypting the model 
parameters. Subsequently, the central server or aggregation node 
can perform computations on the encrypted parameters without 
needing to know the original data [30].

After receiving the encrypted model parameters, the central server 
can perform operations such as weighted averaging to obtain the 
encrypted global model parameters as (13): 

E w Aggregate E w E w E wt t t
K
t�� � � � � � � � � �� �1

1 2, , , 	 (13)

3) Application Scenarios and Connections:
In the context of smart grids, users’ electricity consumption data 
is highly sensitive and involves user privacy. Therefore, employing 
DP or homomorphic encryption can facilitate model training and 
updates while ensuring data privacy. Specifically:

Differential privacy and user data: By adding noise to the model 
updates of each edge device, it ensures that even if the model 
parameters are obtained by malicious users, individual users’ elec-
tricity consumption data cannot be identified. This is crucial for data 
privacy in smart grids [31, 32].

Homomorphic encryption and secure computation: Homomorphic 
encryption permits the aggregation of model parameters without 
exposing user data. This way, even if the central server processes 
encrypted data, it can still efficiently update the global model, 
thereby enhancing the security of the entire system.

Federated learning enables edge devices to train models locally 
without uploading raw data. To enhance the privacy protection of 

Fig. 5.  Schematic diagram of differential privacy.

Fig. 6.  Schematic diagram of homomorphic encryption.
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the models, the data update process can be integrated with block-
chain. Edge devices upload their local model parameters to the 
blockchain instead of a central server. This ensures that even if some-
one accesses the blockchain, what they obtain is only the encrypted 
model parameters.

III. EXPERIMENTAL RESULTS

A. Experimental Setup
The power load data are from the 2022 version of the IEEPES (Post-
evaluation system for smart energy economy) Power Open Database, 
which contains 100 000 records with a time span from January 2021 
to June 2023. The feature dimension is 23, including environmen-
tal variables such as temperature and humidity. The preprocessing 
adopts MinMax normalization, and abnormal values are eliminated 
through the 3σ principle.

The experiments were conducted in a virtual machine-based envi-
ronment to simulate real-world smart grid scenarios. The experi-
mental setup included multiple edge devices and a central server, 
all interconnected via a secure local area network, forming an inte-
grated network architecture. The central server was responsible for 
aggregating the model parameters uploaded from each edge device 
and updating the global model [33]. In order to ensure the reproduc-
ibility and accuracy of the experiments, all devices were configured 
with identical hardware and software environments.

The detailed configuration of the experimental environment is as 
follows: Edge Devices: Five edge devices were used, each equipped 
with an 8-core CPU, 16GB of RAM, and a 256GB SSD. All devices ran 
the same version of the operating system (e.g., Ubuntu 20.04) and 
were installed with the necessary machine learning libraries (e.g., 
PyTorch) and federated learning frameworks (e.g., Flower). Central 
Server: The central server was configured with a 32-core CPU, 64GB 
of RAM, and a 1TB SSD. It ran the same operating system as the edge 
devices and was installed with deep learning frameworks for data 
aggregation and model training. A blockchain node was also config-
ured on the server to support smart contract functionality. Network 
Environment: The local area network bandwidth was set to 1 Gbps 
to ensure efficient data transmission. Network simulation tools (e.g., 
NetEm) were used to emulate different network latencies (10 ms, 50 
ms, and 100 ms) to evaluate the model’s performance under varying 
network conditions.

This experiment employed multiple datasets to thoroughly assess 
the performance of the proposed solution across various scenarios. 
The primary datasets consist of the power load dataset and the net-
work traffic dataset. The power load dataset includes a variety of 
feature information, such as timestamps, user identities, weather 
conditions (temperature, humidity, etc.), load categories (residen-
tial electricity, industrial electricity, etc.), and specific parameters 
like current, voltage, and power. The dataset is characterized by its 
large volume and diverse dimensions, offering a comprehensive 
scenario for load forecasting and analysis. The goal is to utilize this 
dataset for load forecasting, evaluating the accuracy and robust-
ness of the model in predicting power loads. To achieve this, the 
raw data underwent cleaning and normalization processes and was 
then divided into a training set (70%), a validation set (15%), and a 
test set (15%). The network traffic dataset simulates both normal 
and abnormal traffic in a real-world network environment, includ-
ing traffic characteristics during normal operations and traffic data 
during network attacks (e.g., DDoS attacks). The objective is to assess 

the performance of anomaly detection algorithms, particularly their 
responsiveness under high load and attack conditions. Each data 
point in the dataset is labeled as either normal or abnormal to facili-
tate supervised learning [34].

The design of the test scenarios aims to evaluate the performance of 
the proposed solution under different conditions, primarily focusing 
on two scenarios. Scenario 1: This scenario tests the model’s predic-
tion accuracy under normal load conditions. The power load dataset 
is used to train the model, and its prediction accuracy is observed 
across different time periods (e.g., peak hours and off-peak hours). 
The model’s performance is assessed by calculating the root mean 
square error and mean absolute percentage error. Scenario 2: This 
scenario evaluates the system’s security under high load and abnor-
mal conditions. The network traffic dataset is employed to test the 
system’s anomaly detection capabilities [35]. In simulated network 
attack situations, the system’s detection time and accuracy are 
recorded, and the false positive rate and false negative rate are cal-
culated to assess the system’s responsiveness.

B. Performance Evaluation
The success rate of using the privacy leakage rate (PLR) model to 
reconstruct the original data with an attack tool such as DeepLeak 
is defined as

PLR NleakedNtotal %PLR
N
N

%PLR NtotalNlealeaked

total
� � � � �100 100 kked %�100 .

Attack success rate (ASR) is based on the white-box attack to obtain 
the data tampering success rate under the model parameters.

1) Effectiveness of Data Privacy Protection:
In order to evaluate the effectiveness of the proposed edge data 
security enhancement scheme for smart grids based on federated 
learning and blockchain in terms of data privacy protection, the 
experiments primarily analyzed and compared aspects such as data 
leakage risk, confidentiality of model parameters, and robustness of 
data privacy. By conducting experiments across different test scenar-
ios and with various algorithms, the privacy protection capabilities 
of the proposed scheme were compared with those of traditional 
approaches.

Fig. 7 illustrates the privacy protection effectiveness of different 
algorithms. In terms of PLR, the No Privacy Protection Scheme (NPPS) 
exhibits the highest leakage rate at 60.2%, while the Federated 
Learning + Blockchain integrated scheme (FL+BC) demonstrates the 
best privacy protection, with a leakage rate of only 0.9%, significantly 
lower than other schemes, highlighting its substantial advantage 
in privacy safeguarding. Regarding MA, NPPS achieves the highest 
accuracy of 95.6% due to the absence of additional protection mea-
sures. In contrast, FL+BC maintains a high accuracy of 91.5%, slightly 
lower than NPPS but superior to other privacy protection schemes, 
showcasing its balanced approach in ensuring model performance. 
CPU Usage (CPUU) and Bandwidth Consumption (BC) are critical 
metrics for evaluating computational overhead. Homomorphic 
Encryption (HE) incurs the highest consumption, with CPU usage 
reaching 50.3% and bandwidth consumption at 11.3 MB/s, due to 
its computationally intensive encryption and decryption processes. 
In contrast, the Federated Learning + Blockchain (FL+BC) scheme 
achieves higher computational efficiency while maintaining privacy, 
with CPU usage at 23.3% and bandwidth consumption at 5.5 MB/s, 
significantly lower than HE. In terms of Resistance to Inference Attack 
Rate (RIAR), FL+BC once again demonstrates the best protective 
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performance, achieving 88.5%, far surpassing traditional DP at 51.2% 
and NPPS at 21.9%. This indicates that FL+BC can effectively resist 
malicious attacks and ensure data security.

In summary, although the NPPS offers the lowest computational 
overhead and the highest MA, it provides almost no protection in 
terms of privacy and security. On the other hand, the Federated 
Learning + Blockchain (FL+BC) scheme demonstrates a balanced 
performance across all metrics, significantly reducing the PLR while 
maintaining high MA and low computational resource consumption. 
This highlights the advantages of FL+BC as an efficient and secure 
privacy protection solution.

2) System Performance Metrics:
From Fig. 8, it can be observed that in terms of system latency 
comparison, the Non-Privacy Preserving Edge Computing (NPPS) 
exhibits the lowest latency, averaging 68.5 ms, but lacks privacy 
protection. Centralized model training, on the other hand, has the 
highest latency, averaging 222.7 ms, which is significantly affected 
by high data transmission volumes and computational pressure. Its 
latency performance is notably poor across various scenarios. For 
instance, during peak electricity usage and in cases of data loss or 
delay, the latency reaches 248.8 ms and 309.3 ms, respectively. The 
Federated Learning + Blockchain (FL+BC) integration scheme, on 
the other hand, achieves an average latency of 86.4 ms, demon-
strating a good balance between performance and privacy protec-
tion. In scenarios of normal electricity load and network attacks, the 
latency of FL+BC is 75.8 ms and 91.4 ms, respectively, which is sig-
nificantly lower than that of centralized model training. Even in the 
most extreme scenario of data loss or delay, the latency of FL+BC is 
128.5 ms, which, although higher than that of NPPS, is still far supe-
rior to centralized model training. This indicates that FL+BC can 
maintain low latency while ensuring privacy protection, making it 

an optimized solution that balances performance and security. It 
is well-suited for scenarios where both privacy and system perfor-
mance are highly demanded.

As shown in Fig. 9, in terms of bandwidth consumption comparison, 
Non-Privacy Preserving Edge Computing (NPPS) exhibits the lowest 
bandwidth consumption across all scenarios, averaging only 0.725 
MB/s, as there is no additional communication or privacy protection 
overhead. Under normal electricity load and peak electricity usage 
scenarios, its bandwidth consumption is 0.5 MB/s and 0.8 MB/s, 

Fig. 7.  Privacy protection effectiveness of different algorithms.

Fig. 8.  System latency comparison chart.

Fig. 9.  Bandwidth consumption comparison.
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respectively, demonstrating minimal data transmission require-
ments. In contrast, centralized model training exhibits significantly 
higher bandwidth consumption, averaging 7.125 MB/s, with the 
highest bandwidth usage reaching 9 MB/s in scenarios of data loss 
or delay. This is due to the centralized model training requiring sub-
stantial data to be uploaded to the central server, resulting in high 
bandwidth demands. The Federated Learning + Blockchain (FL+BC) 
integration scheme effectively reduces bandwidth consumption 
while ensuring privacy, averaging 1.425 MB/s. In peak electricity 
usage and network attack scenarios, its bandwidth consumption 
is 1.5 MB/s and 1.3 MB/s, respectively, significantly lower than that 
of centralized model training. Overall, FL+BC achieves an efficient 
balance in bandwidth consumption. While it introduces some addi-
tional communication overhead compared to NPPS, it substantially 
reduces bandwidth usage compared to centralized solutions, making 
it a more suitable approach for efficient and secure communication.

As shown in Fig. 10, Non-Privacy Preserving Edge Computing (NPPS) 
demonstrates the lowest processing time across all tested scenarios, 
averaging only 2.95 seconds. In normal electricity load and network 
attack scenarios, the processing times are 2.5 seconds and 2.8 sec-
onds, respectively. Centralized model training exhibits significantly 
higher processing times, averaging 11.25 seconds, with a peak of 
15 seconds in data loss or delay scenarios, highlighting the compu-
tational bottlenecks of centralized processing under high load or 
abnormal conditions. The Federated Learning + Blockchain (FL+BC) 
integration scheme strikes a balance in processing time efficiency, 
averaging 3.95 seconds. While this is slightly higher than NPPS, it is 
significantly superior to centralized model training. In peak electric-
ity usage scenarios, FL+BC processing time is 4 seconds, compared 
to the centralized model training’s 12 seconds. Overall, FL+BC main-
tains a relatively low processing time, demonstrating a balanced 
advantage in ensuring both privacy and system performance. 
Compared to NPPS, FL+BC slightly increases processing time but 
remains within a reasonable range. In contrast to centralized model 
training, FL+BC significantly reduces processing overhead, making it 
an efficient and secure processing solution.

As shown in Fig. 11, in terms of CPU resource consumption, Non-
Privacy Preserving Edge Computing (NPPS) exhibits the lowest CPU 
usage across all scenarios, indicating relatively lower computational 

overhead in the absence of privacy protection measures. In contrast, 
centralized model training shows the highest CPU consumption, 
especially under high load or abnormal conditions, as data needs 
to be processed centrally, leading to a significant increase in CPU 
resource usage. On the other hand, Federated Learning + Blockchain 
(FL+BC) strikes a balance between privacy protection and compu-
tational efficiency, with CPU consumption falling between that 
of NPPS and centralized model training. In practical applications, 
FL+BC can ensure data privacy while achieving high computational 
performance, making it a more balanced solution, particularly suit-
able for scenarios where resource usage and privacy protection need 
to be carefully weighed.

As shown in Fig. 12, in terms of memory resource consumption, 
Non-Privacy Preserving Edge Computing (NPPS) exhibits the lowest 
memory usage, indicating that it can maintain lower resource occu-
pancy without adopting privacy protection measures. In contrast, 
centralized model training, which requires centralized data process-
ing, shows significantly higher memory usage compared to other 
solutions, especially under high load and abnormal data scenarios, 
where memory consumption is particularly pronounced. On the 
other hand, Federated Learning + Blockchain (FL+BC) demonstrates 
more balanced memory consumption, maintaining moderate 
memory usage while ensuring privacy protection. FL+BC is able to 
sustain lower resource consumption under high load and abnormal 
scenarios, making it a superior choice for applications that require a 
balance between performance and memory usage.

3) Security Evaluation:
The security evaluation is shown in Fig. 13. Non-Privacy Preserving 
Edge Computing (NPPS) performs the worst, with an ASR as high as 
54.3%, indicating that attacks are more likely to succeed without any 
protection. Its threat detection rate (TDR) is only 28.5%, and its data 

Fig. 10.  Processing time comparison. Fig. 11.  CPU resource consumption comparison.
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integrity resistance (DIR) is merely 8.5%. In contrast, the centralized 
model training reduces the ASR to 42.3%, but the TDR and DIR are 
only 53.5% and 27.3%, respectively, showing some improvement but 
still posing significant security risks. Traditional DP further reduces 
the ASR to 18.2%, while its TDR increases to 66.5%, and its DIR reaches 
39.6%, demonstrating strong security protection effectiveness.

However, the Federated Learning + Blockchain integration scheme 
(FL+BC) excels in all security metrics. Its ASR is only 1.3%, signifi-
cantly lower than other schemes, greatly reducing the likelihood of 
successful attacks. The TDR reaches 87.6%, indicating an exception-
ally high capability to detect potential threats. Additionally, its DIR 
is 91.5%, demonstrating the strongest resilience against data tam-
pering. Therefore, the FL+BC scheme significantly outperforms other 
schemes in overall security, making it the optimal choice for protect-
ing data security.

Simulate the attacker adjusting the strategy every two hours (such 
as model inversion, member inference attacks), and record the 

changes in ASR. As shown in Fig. 14, the ASR of the FL+BC scheme is 
stably lower than 2.5% under dynamic attacks, while the ASR of the 
traditional DP scheme fluctuates by 12%-28%.

Analyze the impact of noise intensity σ on MA and PLR:

When σ = 0.5, MA = 93.2%, PLR = 8.7%,

When σ = 2.0, MA = 85.1%, PLR = 0.2%,

As shown in Fig. 15, when σ = 1.0 (MA = 91.5%, PLR = 0.9%) is the opti-
mal equilibrium point.

C. Comparison Experiment With the Frontier Scheme
In the same experimental environment, the performance of the 
SMPC blockchain solution was compared with the deployment of 

Fig. 13.  Security evaluation comparison.

Fig. 14.  Attack success rate under 24-hour dynamic attacks.

Fig. 15.  Impact of noise intensity (σ) on model accuracy (MA) and 
privacy leakage rate (PLR).

Fig. 12.  Memory resource consumption comparison.
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SMPC using the SPDZ (Secure Computation Protocol for Dishonest 
Majority Zero-Knowledge) protocol and the blockchain integration 
scheme. The test results showed that the average computing delay 
of the Super-Mobile Personal Computer (SMPCBC) solution was 
1426 ms, which is 65% higher than the 864 ms of Flathead Lutheran 
Bible Camp (FLBC). The communication overhead was 82 MBs, 475% 
higher than the 1425 MBs of FLBC. Due to the encryption computa-
tion and multi-party verification mechanisms of SMPC, its comput-
ing and communication costs are significantly higher than those of 
the FLBC solution, confirming the high efficiency of this solution in 
edge scenarios.

To verify the feasibility of resource-constrained devices, the Raspberry 
Pi 4B (4-core ARM Cortex-A72, 4GB RAM) test was supplemented:

FL local training time: average 8.2 seconds/round (3.7 times slower 
than the virtual machine),

CPU peak occupancy: 89% (reduced to 72% through model 
lightweight),

It indicates that this scheme needs to optimize the model structure 
for low-end equipment (such as using MobileNet), but the basic 
framework is still applicable.

IV. CONCLUSION

The experimental results demonstrate that the combination of 
Federated Learning and Blockchain (FL+BC) exhibits significant 
advantages in the edge computing environment of smart grids. In 
terms of system latency, FL+BC reduces latency by more than 60% 
compared to centralized model training and maintains low latency 
even under high load or abnormal conditions. Although FL+BC 
slightly increases processing time and resource consumption, these 
increments remain within acceptable limits compared to the Non-
Privacy Preserving Scheme (NPPS), while significantly reducing the 
risk of data leakage. In terms of CPU utilization, FL+BC averages 56.6%, 
significantly lower than the 80.4% of the centralized model training. 
In the security evaluation, FL+BC achieves an ASR of only 1.3%, a TDR 
of 87.6%, and a DIR of 91.5%, outperforming all other schemes and 
fully demonstrating its ability to effectively resist attacks and ensure 
data integrity and security. Overall, the FL+BC scheme not only sig-
nificantly surpasses other schemes in privacy protection and security 
but also performs well in computational efficiency and system per-
formance, providing a comprehensive and efficient solution for smart 
grid data security. It is suitable for smart grid application scenarios 
with high demands for privacy and performance.

The heterogeneity of edge devices should be considered in the 
actual deployment. For devices with less than an 8-core CPU, such 
as Advanced RISC Machine-based (ARM) terminals, model quantiza-
tion, such as FP16 precision, can reduce the computing load. In the 
hybrid communication protocol environment, it is recommended to 
use the gRPC framework to implement the protocol conversion layer.
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