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ABSTRACT

This study examines machine learning approaches enhanced by the Grey Wolf Optimization (GWO) algorithm
for analyzing Istanbul’s complex urban traffic patterns. The GWO was employed due to its capability to efficiently
handle complex nonlinear traffic patterns and its robustness in achieving global optimization, outperforming
several conventional metaheuristics. Using hourly traffic density data from June-December 2024 obtained from
Turkey’s Ministry of Environment database, researchers developed a Unified Traffic Density Index combining
average speed (40%), vehicle count (40%), and speed variation (20%) to identify the busiest traffic zones. The
dataset was obtained from the Ministry of Environment, Urbanization, and Climate Change and covers the period
from June 1, 2024, to December 31, 2024. The dataset contains hourly data for 2462 geohash regions within
the boundaries of Istanbul province. The methodology compared long short-term memory (LSTM) and eXtreme
Gradient Boosting (XGBoost) algorithms using both standard and GWO-optimized hyperparameters. Time series
analysis separated trend, seasonality, and randomness components while examining hourly and daily periodicity
patterns in traffic data. Results demonstrated that GWO optimization significantly enhanced both algorithms’
performance. The standard LSTM model’s systematic deviations and wave-like patterns were substantially reduced
through GWO optimization. The XGBoost performed consistently in both versions, with the GWO-XGBoost
combination achieving superior prediction accuracy. Performance metrics revealed that GWO-XGBoost attained
the lowest mean squared error (1.6209) and mean absolute error (0.9082) values while achieving the highest
coefficient of determination (R? percentage bias=+0.8486%, outperforming other configurations. These findings
indicate that the GWO-XGBoost combination shows significant potential as a highly accurate solution for traffic
density prediction applications for traffic management systems within critical high-density zones of metropolitan
areas like Istanbul, particularly for traffic density prediction applications. The study concludes that advanced
optimization techniques are essential for addressing traffic management challenges in rapidly urbanizing cities
with increasing vehicle density.

Index Terms— Gray wolf optimization, smart cities, traffic density forecasting

I. INTRODUCTION

Rapid urbanization and vehicle density are presenting urban transport systems with unprece-
dented challenges. This transformation threatens the efficiency and sustainability of transport
infrastructure, necessitating a re-evaluation of traffic management processes. With its strategic
location connecting Europe and Asia, Istanbul has an extremely complex and dynamic traffic
structure due to its unique spatial structure and demographic characteristics. Therefore, the
limited solution possibilities offered by traditional traffic analysis approaches are insufficient,
especially in detecting multi-layered patterns and unexpected anomalies in large-scale urban
networks. This situation necessitates the development of analysis methods with advanced com-
putational power and flexible modeling capabilities.

Although this study focused on Istanbul, the proposed methodology is designed with adapt-
ability in mind. The Grey Wolf Optimization (GWO)-based optimization framework can be readily
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applied to other metropolitan areas by recalibrating the traffic den-
sity index components (average speed, vehicle count, speed varia-
tion), normalization ranges, and peak-period multipliers according
to local traffic conditions. For example, in cities like London, Tokyo,
or Séo Paulo, traffic dynamics differ substantially due to variations
in infrastructure, cultural driving behavior, and peak-hour patterns.
Thus, the flexibility of the framework ensures that the approach
remains generalizable across diverse urban environments, while still
retaining city-specific calibration for accurate modeling.

In recent years, the integration of optimization algorithms into traffic
analysis processes has emerged as a rising research area in academic
circles. In this context, the GWO algorithm, developed by drawing
inspiration from social structures and hunting strategies in nature,
offers an innovative approach that demonstrates superior perfor-
mance compared to traditional methods, particularly in feature
selection problems. However, studies on the application of the GWO
algorithm to the analysis of urban traffic data are still quite limited,
and this area remains largely unexplored.

The rapidly increasing rate of urbanization and the parallel rise in
vehicle density are making urban transport systems increasingly
complex and difficult to manage. As a megacity connecting Europe
and Asia, Istanbul has unique traffic dynamics due to its distinc-
tive geographical and demographic structure. Effectively analyzing
this complex structure requires sophisticated approaches that go
beyond traditional traffic analysis methods. Traditional methods
often fail to adequately detect the multidimensional patterns and
unexpected anomalies that emerge in large-scale urban networks,
making the use of advanced computational techniques inevitable in
this field.

In this context, the integration of optimization algorithms with traf-
fic analysis processes has been at the center of growing research
interest in recent years. The GWO algorithm was developed based
on the social organization and hunting strategies of grey wolves
and achieves higher success rates than traditional approaches, par-
ticularly in feature selection problems. However, the use of this algo-
rithm in the analysis of urban traffic data has not yet been sufficiently
explored in the literature.

Traffic analysis approaches commonly used today have various
structural and functional limitations. In particular, the computa-
tional load encountered in the analysis of high-dimensional feature
spaces makes the practical application of these methods difficult.
Additionally, their capacity to detect fine-scale traffic anomalies
occurring in real time is limited. It is often not possible to compre-
hensively identify patterns in traffic data across different time scales
such as hourly, daily, weekly, and seasonal. Furthermore, the integra-
tion of optimization algorithms with traffic engineering has not yet
been sufficiently developed.

This study aims to enable more efficient and accurate analysis of
traffic data through a feature selection framework developed based
on the GWO algorithm. In this context, the objective is to identify
patterns in traffic flow on hourly, daily, weekly, and seasonal scales.
In addition, a robust anomaly detection method will be established
by evaluating the results obtained from different data sources in a
consensus-based manner. The ultimate goal of the study is to obtain
applicable analysis outputs that will contribute to urban traffic man-
agement and to establish a repeatable methodological structure for
smart city applications based on these outputs.

This research makes an important contribution by providing a rig-
orous comparative analysis of GWO-assisted optimization on both
long short-term memory (LSTM) and eXtreme Gradient Boosting
(XGBoost) models for this complex, real-world traffic dataset. The
work methodically evaluates the impact of GWO on these distinct
architectures for both feature selection and hyperparameter tuning.
In addition, a new consensus-based anomaly detection framework
is proposed, and a comprehensive methodology is being developed
that will enable the systematic analysis of traffic data at multiple
scales. The developed approach is validated under real-world con-
ditions using Istanbul city traffic data, and the outputs obtained in
this context are made available to the research community as open
source.

1. LITERATURE REVIEW

A.The Importance and Challenges of Traffic Data

Traffic data is a critical component in understanding and managing
urban mobility. It provides insights into traffic flow, congestion pat-
terns, and the overall performance of transportation networks. In
the context of Istanbul, traffic density data has been used to develop
predictive models for traffic congestion forecasting [1]. This data is
essential for planning and optimizing traffic management strategies,
reducing congestion, and improving the efficiency of transporta-
tion systems. Additionally, real-time traffic data enables the devel-
opment of smart city applications such as mobile apps that provide
citizens with accurate traffic information and alternative route sug-
gestions [2]. The importance of traffic data is further emphasized by
its role in supporting advanced traffic information systems. These
systems rely on data from various sources, including sensors, cam-
eras, and floating cars, to provide real-time information to travelers.
This information helps users make informed decisions about their
journeys, reducing travel time and fuel consumption [3, 4]. Despite
its importance, traffic data presents various challenges. One of the
primary challenges is the complexity of processing large volumes of
data from various sources. This includes data from sensors, GPS, and
other loT devices that must be processed and analyzed in real time
to provide accurate and reliable information [5]. Another challenge
is the integration of data from different sources, which requires
robust data fusion techniques to ensure consistency and accuracy
[3]. Additionally, traffic data is often influenced by external factors
such as weather conditions, special events, and accidents, which can
introduce variability and unpredictability into traffic models. This
makes it challenging to develop models that can accurately predict
traffic congestion and other anomalies [2].

B. Traffic Characteristics in Istanbul

These challenges are particularly evident in large and densely popu-
lated cities. Istanbul, Turkey’s largest metropolis, with its complex
traffic structure and variable dynamics, increases the difficulty of
such analyses; therefore, an in-depth examination of Istanbul’s traffic
characteristics is essential for the development of city-specific strat-
egies. Istanbul is one of the world’s most populous cities, with over
16 million inhabitants. The city’s traffic characteristics are influenced
by its unique geography, which spans two continents connected
by bridges, and its rapid urbanization. High population density and
an increasing number of private vehicles have led to severe traf-
fic congestion, particularly on the bridges connecting Europe and
Asia [6, 7]. Traffic density in Istanbul varies significantly throughout
the day. For example, traffic density is low during the early morn-
ing hours (00:00-07:00), with accuracy levels reaching up to 93%
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under low-density conditions [1]. However, during peak hours, traf-
fic congestion becomes a major issue, particularly on bridges and
at major intersections. The high rate of private vehicle ownership,
which accounts for 25% of all vehicles in Turkey, exacerbates the
problem [6]. The impact of traffic congestion in Istanbul is signifi-
cant. It results in longer travel times, higher fuel consumption, and
reduced productivity. Additionally, traffic congestion contributes to
environmental pollution, and Istanbul experiences high levels of car-
bon emissions and air pollution [6, 71.

C.The Role of Anomaly and Pattern Analysis in Urban
Management

In this context, traditional methods alone are not sufficient for mod-
eling and managing Istanbul traffic; advanced data processing tech-
niques such as anomaly and pattern analysis must be used. These
analyses play an important role in identifying unusual situations in
urban transport and revealing patterns in traffic behavior. Anomaly
detection is a critical component of traffic management systems. It
involves identifying unusual patterns or events in traffic data that
deviate from normal conditions. These anomalies may include unex-
pected congestion, accidents, or other disruptions that affect traffic
flow. Various methods have been proposed for anomaly detection,
including machine learning techniques such as support vector
machines and k-nearest neighbor algorithms [8]. An innovative
approach to anomaly detection involves the use of spatio-temporal
hypergraph convolutional neural networks. This method models the
road network as a hypergraph, capturing the spatial and temporal
relationships between different road segments. This approach has
been shown to perform better than traditional methods in detecting
rare anomalies and understanding their propagation across the net-
work [9]. Pattern recognition is another important aspect of traffic
data analysis. It involves identifying recurring patterns in traffic data,
such as daily commuting patterns, seasonal changes, and other peri-
odic trends. These models can be used to predict future traffic con-
ditions and optimize traffic signal control strategies [6, 10] Machine
learning techniques such as LSTM networks and transformer models
have been successfully applied to traffic prediction tasks. For exam-
ple, it has been shown that transformer models can capture com-
plex patterns in traffic data to provide accurate traffic predictions [2].
Anomaly and pattern analysis plays a crucial role in urban manage-
ment by enabling proactive traffic management. Traffic managers
can respond to disruptions in real time, reduce the impact of conges-
tion, and improve overall traffic flow by identifying anomalies and
recognizing patterns. Additionally, model analysis can inform long-
term planning and policy decisions, such as the implementation
of congestion pricing schemes and low-emission zones [6, 7]. The
integration of anomaly and pattern analysis with other technologies,
such as Internet of Things (IoT) sensors and big data analytics, fur-
ther enhances the effectiveness of urban traffic management. These
technologies provide a comprehensive view of traffic conditions,
enabling more accurate predictions and better decision-making [6,
11]. Traffic data is a vital resource for understanding and managing
urban mobility. Challenges associated with traffic data, such as pro-
cessing large volumes and integrating data from multiple sources,
must be addressed in order to realize its full potential. Istanbul’s
unique traffic characteristics, including its high population density
and geographical constraints, make it a challenging case study for
traffic management. However, anomaly and pattern analysis applica-
tions supported by advanced technologies such as machine learning
and loT sensors offer promising solutions for reducing traffic conges-
tion and improving urban mobility. By leveraging these tools, city

planners and policymakers can develop more effective strategies
for managing traffic in Istanbul and other cities around the world.
Powerful optimization techniques are required to perform such anal-
yses efficiently.

D. Grey Wolf Optimization General Outline

In recent years, algorithms inspired by nature have provided effec-
tive solutions in this field. In this context, the GWO method has pro-
duced remarkable results, particularly in complex problems such as
anomaly detection and pattern extraction.

The GWO algorithm is a meta-heuristic method inspired by the social
behavior and hunting strategies of grey wolves. Its theoretical devel-
opments have significantly influenced engineering and computer
science, particularly in optimization problems. The GWQ'’s simplic-
ity, few parameters, and ability to balance exploration and exploita-
tion make it a versatile tool in various fields. The following sections
summarize the basic theoretical foundations and advances of GWO.
The GWO mimics the pack dynamics of grey wolves, where alpha,
beta, and delta wolves lead the search for solutions and establish a
framework for social interaction-based optimization [12]. The algo-
rithm uses mathematical models that simulate the hunting process,
enabling an effective exploration of the solution space [13]. Recent
variants such as Attention Mechanism-based GWO enhance explora-
tion by adaptively weighting the influence of leader wolves, thereby
increasing convergence speed and solution quality [14]. The GWO
has been hybridized with other algorithms to enhance its robust-
ness and applicability in complex optimization scenarios [15]. The
GWO has been successfully applied in fields such as computational
fluid dynamics, machine learning, and environmental engineering,
demonstrating its versatility and effectiveness in solving real-world
problems [3]. While GWO holds significant promise, challenges such
as local optimum stagnation and slow convergence persist.

The structural characteristics of the GWO algorithm, particularly the
balance it provides between the exploration and exploitation pro-
cesses, offer powerful solution potential for high-dimensional and
dynamic problems such as traffic data. These advantages make GWO
more effective and flexible when compared to traditional methods.

The GWO has demonstrated significant advantages in various fields,
particularly in engineering and computer science. Its meta-heuristic
nature enables effective problem solving in optimization tasks, mak-
ing it a valuable tool in these fields. The following sections summa-
rize its specific benefits. The GWO has been successfully applied to
classical engineering design problems by demonstrating its ability
to effectively solve complex optimization tasks [16].

Variants such as the hybrid GWO improve convergence performance
and balance exploration and exploitation, thereby increasing its
applicability in real-world engineering scenarios [17].

In computer science, GWO has been integrated with machine learn-
ing models such as XGBoost to develop malware detection systems.
This combination has demonstrated GWO's effectiveness in security
applications, achieving high accuracy and recall rates [18]. Modified
versions of GWO, such as Group-based Synchronous-Asynchronous
GWO, enhance population diversity and adaptability, leading to bet-
ter performance in various optimization problems [19].

The inclusion of memory and evolutionary operators in GWO vari-
ants further addresses issues such as early convergence, making it
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more robust for various applications [20]. While GWO shows prom-
ise, itis important to consider that its effectiveness may vary depend-
ing on the specific problem context and optimization environment,
and that careful algorithm selection and tuning are required. Recent
studies [21, 22] highlight optimization frameworks for traffic predic-
tion in Istanbul and comparable megacities.

A new hybrid LSTM model integrated with the Improved Harris
Hawks Optimization (IHHO) algorithm has been developed for river
flow estimation. The results show that the LSTM-IHHO model outper-
forms the standalone LSTM and other hybrid optimization models in
all statistical metrics, providing more accurate and reliable predic-
tions. The importance of the Willmott Index (WI) and percentage bias
(PBIAS) metrics is emphasized [23, 24].

This study aims to systematically apply the GWO for feature selec-
tion and hyperparameter optimization in urban traffic analysis. The
primary contribution of this work is the systematic application and
comparative evaluation of GWO for optimizing machine learning
models (LSTM and XGBoost) on a novel, high-resolution Istanbul
traffic dataset. This includes the validation of a new Unified Traffic
Density Index and an assessment of the performance gains achiev-
able in this specific complex urban environment.

I1l. MATERIAL AND METHOD

A. Material

In this study, hourly traffic density data for Istanbul for the period
June-December 2024, obtained from the ULASAV Traffic Density
Database belonging to the Ministry of Environment, Urbanization
and Climate Change of the Republic of Turkey [25], was used to
assess traffic density and identify the most congested geographi-
cal areas. Data analysis was conducted based on geographical loca-
tion (geohash) subdivisions, and traffic density identification was
supported by multi-faceted criteria. Fig. 1 shows the traffic density
values in all geohash areas on the Istanbul map in the data set, rep-
resented as a heat map.

Table | contains statistical information about the dataset under
the heading Descriptive Analysis of Vehicle Speed and Volume
Geospatial Data. Dataset of over 11.5 million records reveals traffic
patterns within a tightly concentrated geographical area, as indi-
cated by the low variance in latitude and longitude coordinates.
The average vehicle speed shows a relatively symmetric distribu-
tion around 56.5 km/h, while the wide range between minimum
and maximum speeds—from standstills (0 km/h) to high velocities
(255 km/h)—illustrates fluctuating traffic conditions ranging from
congestion to free-flowing movement. The number of vehicles per
record displays a highly right-skewed distribution, with a median of
58 but a high mean of 106, pulled upward by extreme values (up to
1684 vehicles), highlighting significant variability and the presence
of high-traffic hotspots amidst generally moderate volume locations.

In this study, geohash encoding was applied to ensure spatial
granularity of the traffic data. A 6-character geohash precision was
employed, which provides an adequate balance between spa-
tial accuracy and computational efficiency. Neighboring geohash
regions were aggregated based on average traffic density values,
enabling coherent representation of urban zones. It is worth noting
that higher geohash precision levels may yield finer spatial resolu-
tion but at the cost of increased computational overhead, whereas
lower levels may result in loss of local traffic variability.

First, traffic density was assessed using speed-based indicators.
Speed variance and speed ratio were calculated based on average
speed, maximum, and minimum speed values, and a normalized
congestion index was defined according to the legal speed limit
within the city. Through these indicators, it was accepted that low
speed and low speed variation indicate high traffic density.

In the second stage, a vehicle count-based analysis was performed.
For each geohash, the total number of vehicles, average num-
ber of vehicles, and observation frequency were evaluated, and

2 408078 816,153 1224229 1.632.304 2,040,380 2448455 2856531 3.264,60¢
]

Fig. 1. Geohash heatmap on the Istanbul map in the data set.
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TABLE I. DESCRIPTIVE ANALYSIS OF VEHICLE SPEED AND VOLUME GEOSPATIAL DATA

Latitude Longitude Min_Speed Max_Speed Ave_Speed Numb_vehic
Count 11506936 11506936 11506936 11506936 11506936 11506936
Mean 41,06300314 28,88716931 22,8664 101,7942 56,5456 106,1255
Std 0,100941184 0,356864373 24,3140 37,0309 25,9909 133,7867
Min 40,76751709 27,96569824 0 1 1 1
25% 40,99822998 28,6907959 3 72 33 21
50% 41,05865479 2893249512 10 101 54 58
75% 41,13006592 29,15222168 42 130 80 137
Max 41,34429932 29,63562012 207 255 207 1684

the average number of vehicles per unit time was compared with
regional density.

In the third stage, the proposed combined traffic density index
(CDTI) was calculated. This index comprises three main components:
low average speed (40% weight), high vehicle count (40% weight),
and low speed variation (20% weight). All these parameters were
standardized using Min-Max normalization, and a traffic density
score was created based on their weighted averages.

Fourthly, traffic density was supported by time-based analysis.
Using the time stamps in the data set, hourly and weekly patterns
were identified, and a time-weighted multiplier was defined for
periods such as the start/end of working hours and weekends.
This allowed traffic during peak hours to be represented more
meaningfully.

The obtained traffic density scores were categorized into meaningful
categories, and each region was classified as “Low,”"Medium,"“High,”
or “Very High! The highest traffic density was observed in the geo-
hash region with the highest score according to the relevant traffic
density index.

As a result, it was determined that the multi-criteria approach pro-
vides the most accurate density measurement; in particular, the
“Combined Traffic Density Index (CDTI)” which evaluates average
speed, vehicle density, and speed variation together, was recom-
mended as the most effective method. Additionally, time-weighted
evaluation more accurately models the variability of traffic flow
during the day and on weekdays/weekends. To validate the 40%-—
40%-20% weighting for the CDTI, several alternative weighting
combinations (e.g., 60/20/20, 33/33/33, 20/40/40) were tested. The
40/40/20 split provided the most stable and accurate performance,
minimizing the MSE of the final GWO-XGBoost model. The results of
this analysis are presented in Table Il

B. Method

The geohash region with the highest traffic value was determined
based on the CDTI defined above. This location was marked on the
map in the visual analysis section of the study and presented Fig. 2
as the point with the highest traffic congestion in the spatial context.

The average speed data for the relevant geohash region was sepa-
rated into time series components, and the trend, seasonality, and
randomness elements were examined in detail. In this analysis,

presented in four sub-panels on the graph, the general time series at
the top was separated into the following components.

Reflecting long-term changes over time, this component shows that
the average speed exhibits weekly fluctuation patterns, with signifi-
cant declines observed in some periods. This may indicate seasonal
traffic increases or slowdowns due to road/infrastructure issues. A
highly pronounced periodic structure is observed on an hourly basis.
This structure reflects daily recurring traffic patterns (e.g., increased
congestion during morning and evening hours). The data exhibits
strong hourly seasonality. This component, which represents ran-
dom changes outside of trend and seasonal effects, shows various
deviations spread over time. These deviations may be associated
with unforeseen traffic events (accidents, sudden road closures, etc.).

Fig. 3 analysis provides an important foundation for understand-
ing the temporal patterns of traffic flow in the geohash region in
question.

1) Data Processing:

Prior to model training, all input features were normalized to the [0,1]
range using Min-Max scaling to prevent bias caused by differences
in feature magnitude. Missing values were processed using a strat-
egy of filling them in based on the previous hour Last Observation
Carried Forward (LOCF). To validate this choice, this method was
compared against linear interpolation. The resulting difference in
the final model MSE was negligible (<1%), confirming the suitability
of the computationally simpler LOCF method for this high-frequency
data. Additionally, feature engineering was performed to capture

TABLE Il. MODEL PERFORMANCE COMPARISON FOR DIFFERENT CTDI
WEIGHTING SCENARIOS

Model Performance

Scenario Weighting (Test Set MSE)

Alternative 1 20%, 40%, 40% 0.192

Alternative 2 33%, 33%, 33% 0.205

Alternative 3
(Recommended)

40%, 40%, 20% 0.174

Alternative 4 50%, 25%, 25% 0.218

Alternative 5 60%, 20%, 20% 0.226
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Fig. 2. The geohash region with the highest traffic density index.

sequential dependencies. This included time-delay (lag) features
(e.g., average_speed at t-1, t-3, and t-6 hours; vehicle_count at t-1
hour) and temporal features (e.g., hour_of_day, day_of_week, and a
binary “is_weekend"”flag).

Traffic anomaly detection has been examined in greater detail to
address irregularities such as accidents, unexpected events, or sud-
den increases in the number of vehicles. The GWQO's adaptive discov-
ery mechanism enables the identification of data points that deviate
significantly from normal traffic patterns and can be considered
anomalies. To contextualize this feature, the conceptual framework
was compared with outlier detection approaches such as statistical
thresholding and interquartile range and extracted from the data-
set. While traditional methods offer simplicity and speed, detection
enhanced with GWO demonstrates greater adaptability in capturing
complex and dynamic urban anomalies. Future work may focus on
the hybrid integration of GWO-based anomaly detection models for
greater robustness.

2) Model Training:

The dataset was split into training (70%), validation (10%), and test
(20%) subsets. To increase generalizability and actively monitor for
overfitting, a five-fold cross-validation strategy was adopted during
training. The validation loss was observed during training to ensure
the model was not overfitting to the training data. The models’
hyperparameters were optimized using the GWO, which increases
both convergence speed and prediction accuracy.

3) Validation and Performance Metrics:

Model performance was evaluated using root mean squared error,
mean absolute error (MAE), and the coefficient of determination
(R2). These metrics were chosen to comprehensively assess both the
accuracy and the explanatory power of the models.

4) Long Short-Term Memory:

Long short-term memory networks are an architecture developed to
overcome the limitations of traditional Recurrent Neural Networks in
modeling long-term dependencies. The LSTM units use cell state and
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three types of gate mechanisms to learn sequential dependencies
in time series data: forget gate, input gate, and output gate. These
structures determine how much information to remember, how
much to update, and how much to output.

The forget gate determines which information should be discarded
from the previous cell state as (1):

fo =0 (We -[hea,xe J+be ) #(1)(1)

The input gate controls which new information should be stored in
the cell state through two components shown as (2), (3):

i =W -[hea, x J+bi)#(2)(2)

C =tanh(Wc [hey,x, J+bc )#(3)(3)

The cell state is updated according to (4):
C=fiOCu+i OC #(4)@)

Finally, the output gate determines which parts of the cell state
should be output, shown as (5) and (6):

00 =0(Wo [hei,xe J+bo )#(5)(5)
h, =0, ©tanh(C. )#(6)(6)

This structure prevents gradients from decaying over time, enabling
the learning of longer contexts. The LSTMs are particularly effective
for sequential data-focused problems such as time series prediction,
natural language processing, and financial data analysis.

5) eXtreme Gradient Boosting:
The XGBoost is an ensemble learning algorithm that optimizes the
gradient boosting method and stands out for its high accuracy and

processing speed. XGBoost offers a structure based on decision trees
that minimizes errors iteratively. The basic principle is that succes-
sive models learn from the errors of previous models to reduce the
overall prediction error.

Mathematically, the model’s output is y, :ZK fe(x;), fieF con-
sists of decision trees, and F denotes the €ntife space of possible
decision trees. The objective is to minimize the following regularized
objective function shown as (7):

L(¢)= Z;'(yn;i)+2:=]' (f)#(7)?)

Here, Iis the loss function (e.g., squared error), Q(f) =yT +lk [w ] is
the regularization term that controls model complexity. THe optimal
tree is derived at each iteration using a second-order Taylor expan-
sion. This prevents overfitting and improves overall accuracy. The
XGBoost is widely used in various regression, classification, and rank-
ing problems due to its tolerance for missing data, parallel comput-
ing capability, and special regularization techniques.

6) Grey Wolf Optimization:

Grey Wolf Optimization is a heuristic optimization algorithm that
mathematically models the hunting strategies of grey wolves while
searching for the best solution in the solution space. The basic mech-
anism of GWO is based on the principle of surrounding the prey (the
optimal solution) and eventually attacking it. This behavior is simu-
lated in the algorithm by updating the omega (®) positions of other
individuals based on the position information of the alpha (a), beta
(), and delta (8) individuals.

Mathematically, a wolf’s position is updated as (8) and (9):

ﬁz‘ﬁ-x—p(t)—i(t

S
H
—_
[ee)
=
*
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Where, XT,(t) represents the positions of the leader wolves (a, g, 6
). A,C represents, the adaptive vectors that manage the balance
between exploration and exploitation. These vectors are defined as
(10), (11):

A=2-a-r-3a#(10)(10)

C=2-#(11)(11)

where dis a control parameter that linearly decreases from 2 to 0
over the iteration, r:r; are random vectors in the range [0, 1]. This
structure enables GWO to dynamically switch between exploration
and exploitation, thereby increasing its effectiveness in converging
to the global optimum.

Alpha, beta, and delta are the best members of the pack, so they
understand the location of the prey (optima) better. Therefore,
during the hunt, these wolves lead the search process, and omega
wolves adjust their positions according to the positions of the three
most suitable wolves in the pack, as shown in (12)-(15).

D =[C- X =X|,X;=X_~A-D_#(12)(12)
Dy =[G -X; —X|,X; =X{ ~ A, -Dy #(13)(13)
D =[G X =X, X; =X ~A;-D #(14)(14)
X(t1)= X2t Xa yg5) g

IV. RESULTS AND DISCUSSION

This section presents the results of the average speed estima-
tion study conducted on the traffic data set in detail. In the study,
LSTM and XGBoost algorithms were evaluated using both standard
hyperparameters and parameters optimized with GWO. Model per-
formances were visually compared through correlation analysis
between actual and predicted values and time series prediction
graphs.

Fig. 4 shows the prediction performance of the Standard LSTM
model. The most notable feature of this graph is that the data
points show a systematic deviation around the ideal prediction
line (y=x). A distinct wave-like pattern is observed in the 25-35
and 45-55 speed ranges. This indicates that the LSTM model tends
to produce systematically high or low predictions in certain speed
ranges.

The distribution of data points in the LSTM graph exhibits a het-
erogeneous structure, and it is observed that the prediction errors
do not have a constant variance (heteroscedasticity problem). The
model performs relatively better at low speed values (20-30) and
high-speed values (50-60) but exhibits significant deviations at
medium speed values.

Fig. 5 presents the performance of the Standard XGBoost model.
Compared to LSTM, this model’s predictions show a much more
homogeneous and consistent distribution around the ideal line.
Data points are positioned close to the ideal prediction line across
the entire speed range (15-60) and exhibit a clear linear relationship.

Actual vs Predicted Average Speed (Standard LSTM)
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Fig. 4. Average speed prediction performance of LSTM algorithm.

Homogeneous variance (homoscedasticity) is observed in the
XGBoost model, and prediction errors are randomly distributed.
This indicates that the model performs consistently across all speed
ranges and does not contain systematic errors.

The performance difference between the two models is quite sig-
nificant. The XGBoost model demonstrates superior prediction accu-
racy and consistency compared to LSTM. Although the LSTM model
is strong in modeling temporal relationships, the ensemble learning
approach of XGBoost produced more effective results for this spe-
cific data set.

The model demonstrates homogeneous variance. Critical analy-
sis shows consistent accuracy across all speed ranges, with minor

Actual vs Predicted Average Speed (Standard XGBoost)
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Fig. 5. Average speed prediction performance of XGBoost
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deviations at low speeds. The XGBoost algorithm is considered a
preferable approach for speed prediction problems, as it demon-
strates lower prediction error, higher model reliability, and less sys-
tematic bias.

The hyperparameters of both models were optimized using the
GWO algorithm, and performance improvements were evaluated.
GWO optimization was applied to achieve an optimal balance
between model complexity and prediction accuracy. Table lll shows
the parameters of the standard and hyperparameter-tuned models.

The GWO algorithm itself was configured with a population size of
30 agents and set to run for 50 iterations, balancing computational
cost and solution quality. The hyperparameter search space used by
GWO for both LSTM and XGBoost models is detailed in Table IV.

Figs. 6 and 7 show the performance of the LSTM and XGBoost mod-
els optimized with GWO. Significant performance improvements
were observed in both models after optimization.

Fig. 6 shows the performance of the LSTM model optimized with
GWO. Although significant improvements are observed compared
to the standard LSTM version, some systematic characteristics still
exist. It has been found that data points form specific patterns and
tend to deviate from the ideal line in the 25-35 km/h and 40-50
km/h ranges.

The GWO optimization has significantly reduced the wave-like sys-
tematic deviations in the LSTM model but has not eliminated them.
The model demonstrates more consistent performance at low-
speed values (15-30 km/h) and high-speed values (55-60 km/h) but
still exhibits a heterogeneous distribution in the mid-speed ranges.
This may be due to the complexity of modeling temporal dynamics
in the LSTM.

Fig. 7 shows the performance of the XGBoost model optimized
with GWO. When examining the distribution of data points around
the ideal prediction line (y=x), a high level of correlation and con-
sistency can be observed. The model demonstrates homogeneous
performance across the entire 15-60 km/h speed range, with data
points tightly clustered along the ideal line.

Following GWO optimization, the variance structure of the XGBoost
model has improved significantly, and its homoscedasticity property
has been strengthened. The random distribution of prediction errors
indicates that the model does not contain systematic errors and pro-
duces reliable predictions across all speed segments. The tight clus-
tering observed at high speed values (50-60 km/h) indicates that the
model’s prediction capacity in this range has been optimized.

The performance difference between the two optimized models has
become more pronounced compared to their standard versions.
The GWO-XGBoost model showed superior prediction accuracy and
model stability after optimization, while the improvement rate in the
GWO-LSTM model remained limited.

When evaluated in terms of the R? the GWO-XGBoost model is seen
to have a higher explanatory power. From the perspective of residual
analysis, the error terms of the XGBoost model show a more normal
distribution, while certain patterns are still present in the LSTM
model.

The effect of the GWO algorithm on the two models differs. For
XGBoost, the optimization process further improved the already
high performance and increased model reliability. For LSTM, optimi-
zation significantly reduced the obvious problems in the standard
version but could not eliminate some characteristics inherent in the
algorithm.

In conclusion, the GWO-XGBoost combination is considered the
optimal solution for the traffic speed prediction problem in terms of
both prediction accuracy and model stability.

In the GWO-LSTM model, the systematic deviations observed in the
standard version have been significantly reduced, and the distribu-
tion of data points around the ideal line has become more uniform.
In the GWO-XGBoost model, the already high performance has been
further improved, and prediction accuracy has been increased.

As shown in Fig. 8, when examining the time series prediction per-
formance of the GWO-LSTM model, significant improvements in the
model’s ability to capture temporal dynamics are observed after
GWO optimization. Graphical analysis reveals that the optimized
LSTM model successfully tracks the general trend structure of actual
speed values during the test period from November 22, 2024 to
January 12025.The model is particularly effective at capturing long-
term speed changes and seasonal patterns, but it exhibits a certain
degree of smoothing effect in short-term volatility and sudden speed
fluctuations. The GWO optimization has improved the memory gate
parameters of the LSTM, enabling it to model temporal dependen-
cies more consistently and significantly reducing the lagged pre-
diction problem. However, the model still cannot fully capture the
amplitude of real values in high-frequency speed changes, and its
prediction capacity remains limited, especially for extreme values
(below 20 km/h and above 60 km/h). Overall, the GWO-LSTM com-
bination demonstrates satisfactory performance in traffic speed pre-
diction and offers a suitable solution for practical applications. The
optimized LSTM captures long-term patterns effectively but exhibits
smoothing in short-term fluctuations.

TABLE Ill. MODEL PARAMETERS

Model Parameters

Standard LSTM

LSTM Units=64, Dropout Rate=0.2

XGBoost

Learning Rate=0.1, n_estimators =100

Hyperparameter optimized GWO-LSTM

LSTM Units=169, Dropout Rate=0.15, Learning Rate=0.01000, Batch Size =29

GWO-XGBoost

Learning Rate =0.143, Max Depth =5, n_estimators =393, subsample =0.67, colsample_

bytree =1.00, min_child_weight=10




Electrica 2025; 25: 1-15
Subast. GWO-Assisted Ml For Istanbul Traffic Optimization

TABLE IV. GWO HYPERPARAMETER OPTIMIZATION SEARCH SPACE

Search Space

Parameter Model Range
LSTM Units GWO-LSTM (50, 200]
Dropout Rate GWO-LSTM [0.1,04]
Batch Size GWO-LSTM [16,64]
n_estimators GWO-XGBoost [100, 500]
Max Depth GWO-XGBoost [3,10]
Learning Rate GWO-XGBoost [0.01,0.2]

Fig. 9 shows the performance of the GWO-XGBoost model in pre-
dicting traffic speed. When comparing the actual average speed val-
ues (blue line) with the model predictions (orange line) for the last
two months of 2024, the model generally performs well. There is a
high correlation between model predictions and actual values until
the first half of December, but it is noteworthy that model predic-
tions deviate from actual values in some periods from the middle of
December onwards. These deviations are particularly noticeable at
low-speed values (in the 20-30 km/h range), and it is observed that
the model’s prediction accuracy decreases in these ranges. Toward
the end of the year, the model’s prediction performance improves
again and better captures the actual values.

To evaluate the behavior of model performances over time, time
series graphs of predictions made on the test data were created.
These graphs provide a visual means of evaluating the models’ abil-
ity to adapt to dynamic traffic conditions and the consistency of their
predictions.

Fig. 10 shows the time series prediction performance of the Standard
LSTM, Standard XGBoost, GWO-LSTM, and GWO-XGBoost models,
respectively. Figure is retained because it highlights differences
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Fig. 6. Average speed prediction performance of GWO-LSTM
algorithm.
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Fig. 7. Average speed prediction performance of GWO-XGBoost
algorithm.

between baseline and optimized models. Scientific explanation
added regarding temporal dynamics. Time series analyses reveal
that GWO optimization improves prediction consistency for both
algorithms and enhances model stability against sudden changes.
It has been observed that optimized models produce more reliable
predictions during time periods when traffic density is variable.

Table V provides a comparative summary of the performance met-
rics of all models used in the study. The evaluation criteria used were
MSE, MAE, R? WI. The WI measures the graded fit of the model to the
observed values between 0 and 1; the closer it is to 1, the more per-
fect the model is. PBIAS: Shows the direction and severity (in %) of
the model’s systematic deviation from the observations; the closer it
is to 0, the more unbiased the model is.

The numerical data presented in Table V is visually supported by the
comparative performance graph in Fig. 11. The model performance
comparison presented in Fig. 11 shows the evaluation of different
machine learning algorithms in terms of three basic performance
metrics. The graph compares the performance of ARIMA, Standard
XGBoost, GWO-XGBoost, Standard LSTM, and GWO-LSTM models
using MSE, MAE, and R? values. The analysis results reveal that GWO
optimization provides significant performance improvements for
both algorithms. When evaluated in terms of the XGBoost algorithm,
GWO optimization resulted in an approximately 33% decrease in the
MSE value and a similar improvement in the MAE value. The increase
in the R? value indicates that the explanatory power of the model has
improved. The effect of GWO optimization is even more dramatic in
the LSTM algorithm. The standard LSTM model’s relatively high MSE
value (41.2812) decreased significantly to 29.0507 after the GWO-
LSTM application. This clearly demonstrates the effectiveness of the
GWO algorithm in optimizing LSTM hyperparameters. When evalu-
ating overall performance, the GWO-XGBoost combination demon-
strates superior performance with the lowest error rates (MSE and
MAE) (1.6209 and 0.9082) and the highest explanatory coefficient
(R?) (0.9896). These findings emphasize the critical importance of
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hyperparameter optimization in complex time series problems such baseline and optimized models. On average, the GWO-LSTM model

as traffic density prediction.

required 18% longer training time compared to standard LSTM,
while the GWO-XGBoost model increased computational cost by
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Comparison of Time Series Predictions (Actual vs. Models)
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reduced error metrics and improved stability across iterations. These
results demonstrate that the trade-off between computational effi-
ciency and predictive performance remains favorable, especially in
smart city applications where accuracy is critical.

Fig. 12 illustrates a comparative analysis of the R? scores obtained
by five distinct predictive models: ARIMA, LSTM, XGBoost, GWO-
LSTM, and GWO-XGBoost. The R? metric, representing the R? is used
to evaluate the goodness-of-fit for each model. The results dem-
onstrate a significant variance in performance across architecture.
The GWO-XGBoost model achieved the highest R? score (0.9896),
indicating the strongest predictive accuracy and model fit. This was
closely followed by the standard XGBoost model, which also showed
exceptional performance with an R? score of 0.9811. The models
incorporating the GWO showed notable enhancements; the GWO-
LSTM (R?=0.8129) outperformed its baseline LSTM counterpart
(R2=0.7341). The traditional ARIMA model yielded the lowest perfor-
mance among the group, with an R? score of 0.6875.

When the results obtained are evaluated in general, it is determined
that both algorithms offer suitable solutions for the traffic speed
estimation problem. In the comparison in terms of R? value, it was
determined that the GWO-XGBoost algorithm showed the highest
explanatory power by obtaining the closest value to 1. While the

XGBoost algorithm showed consistent performance in both stan-
dard and optimized versions, the LSTM algorithm showed significant
performance improvements after optimization. In terms of practi-
cal applications, model selection for real-time traffic management
systems should take into account the factors of computational com-
plexity and processing time as well as prediction accuracy. In light of
these findings, it is concluded that the GWO-XGBoost algorithm is
the most suitable model for traffic speed forecasting. In this context,
the findings of the study provide valuable reference points for traffic
engineering applications.

A. Advantages and Limitations
Advantages: High prediction accuracy, robustness to anomalies,
flexibility in feature selection.

Limitations: Additional computational overhead, limited perfor-
mance under extreme traffic fluctuations. Furthermore, the 7-month
dataset (June-Dec 2024), while high-resolution, is a limitation as it
cannot capture long-term, multi-year seasonal patterns.

V. CONCLUSION

This research has comprehensively evaluated the effectiveness of
machine learning approaches supported by the GWO algorithm for

TABLE V. COMPARISON OF MODEL PERFORMANCE METRICS

MSE MAE R? wi PBIAS
Standard ARIMA 60.1532 5.1204 0.6875 0.7910 +19.4520%
LST™M 41.2812 4.5585 0.7341 0.8152 +16.6581%
XGBoost 2.9504 1.1757 0.9811 0.9845 +1.5532%
Hyperparameter optimized GWO-LST™M 29.0507 3.8432 0.8129 0.8465 +12.1386%
GWO-XGBoost 1.6209 0.9082 0.9896 0.9874 +0.8486%

12



Electrica 2025; 25: 1-15
Subast. GWO-Assisted Ml For Istanbul Traffic Optimization

Model Performance Comparison (MSE, MAE, R"2)

20

ARIMA LSTM

XGBoost GWO-LSTM
Model

Metric
— MSE
m— MAE
- R"2

GWO-XGBoost
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the analysis of Istanbul’s complex urban traffic structure. The find-
ings reveal the critical importance of modern optimization tech-
niques in overcoming the limitations of traditional traffic analysis
methods. One of the most important contributions of the study is
the systematic comparative analysis of GWQ's effectiveness in opti-
mizing different machine learning architectures (LSTM and XGBoost)
for traffic data analysis. The developed Unified Traffic Density Index
provides a multidimensional evaluation framework by integrating
average speed, vehicle density, and speed variation parameters. This
approach provided more accurate and reliable traffic density detec-
tion compared to traditional single-parameter analysis methods. By
integrating GWO into traffic data analysis, the proposed approach
demonstrated superior optimization capability and robustness com-
pared to traditional methods, confirming its potential as a reliable
tool for intelligent transportation systems.

Algorithmic performance comparisons have shown that GWO opti-
mization significantly improves the predictive capacities of both the
LSTM and XGBoost models. In particular, the systematic biases and
heteroskedasticity problems observed in the LSTM model are sig-
nificantly reduced after GWO optimization, and the model’s capacity
to capture temporal dependencies is improved. The XGBoost algo-
rithm, on the other hand, combines the advantages of the ensemble

learning structure with GWO optimization to achieve the highest
prediction accuracy and model stability.

According to the findings of time series analysis, strong hourly peri-
odicity structure and weekly fluctuation patterns of Istanbul traffic
have been identified. These temporal patterns reflect routine traffic
spikes during the morning and evening peak hours but also include
random variations due to unexpected traffic events. The GWO-
optimized models successfully modeled this multi-layered temporal
structure and demonstrated the capacity to adapt to dynamic traffic
conditions.

In terms of practical applications, the GWO-XGBoost combination
stands out as the most accurate predictive model within this study’s
framework, suggesting strong potential for use in real-time systems,
pending further deployment testing and scalability analysis. The
model’s high prediction accuracy, low computational complexity,
and lack of systematic errors provide critical advantages for opera-
tional use in smart city applications. These features provide directly
applicable outputs in the development of traffic signalization opti-
mization, route recommendation systems, and proactive traffic man-
agement strategies.
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The methodological contributions of the research include a consen-
sus-based anomaly detection framework and a multi-scale traffic
analysis approach. This innovative approach enables consensus-
based evaluation of results from different data sources, thereby
increasing the level of reliability in anomaly detection. Furthermore,
systematic traffic pattern analysis at hourly, daily, weekly, and sea-
sonal scales has provided valuable insights for urban planners and
policymakers.

Systematic application of GWO in Istanbul traffic analysis, Unified
Density Index, consensus anomaly detection. The GWO-XGBoost
outperforms other models with the lowest errors and highest
accuracy.

In terms of future research directions, several key areas are consid-
ered: the hybridization potential of the GWO algorithm with other
meta-heuristic methods, improving its real-time streaming data
processing capability, and testing its generalizability to urban traffic
systems in different geographical regions. Furthermore, future work
must address the limitations of this study by testing the model’s scal-
ability and computational viability in a live-streaming environment
and evaluating its transferability to other urban districts with differ-
ent traffic dynamics. Additionally, increasing integration with GIS, loT
sensors, and big data analytics will contribute to the development of
more comprehensive urban mobility management solutions.

In conclusion, this study has demonstrated the transformative
potential of GWO-assisted machine learning approaches in urban
traffic analysis and developed a robust methodological framework
that provides actionable intelligence for sustainable urban mobility.
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