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WHAT IS ALREADY KNOWN ON THIS
TOPIC?

« In  smart grid edge computing
environments, traditional centralized
data processing methods are vulnerable
to cyber-attacks and struggle to protect
user data privacy, with high risks of data
leakage and tampering.

WHAT THIS STUDY ADDS ON THIS
TOPIC?

+ This study proposes a novel security
architecture that innovatively integrates
Federated Learning and Blockchain. It
enables secure model training without
sharing raw data, significantly reducing
the privacy leakage rate to 0.9%, while
maintaining high system performance
and ensuring data integrity.
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ABSTRACT

The authors propose a data security enhancement scheme for smart grids based on Federated Learning and
Blockchain to address issues of data privacy leakage and tampering in edge computing environments within
smart grids. In edge computing scenarios, traditional centralized model training is vulnerable to attacks and
struggles to protect data privacy, with an attack success rate as high as 54.3%. By integrating Federated Learning
and Blockchain technologies, the authors have constructed a secure architecture that enables the system to
protect users' electricity consumption data privacy without sharing raw data, while ensuring the integrity and
security of the data transmission process. Experimental results show that the privacy leakage rate of the Federated
Learning +Blockchain scheme is only 0.9%, compared to 60.2% for schemes without privacy protection.
Additionally, the Federated Learning+ Blockchain approach outperforms traditional solutions in terms of data
transmission, processing time, Central Processing Unit (CPU) and memory consumption, and security, achieving a
balance between performance and security.

Index Terms—Blockchain, data security, edge computing, federated learning, privacy protection, smart grid

I.INTRODUCTION

Smart grids, as a product of the deep integration of traditional power systems and information
and communication technologies, achieve real-time monitoring and bidirectional interaction
of power generation, transmission, and consumption by integrating sensors, smart meters, and
data analysis tools. This significantly enhances energy efficiency and system reliability [1]. The
importance of smart grids is increasingly prominent, as they are regarded as critical infrastruc-
ture for achieving energy transition and sustainable development (see Fig. 1). The introduction
of edge computing further optimizes the responsiveness of smart grids by enabling distributed
processing near the data source, reducing transmission latency, and alleviating the load on cen-
tral servers (see Fig. 2). However, the widespread distribution of edge devices and the decentral-
ized processing of data exacerbate security risks. Sensitive information such as user electricity
consumption data and device status faces threats from cyberattacks, data tampering, and pri-
vacy breaches [2]. Existing centralized models rely on the sharing of raw data, making it diffi-
cult to balance privacy protection and computational efficiency in dynamic edge environments.
There is an urgent need to explore innovative solutions that simultaneously address security,
real-time performance, and scalability.

The smart grid and its data security have become a focal point of research in both academia and
industry in recent years, particularly in the areas of data privacy and security (see Fig. 3). Many
scholars have explored the critical challenges of data security in smart grids. Pasumponthevar
and Jeyaraj proposed a false data intrusion detection framework based on Kalman reinforce-
ment learning, which enhances system resilience by dynamically optimizing detection strategies.
Theoretical validation shows a significant improvement in the detection accuracy of false data
injection attacks. However, this scheme does not fully consider the computational constraints
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Fig. 1. Schematic diagram of smart grid architecture.

of edge devices, and the feasibility of deploying complex reinforce- into the design of power system networks, reducing the risk of
ment learning models in resource-constrained scenarios remains internal attacks through continuous identity verification and mini-
questionable [3]. Yang et al. introduced the zero-trust architecture mum privilege access. Their research provides new insights for
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fine-grained access control in distributed environments. However,
the framework lacks sufficient support for real-time performance
in high-frequency data interaction scenarios and is not deeply inte-
grated with the characteristics of edge computing [4]. In the explo-
ration of blockchain technology applications, Pillai and Deshmukh
designed a service-centric blockchain security model for smart grids,
utilizing smart contracts to achieve data traceability and access con-
trol. However, their design relies on a high-throughput consensus
mechanism, which is difficult to adapt to the low-bandwidth char-
acteristics of edge networks, leading to significantly increased trans-
action delays in practical scenarios [5]. Although existing research
has made progress at the theoretical level, most solutions still face
challenges such as insufficient computational resources in edge sce-
narios, weak protection during transmission, and a lack of compre-
hensive evaluation.

The existing shortcomings of the smart grid data security architec-
ture can be analyzed from multiple dimensions. There is a signifi-
cant contradiction between the limited computational resources
of edge terminals and the complex security requirements. A typi-
cal manifestation is that privacy-preserving technologies such as
homomorphic encryption, while effectively preventing data leak-
age, have a computationally intensive nature that severely conflicts
with the lightweight characteristics of edge devices. This results in
feasibility obstacles for security strategies in practical deployments
[6, 7]. Current research excessively focuses on privacy protection
during the model training phase but lacks effective mechanisms to
address dynamic threats in the data transmission process. Although
traditional static encryption methods can ensure the security of off-
line data, they struggle to adapt to the dynamic changes in edge
network topology and the millisecond-level response requirements.
Existing solutions reveal defects such as rigid defense strategies and
delayed responses [8, 9]. Most security models lack systematic per-
formance evaluation across scenarios and fail to fully consider the
nonlinear impact of physical layer delay jitter and device heteroge-
neity on detection accuracy. This results in a significant deviation
between theoretical performance and actual effectiveness. Current
security frameworks generally lack collaborative protection designs
among end users, edge nodes, and cloud systems. This fragmented
security paradigm severely weakens the overall resilience of the sys-
tem. Constructing a cross-layer collaborative and dynamically evolv-
ing defense system has become a critical challenge constraining the
security upgrade of smart grids [10, 11].

Faced with the aforementioned issues, the primary objective of the
author is to propose an efficient and secure data protection scheme
aimed at addressing data privacy leakage and tampering in smart
grids, particularly the challenges of real-time performance and effi-
ciency in edge computing scenarios. Specific research questions
include how to conduct effective model training without sharing
raw data, as well as how to utilize blockchain to ensure data immuta-
bility and secure transmission [12, 13]. The author’s contribution lies
in the innovative integration of federated learning and blockchain
technology, forming a novel security architecture. Compared to
existing research, the author not only focuses on data privacy pro-
tection but also emphasizes efficiency in edge environments, pro-
viding a practical solution to meet the increasingly complex security
demands of smart grids.

Il. MODEL CONSTRUCTION

The system architecture proposed by the author aims to achieve
efficient and secure data management in smart grids by leverag-
ing the advantages of edge devices, central servers, and blockchain
technology. The system primarily consists of three components:
edge devices, central servers, and the blockchain network [14].
Edge devices include various smart sensors, smart meters, and data
acquisition terminals responsible for the real-time collection of grid
operation data (such as current, voltage, and power). Equipped
with certain computational capabilities, they can perform prelimi-
nary data processing and analysis locally. This reduces data trans-
mission latency, enhances the system’s rapid response capability,
and optimizes power management strategies. The central server is
responsible for centralized processing of data from edge devices,
conducting in-depth data analysis and model training. It also man-
ages the federated learning process, sending the trained model
parameters back to the edge devices. This ensures the privacy of
user data while leveraging data from different devices to improve
model accuracy (MA) [15, 16]. Blockchain technology is employed
in this architecture to ensure the security and integrity of the data
transmission process. All transmission records and data transac-
tions are recorded on the blockchain, forming an immutable histori-
cal data chain. This not only enhances data transparency but also
strengthens resistance to data tampering and malicious attacks
[17]. Additionally, the introduction of smart contracts enables
automated execution of data access control, ensuring that only
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authorized users can access specific data. The specific architecture
is illustrated in Fig. 4.

Through this interactive architecture, the various components can
efficiently collaborate, ensuring the security and privacy of data
during collection, transmission, and storage. Edge devices rapidly
process and provide feedback on information, the central server
conducts in-depth analysis, and the blockchain offers a secure and
transparent environment for data sharing [18]. This design not only
enhances the data security of smart grids but also meets the require-
ments for real-time performance and scalability, laying a solid foun-
dation for further research and practical applications.

A. Federated Learning Model

1) Local Model Structure:

The structure of the local model typically depends on the specific
application scenario and data type. In this study, a deep learning
model suitable for power load forecasting and network traffic anom-
aly detection was selected. The model includes the following main
components:

a) Input layer: Receives power load or network traffic data from edge
devices. Input features may include historical load data, timestamps,
weather conditions, etc.

b) Hidden layer: Utilizes multiple fully connected layers (or convolu-
tional layers) to extract features from the data. Each hidden layer
employs an activation function (such as ReLU) to introduce non-lin-
earity, thereby enhancing the model’s expressive capability [19, 20].

c) Output layer: The structure of the output layer depends on the
nature of the task. For power load forecasting, a linear regression
output can be used; for network traffic anomaly detection, a binary
classification output (normal or abnormal) can be employed.

The specific model structure can be expressed as (1):

y=/(x0) (1)

where y is the output of the model, x is the input feature, and 0 is the
model parameter.

2) Loss Function:

The loss function is used to measure the discrepancy between the
model’s predicted values and the true values. Selecting an appropri-
ate loss function is crucial for the training of the model. In this study,
the following loss function was adopted:

Mean squared error: Used for the power load forecasting task,
defined as (2):

N

L(y,)‘/)=%2(y,»—)7,«)2 ()

i=1

where y is the true value, y; is the predicted value, and N is the num-
ber of samples.

Cross-entropy loss: Used for the network traffic anomaly detection
task, defined as (3):

L(y')?):_%i[yil()g(};i)+(1_yi)|09(1_)7i)] (3)

i=1

3) Optimization Algorithm:

In order to effectively train the local model, a gradient descent-
based optimization algorithm was adopted. Specifically, the Adam
optimization algorithm was chosen due to its superior convergence
performance when handling large-scale data. The update rules of
the Adam optimization algorithm are as follows:

The calculation gradient is (4):

VL(W;,Dk) 4
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The update mean and variance are given by (5) and (6):

m, =By +(1-B1) VL(w, Dy ) (5)

Ve =BaVis +(1—B2)(VL(WL,D,< ))2 (6)

The updated model parameters are given by (7):

t+1

m
wil =wg -1 d (7)

Ve +e

Here, 3, and 3, are momentum decay parameters, n is the learning
rate, and € is a smoothing term to prevent division by zero.

4) Local Model Training Process:

Under the framework of federated learning, each edge device per-
forms local training based on the aforementioned model structure
and algorithm. The specific process is as follows:

« Model initialization: Initialize using the global model parameters.
« Local training: Perform multiple rounds of training on the local
dataset D,, calculate and update the model parameters [21, 22].

« Model parameter upload: After completing the training, upload
the updated model parameters to the central server instead of the

raw data.

In this way, federated learning models effectively leverage the com-
putational capabilities of edge devices while protecting user privacy,
enhancing the security and efficiency of smart grid data processing.
The settings of hyperparameters for help outlinefederated learning
was shown in Table 1.

B. Integration of Blockchain and Federated Learning

In this study, edge devices upload the trained local model param-
eters to the blockchain instead of directly sending them to the cen-
tral server. This process ensures the privacy of the uploaded model
parameters by adding noise [23, 24]. The formula for uploading the
model parameters can be expressed as:

Let w; be the model parameters of the edge device at the ith itera-
tion. The model parameters uploaded to the blockchain can be
expressed as (8):

wit =wi + N(O, o’ ) (8)

Here, N(0,0%) represents the Gaussian noise added to the model
parameters, ensuring the privacy of the uploaded data.

TABLE I. SETTINGS OF HYPERPARAMETERS FOR FEDERATED LEARNING

Parameter Value
Number of local training rounds 5
Global aggregation rounds 100
Batch size 32
Learning rate (n) 0.001
Momentum attenuation (B 1/8 a) 0.9/0.999

Blockchain technology provides the characteristic of data immuta-
bility, enabling each model parameter update to be recorded and
verified [25]. This mechanism ensures that each update is secure and
reliable. Each time the model parameters are updated, the block-
chain will record the following information as (9):
Record=Hash(wL”,timestamp,device_id) 9)
Here, Hash()performs a hash operation on the uploaded model
parameters to ensure the secure storage of the data on the
blockchain.

Through the blockchain, the central server or designated edge
devices can obtain the model parameters from all participating
devices and update the global model using an aggregation algo-
rithm. The update of the global model can be expressed as (10):

K

Wt+1 — %Zwlt(ﬂ (—I 0)

k=1

Here, K represents the number of participating edge devices. This
formula generates a new global model by performing a weighted
average of all valid model parameters.

By leveraging smart contract technology, the automation of model
updates and data access control can be achieved. For instance,
smart contracts can define certain conditions, and when these con-
ditions are met, data access or model updates are automatically
executed [26, 27]. The execution conditions of smart contracts can
be expressed as (11):

if(w,ﬁ”is vaIid)—>update globalmodel (11)

This ensures that only valid model parameters can update the global
model, thereby further enhancing the security and efficiency of the
entire system.

Smart contract implements the logic to verify the validity of model
parameters, digital signature, and device certificate.
Trigger conditions: When ‘wﬁ“ —wﬁ‘ <€ prevents abnormal updates,

Automatically aggregate: call the Aggregate()function to calculate
the global model

Solidity example of a contract code snippet:

function verify Update(bytes32 hash, uint timestamp, address device
ID) public {

require(registered Devices [device ID], "Unauthorized device");

require(block.timestamp - timestamp < THRESHOLD, "Expired
update");

emit Update Verified(hash);
C. Data Privacy Protection Mechanism

1) Differential Privacy:

As shown in Fig. 5, differential privacy (DP) is a method of protect-
ing user data privacy by adding noise to query results. In federated
learning, DP can be achieved by adding noise before uploading
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Fig. 5. Schematic diagram of differential privacy.

model parameters. This ensures that even if someone obtains the
model parameters, they still cannot reverse-engineer the true data
of any individual user [28, 29].

In order to achieve differential privacy, noise was added to the model
parameters uploaded by each edge device. Specifically, it can be
expressed as (12):

Wi =wj +N(0,6%) (12)

Here, N(0,0?) is noise that follows a Gaussian distribution, and its stan-
dard deviation o can be set based on the privacy budget €. The pri-
vacy budget controls the degree of noise added, thereby influencing
the model’s usability and the effectiveness of user privacy protection.

2) Homomorphic Encryption:

As shown in Fig. 6, homomorphic encryption is a technology that
allows computations to be performed on encrypted data without
the need to decrypt it. This enables effective model training while
ensuring data privacy.

In the context of federated learning, edge devices can use homo-
morphic encryption to encrypt model parameters, denoted as
E(wy ), where E() represents the operation of encrypting the model
parameters. Subsequently, the central server or aggregation node
can perform computations on the encrypted parameters without
needing to know the original data [30].

After receiving the encrypted model parameters, the central server
can perform operations such as weighted averaging to obtain the
encrypted global model parameters as (13):

E(Wm): Aggregate<E(W{),E(W£),.. .,E(W;r< )) (13)

3) Application Scenarios and Connections:

In the context of smart grids, users’ electricity consumption data
is highly sensitive and involves user privacy. Therefore, employing
DP or homomorphic encryption can facilitate model training and
updates while ensuring data privacy. Specifically:

Differential privacy and user data: By adding noise to the model
updates of each edge device, it ensures that even if the model
parameters are obtained by malicious users, individual users’ elec-
tricity consumption data cannot be identified. This is crucial for data
privacy in smart grids [31, 32].

Homomorphic encryption and secure computation: Homomorphic
encryption permits the aggregation of model parameters without
exposing user data. This way, even if the central server processes
encrypted data, it can still efficiently update the global model,
thereby enhancing the security of the entire system.

Federated learning enables edge devices to train models locally
without uploading raw data. To enhance the privacy protection of
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Fig. 6. Schematic diagram of homomorphic encryption.
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the models, the data update process can be integrated with block-
chain. Edge devices upload their local model parameters to the
blockchain instead of a central server. This ensures that even if some-
one accesses the blockchain, what they obtain is only the encrypted
model parameters.

11l. EXPERIMENTAL RESULTS

A. Experimental Setup

The power load data are from the 2022 version of the IEEPES (Post-
evaluation system for smart energy economy) Power Open Database,
which contains 100 000 records with a time span from January 2021
to June 2023. The feature dimension is 23, including environmen-
tal variables such as temperature and humidity. The preprocessing
adopts MinMax normalization, and abnormal values are eliminated
through the 3o principle.

The experiments were conducted in a virtual machine-based envi-
ronment to simulate real-world smart grid scenarios. The experi-
mental setup included multiple edge devices and a central server,
all interconnected via a secure local area network, forming an inte-
grated network architecture. The central server was responsible for
aggregating the model parameters uploaded from each edge device
and updating the global model [33]. In order to ensure the reproduc-
ibility and accuracy of the experiments, all devices were configured
with identical hardware and software environments.

The detailed configuration of the experimental environment is as
follows: Edge Devices: Five edge devices were used, each equipped
with an 8-core CPU, 16GB of RAM, and a 256GB SSD. All devices ran
the same version of the operating system (e.g., Ubuntu 20.04) and
were installed with the necessary machine learning libraries (e.g.,
PyTorch) and federated learning frameworks (e.g., Flower). Central
Server: The central server was configured with a 32-core CPU, 64GB
of RAM, and a 1TB SSD. It ran the same operating system as the edge
devices and was installed with deep learning frameworks for data
aggregation and model training. A blockchain node was also config-
ured on the server to support smart contract functionality. Network
Environment: The local area network bandwidth was set to 1 Gbps
to ensure efficient data transmission. Network simulation tools (e.g.,
NetEm) were used to emulate different network latencies (10 ms, 50
ms, and 100 ms) to evaluate the model’s performance under varying
network conditions.

This experiment employed multiple datasets to thoroughly assess
the performance of the proposed solution across various scenarios.
The primary datasets consist of the power load dataset and the net-
work traffic dataset. The power load dataset includes a variety of
feature information, such as timestamps, user identities, weather
conditions (temperature, humidity, etc.), load categories (residen-
tial electricity, industrial electricity, etc.), and specific parameters
like current, voltage, and power. The dataset is characterized by its
large volume and diverse dimensions, offering a comprehensive
scenario for load forecasting and analysis. The goal is to utilize this
dataset for load forecasting, evaluating the accuracy and robust-
ness of the model in predicting power loads. To achieve this, the
raw data underwent cleaning and normalization processes and was
then divided into a training set (70%), a validation set (15%), and a
test set (15%). The network traffic dataset simulates both normal
and abnormal traffic in a real-world network environment, includ-
ing traffic characteristics during normal operations and traffic data
during network attacks (e.g., DDoS attacks). The objective is to assess

the performance of anomaly detection algorithms, particularly their
responsiveness under high load and attack conditions. Each data
point in the dataset is labeled as either normal or abnormal to facili-
tate supervised learning [34].

The design of the test scenarios aims to evaluate the performance of
the proposed solution under different conditions, primarily focusing
on two scenarios. Scenario 1: This scenario tests the model’s predic-
tion accuracy under normal load conditions. The power load dataset
is used to train the model, and its prediction accuracy is observed
across different time periods (e.g., peak hours and off-peak hours).
The model’s performance is assessed by calculating the root mean
square error and mean absolute percentage error. Scenario 2: This
scenario evaluates the system’s security under high load and abnor-
mal conditions. The network traffic dataset is employed to test the
system’s anomaly detection capabilities [35]. In simulated network
attack situations, the system’s detection time and accuracy are
recorded, and the false positive rate and false negative rate are cal-
culated to assess the system'’s responsiveness.

B. Performance Evaluation

The success rate of using the privacy leakage rate (PLR) model to
reconstruct the original data with an attack tool such as DeeplLeak
is defined as

PLR = NleakedNtotalx1009%6PLR = N4 . 10096PLR = NtotaNleaked x100% -
total
Attack success rate (ASR) is based on the white-box attack to obtain
the data tampering success rate under the model parameters.

1) Effectiveness of Data Privacy Protection:

In order to evaluate the effectiveness of the proposed edge data
security enhancement scheme for smart grids based on federated
learning and blockchain in terms of data privacy protection, the
experiments primarily analyzed and compared aspects such as data
leakage risk, confidentiality of model parameters, and robustness of
data privacy. By conducting experiments across different test scenar-
ios and with various algorithms, the privacy protection capabilities
of the proposed scheme were compared with those of traditional
approaches.

Fig. 7 illustrates the privacy protection effectiveness of different
algorithms. In terms of PLR, the No Privacy Protection Scheme (NPPS)
exhibits the highest leakage rate at 60.2%, while the Federated
Learning + Blockchain integrated scheme (FL+BC) demonstrates the
best privacy protection, with a leakage rate of only 0.9%, significantly
lower than other schemes, highlighting its substantial advantage
in privacy safeguarding. Regarding MA, NPPS achieves the highest
accuracy of 95.6% due to the absence of additional protection mea-
sures. In contrast, FL+BC maintains a high accuracy of 91.5%, slightly
lower than NPPS but superior to other privacy protection schemes,
showcasing its balanced approach in ensuring model performance.
CPU Usage (CPUU) and Bandwidth Consumption (BC) are critical
metrics for evaluating computational overhead. Homomorphic
Encryption (HE) incurs the highest consumption, with CPU usage
reaching 50.3% and bandwidth consumption at 11.3 MB/s, due to
its computationally intensive encryption and decryption processes.
In contrast, the Federated Learning+Blockchain (FL+BC) scheme
achieves higher computational efficiency while maintaining privacy,
with CPU usage at 23.3% and bandwidth consumption at 5.5 MB/s,
significantly lower than HE. In terms of Resistance to Inference Attack
Rate (RIAR), FL+BC once again demonstrates the best protective
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Fig. 7. Privacy protection effectiveness of different algorithms.

performance, achieving 88.5%, far surpassing traditional DP at 51.2%
and NPPS at 21.9%. This indicates that FL+BC can effectively resist
malicious attacks and ensure data security.

In summary, although the NPPS offers the lowest computational
overhead and the highest MA, it provides almost no protection in
terms of privacy and security. On the other hand, the Federated
Learning +Blockchain (FL+BC) scheme demonstrates a balanced
performance across all metrics, significantly reducing the PLR while
maintaining high MA and low computational resource consumption.
This highlights the advantages of FL+BC as an efficient and secure
privacy protection solution.

2) System Performance Metrics:

From Fig. 8, it can be observed that in terms of system latency
comparison, the Non-Privacy Preserving Edge Computing (NPPS)
exhibits the lowest latency, averaging 68.5 ms, but lacks privacy
protection. Centralized model training, on the other hand, has the
highest latency, averaging 222.7 ms, which is significantly affected
by high data transmission volumes and computational pressure. Its
latency performance is notably poor across various scenarios. For
instance, during peak electricity usage and in cases of data loss or
delay, the latency reaches 248.8 ms and 309.3 ms, respectively. The
Federated Learning+Blockchain (FL+BC) integration scheme, on
the other hand, achieves an average latency of 86.4 ms, demon-
strating a good balance between performance and privacy protec-
tion. In scenarios of normal electricity load and network attacks, the
latency of FL+BC is 75.8 ms and 91.4 ms, respectively, which is sig-
nificantly lower than that of centralized model training. Even in the
most extreme scenario of data loss or delay, the latency of FL+BC is
128.5 ms, which, although higher than that of NPPS, is still far supe-
rior to centralized model training. This indicates that FL+BC can
maintain low latency while ensuring privacy protection, making it

350 . ; :
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Fig. 8. System latency comparison chart.

an optimized solution that balances performance and security. It
is well-suited for scenarios where both privacy and system perfor-
mance are highly demanded.

As shown in Fig. 9, in terms of bandwidth consumption comparison,
Non-Privacy Preserving Edge Computing (NPPS) exhibits the lowest
bandwidth consumption across all scenarios, averaging only 0.725
MBY/s, as there is no additional communication or privacy protection
overhead. Under normal electricity load and peak electricity usage
scenarios, its bandwidth consumption is 0.5 MB/s and 0.8 MB/s,

1PL

Attack

'NL
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Fig. 9. Bandwidth consumption comparison.
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respectively, demonstrating minimal data transmission require-
ments. In contrast, centralized model training exhibits significantly
higher bandwidth consumption, averaging 7.125 MB/s, with the
highest bandwidth usage reaching 9 MB/s in scenarios of data loss
or delay. This is due to the centralized model training requiring sub-
stantial data to be uploaded to the central server, resulting in high
bandwidth demands. The Federated Learning+ Blockchain (FL+BC)
integration scheme effectively reduces bandwidth consumption
while ensuring privacy, averaging 1.425 MB/s. In peak electricity
usage and network attack scenarios, its bandwidth consumption
is 1.5 MB/s and 1.3 MB/s, respectively, significantly lower than that
of centralized model training. Overall, FL+BC achieves an efficient
balance in bandwidth consumption. While it introduces some addi-
tional communication overhead compared to NPPS, it substantially
reduces bandwidth usage compared to centralized solutions, making
it a more suitable approach for efficient and secure communication.

As shown in Fig. 10, Non-Privacy Preserving Edge Computing (NPPS)
demonstrates the lowest processing time across all tested scenarios,
averaging only 2.95 seconds. In normal electricity load and network
attack scenarios, the processing times are 2.5 seconds and 2.8 sec-
onds, respectively. Centralized model training exhibits significantly
higher processing times, averaging 11.25 seconds, with a peak of
15 seconds in data loss or delay scenarios, highlighting the compu-
tational bottlenecks of centralized processing under high load or
abnormal conditions. The Federated Learning + Blockchain (FL+BC)
integration scheme strikes a balance in processing time efficiency,
averaging 3.95 seconds. While this is slightly higher than NPPS, it is
significantly superior to centralized model training. In peak electric-
ity usage scenarios, FL+BC processing time is 4 seconds, compared
to the centralized model training’s 12 seconds. Overall, FL+BC main-
tains a relatively low processing time, demonstrating a balanced
advantage in ensuring both privacy and system performance.
Compared to NPPS, FL+BC slightly increases processing time but
remains within a reasonable range. In contrast to centralized model
training, FL+BC significantly reduces processing overhead, making it
an efficient and secure processing solution.

As shown in Fig. 11, in terms of CPU resource consumption, Non-
Privacy Preserving Edge Computing (NPPS) exhibits the lowest CPU
usage across all scenarios, indicating relatively lower computational

overhead in the absence of privacy protection measures. In contrast,
centralized model training shows the highest CPU consumption,
especially under high load or abnormal conditions, as data needs
to be processed centrally, leading to a significant increase in CPU
resource usage. On the other hand, Federated Learning +Blockchain
(FL+BC) strikes a balance between privacy protection and compu-
tational efficiency, with CPU consumption falling between that
of NPPS and centralized model training. In practical applications,
FL+BC can ensure data privacy while achieving high computational
performance, making it a more balanced solution, particularly suit-
able for scenarios where resource usage and privacy protection need
to be carefully weighed.

As shown in Fig. 12, in terms of memory resource consumption,
Non-Privacy Preserving Edge Computing (NPPS) exhibits the lowest
memory usage, indicating that it can maintain lower resource occu-
pancy without adopting privacy protection measures. In contrast,
centralized model training, which requires centralized data process-
ing, shows significantly higher memory usage compared to other
solutions, especially under high load and abnormal data scenarios,
where memory consumption is particularly pronounced. On the
other hand, Federated Learning + Blockchain (FL+BC) demonstrates
more balanced memory consumption, maintaining moderate
memory usage while ensuring privacy protection. FL+BC is able to
sustain lower resource consumption under high load and abnormal
scenarios, making it a superior choice for applications that require a
balance between performance and memory usage.

3) Security Evaluation:

The security evaluation is shown in Fig. 13. Non-Privacy Preserving
Edge Computing (NPPS) performs the worst, with an ASR as high as
54.3%, indicating that attacks are more likely to succeed without any
protection. Its threat detection rate (TDR) is only 28.5%, and its data
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integrity resistance (DIR) is merely 8.5%. In contrast, the centralized
model training reduces the ASR to 42.3%, but the TDR and DIR are
only 53.5% and 27.3%, respectively, showing some improvement but
still posing significant security risks. Traditional DP further reduces
the ASRto 18.2%, while its TDR increases to 66.5%, and its DIR reaches
39.6%, demonstrating strong security protection effectiveness.

However, the Federated Learning+Blockchain integration scheme
(FL+BC) excels in all security metrics. Its ASR is only 1.3%, signifi-
cantly lower than other schemes, greatly reducing the likelihood of
successful attacks. The TDR reaches 87.6%, indicating an exception-
ally high capability to detect potential threats. Additionally, its DIR
is 91.5%, demonstrating the strongest resilience against data tam-
pering. Therefore, the FL+BC scheme significantly outperforms other
schemes in overall security, making it the optimal choice for protect-
ing data security.

Simulate the attacker adjusting the strategy every two hours (such
as model inversion, member inference attacks), and record the
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Fig. 14. Attack success rate under 24-hour dynamic attacks.

changes in ASR. As shown in Fig. 14, the ASR of the FL+BC scheme is
stably lower than 2.5% under dynamic attacks, while the ASR of the
traditional DP scheme fluctuates by 12%-28%.

Analyze the impact of noise intensity c on MA and PLR:

When 6=0.5, MA=93.2%, PLR=8.7%,

When 6=2.0, MA=85.1%, PLR=0.2%,

As shown in Fig. 15, when 0=1.0 (MA=91.5%, PLR=0.9%) is the opti-
mal equilibrium point.

C. Comparison Experiment With the Frontier Scheme
In the same experimental environment, the performance of the
SMPC blockchain solution was compared with the deployment of
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Fig. 15. Impact of noise intensity (o) on model accuracy (MA) and
privacy leakage rate (PLR).
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SMPC using the SPDZ (Secure Computation Protocol for Dishonest
Majority Zero-Knowledge) protocol and the blockchain integration
scheme. The test results showed that the average computing delay
of the Super-Mobile Personal Computer (SMPCBC) solution was
1426 ms, which is 65% higher than the 864 ms of Flathead Lutheran
Bible Camp (FLBC). The communication overhead was 82 MBs, 475%
higher than the 1425 MBs of FLBC. Due to the encryption computa-
tion and multi-party verification mechanisms of SMPC, its comput-
ing and communication costs are significantly higher than those of
the FLBC solution, confirming the high efficiency of this solution in
edge scenarios.

To verify the feasibility of resource-constrained devices, the Raspberry
Pi 4B (4-core ARM Cortex-A72, 4GB RAM) test was supplemented:

FL local training time: average 8.2 seconds/round (3.7 times slower
than the virtual machine),

CPU peak occupancy: 89% (reduced to 72% through model
lightweight),

It indicates that this scheme needs to optimize the model structure
for low-end equipment (such as using MobileNet), but the basic
framework is still applicable.

IV. CONCLUSION

The experimental results demonstrate that the combination of
Federated Learning and Blockchain (FL+BC) exhibits significant
advantages in the edge computing environment of smart grids. In
terms of system latency, FL+BC reduces latency by more than 60%
compared to centralized model training and maintains low latency
even under high load or abnormal conditions. Although FL+BC
slightly increases processing time and resource consumption, these
increments remain within acceptable limits compared to the Non-
Privacy Preserving Scheme (NPPS), while significantly reducing the
risk of data leakage. In terms of CPU utilization, FL+BC averages 56.6%,
significantly lower than the 80.4% of the centralized model training.
In the security evaluation, FL+BC achieves an ASR of only 1.3%, a TDR
of 87.6%, and a DIR of 91.5%, outperforming all other schemes and
fully demonstrating its ability to effectively resist attacks and ensure
data integrity and security. Overall, the FL+BC scheme not only sig-
nificantly surpasses other schemes in privacy protection and security
but also performs well in computational efficiency and system per-
formance, providing a comprehensive and efficient solution for smart
grid data security. It is suitable for smart grid application scenarios
with high demands for privacy and performance.

The heterogeneity of edge devices should be considered in the
actual deployment. For devices with less than an 8-core CPU, such
as Advanced RISC Machine-based (ARM) terminals, model quantiza-
tion, such as FP16 precision, can reduce the computing load. In the
hybrid communication protocol environment, it is recommended to
use the gRPC framework to implement the protocol conversion layer.
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