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ABSTRACT

Thisstudyinvestigatestheimpactofapplying optimized coincidencefactorsonthe efficiencyand cost-effectiveness
of electricity distribution networks. Coincidence factors quantify the probability of multiple consumers drawing
power simultaneously. Their absence or inappropriate application, particularly in multi-residential systems, often
results in oversized cables and inflated infrastructure costs. While Turkey's Electrical Internal Installation Regulation
provides guidelines for internal wiring, a standardized methodology for their use in distribution systems remains
absent. Using empirical data collected from 5422 residential units in Zonguldak Province, this study analyzed two
scenarios using the bPRO-EDS software: one assuming full simultaneity (coincidence factor=1.0), and another
incorporating locally optimized values based on actual demand behavior. The technical and financial outcomes
of both scenarios were assessed. Results revealed significant cost savings without compromising system reliability.
In an urban case, total cable-related investment dropped from 665633.63 TL to 375347.48 TL. Similarly, a rural
example demonstrated a reduction from 161950.39 TL to 110732.89 TL. These findings underscore the critical
importance of data-driven, region-specific planning for sustainable energy infrastructure. The methodology
presented in this paper offers a replicable model for other provinces, promoting nationwide improvements in the
design, planning, and economic viability of electricity distribution networks. It emphasizes the role of empirical
data and modern planning tools in transforming traditionally overengineered systems into lean, resilient, and
cost-effective infrastructures.

Index Terms—DbPRO-EDS, coincidence factor, cost optimization, electricity distribution, load demand, rural-
urban networks

I. INTRODUCTION

As global energy demand continues to rise and urbanization intensifies, the optimization of elec-
tricity distribution systems becomes increasingly critical [1]. Efficient and reliable distribution
networks are essential not only to ensure consistent power delivery to end users but also to mini-
mize infrastructure costs and energy losses. A key yet often overlooked element in distribution
system planning is the application of appropriate coincidence factors—parameters that account
for the probability that connected loads will operate simultaneously.

In many countries, including Turkey, the design of internal electrical installations typically
involves well-defined coincidence factors as outlined in national regulations [2]. However, the
application of such factors in external electricity distribution networks remains ambiguous
and inconsistently practiced. This oversight often results in oversized conductors and overen-
gineered systems that unnecessarily inflate investment costs. For instance, using a 100% simul-
taneity assumption across all consumer points leads to redundant design margins that do not
reflect real-world consumption behavior.

Furthermore, the absence of region-specific coincidence factor guidelines fails to account for
the substantial variability in consumption patterns driven by geographic, economic, and dem-
ographic differences [3]. Urban areas may exhibit peak demands during evening hours due to
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lighting and appliance use, while rural regions may demonstrate
more scattered loads influenced by agricultural activities. Therefore,
a one-size-fits-all approach undermines the technical and economic
performance of distribution planning.

This study aims to fill this gap by investigating and optimizing coin-
cidence factors for electricity distribution networks in both urban
and rural areas of Zonguldak Province, Turkey. Real-world consump-
tion data from 5422 residential units were analyzed to derive more
realistic values. These optimized factors were then applied using the
bPRO-EDS software to evaluate their technical and financial impact.
The scientific contributions of this study are summarized as follows:

1. It provides the first large-scale empirical derivation of coinci-
dence factors based on real consumption data in Zonguldak
Province, covering both urban and rural areas.

2. It quantifies the technical and economic benefits of optimized
coincidence factors using a practical simulation tool (bPRO-
EDS), demonstrating substantial cost savings in cable sizing and
infrastructure investment.

3. It presents a replicable, data-driven methodology that bridges
the gap between theoretical assumptions and field-based dis-
tribution design practices.

4. ltoffers actionable insights for policymakers and utility planners
by demonstrating how region-specific load behavior can inform
more efficient and sustainable network planning.

The remainder of this paper is structured as follows: Section 2 pres-
ents the literature review, highlighting key studies on coincidence
factors and distribution planning. Section 3 describes the method-
ology and tools used in data collection and simulation. Section 4
outlines the results and discussion, including cost analyses under
different scenarios. Finally, Section 5 concludes the study and offers
recommendations for policy and future research.

1. LITERATURE REVIEW

The development of efficient electricity distribution networks hinges
on accurate demand modeling and tailored infrastructure planning.
A central concept in this planning process is the coincidence factor,
which adjusts expected load based on the probability of simultane-
ous usage. However, the application of these factors remains incon-
sistent; especially in Turkey’s distribution network planning; leading
to systematic overdesign and increased costs. Recent research has
highlighted the importance of applying empirically derived, region-
specific coincidence factors to improve network reliability and finan-
cial efficiency. This literature review synthesizes key contributions in
this domain, focusing on methodologies for factor estimation, use of
machine learning, and case-based modeling.

Artificial intelligence-based protection schemes, when integrated
into distribution networks with high DER penetration, can signifi-
cantly enhance fault detection accuracy, reduce relay operation
times, and minimize miscoordination, all while achieving cost-effec-
tive system upgrades. This techno-economic synergy, demonstrated
using smart relays trained via MLP models, offers a replicable foun-
dation for future data-driven grid optimization strategies [4].

Research based on field measurements has been instrumental in
identifying the limitations of standard assumptions. For instance,
Cevat SAHIN (2017) conducted field measurements in Istanbul and
Izmir, identifying significant mismatches between real consumption

and theoretical estimates used in internal wiring regulations [5].
Similarly, Yapicioglu (2019) found that only 5.67% of buildings
reached their calculated demand, suggesting a 33% potential cost
reduction through optimized coincidence factors [6].

The increasing integration of renewables and electric vehicles (EVs)
has necessitated a reevaluation of simultaneity assumptions. Several
studies have examined networks integrating solar power and EV
charging, emphasizing the importance of adjusted coincidence
assumptions for reliable operation [7, 8]. In particular, recent research
by Comech et al. (2024) demonstrated that rural EV integration with
high simultaneity leads to undervoltage and overloading risks [9].

The integration of EV charging infrastructure into distribution sys-
tems necessitates strategic placement to avoid adverse impacts such
as increased energy losses, reactive power burdens, and infrastruc-
ture overinvestment. By optimizing the deployment of fast charging
stations and incorporating solar-based distributed generation, dis-
tribution networks can enhance self-sufficiency and reliability while
minimizing power loss and economic strain [10].

Advanced analytics, including machine learning, have played a
growing role in optimization. For instance, Kaya (2023) modeled
coincidence behavior in Cankiri using artificial neural networks, pro-
viding more accurate representations of residential load patterns
[11]. Bi et al. (2025) applied deep transfer reinforcement learning
to enhance reactive power control, demonstrating the potential of
intelligent algorithms for real-time grid optimization [12].

Al-driven optimization techniques, such as those employing genetic
algorithms, have shown notable effectiveness in enhancing the
operational efficiency of distribution networks by strategically allo-
cating distributed resources like BESS, EV charging stations, and DG
units. This optimization led to significant reductions in active energy
losses and improved voltage profiles, validating the importance of
data-driven, location-specific planning strategies in modern distri-
bution systems [13].

Furthermore, numerous studies have focused on demand forecast-
ing and EV charging infrastructure planning using machine learning
approaches [14, 15]. A comprehensive review by Raza and Khosravi
(2015) highlighted the effectiveness of Al-driven demand estima-
tion techniques in improving grid efficiency and supporting smarter
energy management strategies [16].

The integration of deep learning algorithms such as LSTM into
energy consumption forecasting has proven to significantly enhance
prediction accuracy, especially for short-term household demand.
These data-driven models enable smarter grid management and
support the formulation of optimized energy usage and infrastruc-
ture planning strategies, minimizing unnecessary overengineering
in distribution systems [17].

Further advancements in network planning tools have significantly
contributed to long-term forecasting and investment strategies.
Kazemzadeh, Amjadian, and Amraee (2020) proposed a hybrid load
forecasting methodology that effectively predicted Iran’s annual
peak load and energy demand with improved accuracy [18]. In
Turkey, Tor et al. (2018) developed a dynamic investment planning
algorithm for medium-voltage (MV) distribution networks, which
was successfully tested in pilot regions under the Akdeniz EDAS
utility [19]. Complementing these efforts, Konar (2021) emphasized
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the necessity of grounding distribution project designs in real-time
demand measurements, advocating for more data-driven infrastruc-
ture planning to replace generalized assumptions [20].

Rural electrification remains a critical area of focus in energy plan-
ning. Several studies have addressed challenges such as loss pre-
vention, renewable integration, and infrastructure expansion in
rural settings. Aksu (2019), Ozkék (2015), and Tiirk (2009) explored
strategies for minimizing technical losses and examined the feasibil-
ity of integrating photovoltaic (PV) systems into rural grids [21-23].
Building on this, Glines (2019) and Simsek, Gani, and Sekkeli (2019)
conducted transformer capacity analyses using real-world param-
eters; including power factor and load diversity; thereby enhancing
the accuracy of rural distribution system design [24, 25].

In parallel, infrastructure cost minimization has emerged as a key
concern. Pekiner (1993) applied nonlinear optimization techniques
to reduce the capital costs of urban cable systems [26]. Further
contributions by Akbulut (2019) and Gonen, Ten, and Mehrizi-Sani
(2024) emphasized how strategic planning decisions influence both
technical losses and investment outcomes [27, 28]. Additionally,
Daylak (2016) investigated the use of voltage regulators and distrib-
uted generation sources in reducing losses through multi-objective
optimization methods, offering a robust framework for cost-effective
network enhancement [29].

Beyond conventional distribution planning, recent research has
explored distributed control systems in microgrids. The integration
of deep neural networks into distributed control strategies signifi-
cantly enhances the performance of microgrids by enabling real-
time predictions of power demand and generation. This predictive
capability ensures dynamic power distribution, maintains voltage
and frequency within acceptable limits, and reduces reliance on con-
ventional communication infrastructure, ultimately fostering more
adaptive and resilient energy systems [30].

In summary, while the reviewed literature provides a solid foun-
dation for understanding the value of coincidence factors, most
prior research either targets internal building installations or nar-
row technical dimensions. This study expands upon those efforts
by using empirical data from Zonguldak Province and simulation
tools like bPRO-EDS to optimize coincidence factors across both
urban and rural networks, offering a scalable, practice-oriented
methodology.

lll. METHODOLOGY

The methodology of this study was designed to investigate the opti-
mization of coincidence factors in electricity distribution networks
through a comprehensive technical and spatial analysis. Zonguldak
Province was selected as the pilot region due to its diverse demo-
graphic and infrastructural characteristics. The study relied on
detailed field data from both urban and rural zones, and simulations
were performed using professional engineering software to assess
technical and economic impacts.

A. Study Area and Data Collection

Zonguldak, located in northwestern Turkey, includes both urban
centers and rural settlements, making it a representative case for
understanding regional variations in electricity consumption behav-
ior. The dataset comprised:

« Urban network data: 433 buildings in 32 transformer zones, total-
ing 4054 residences.
- Rural network data: 1368 residences in 22 transformer zones.

These 64 transformer zones represented the electricity usage hab-
its of nearly 16000 people. Data were collected through collabora-
tion with the regional distribution authority, ensuring both spatial
diversity and statistical validity. Identifiable data such as subscriber
numbers or transformer IDs were removed in accordance with data
privacy policies. The focus remained entirely on technical values
such as contracted capacity and measured peak demand.

Fig. 1 illustrates the geographic distribution of the data collec-
tion points across Zonguldak. The selected sites reflect a balance
between coastal, mountainous, and interior regions to ensure
representativeness.

To strengthen the robustness of the analysis, the dataset used in
this study offers substantial representativeness across geographic,
demographic, and infrastructural dimensions. The inclusion of 5422
residential units spanning 64 transformer zones ensures a statisti-
cally meaningful sample that captures both densely populated
urban centers and sparsely distributed rural settlements. This diver-
sity reflects actual load behavior across varying socio-economic
contexts. The data were sourced directly from the regional electricity
distribution company, ensuring a high degree of authenticity and
technical accuracy. As such, the dataset not only meets statistical
reliability thresholds but also enhances the generalizability of the
study’s conclusions to other provinces with similar characteristics.

B. Analytical Approach and Software Tools
The analysis proceeded under two modeling assumptions:

1. Scenario 1: Full simultaneity—assuming all loads operate con-
currently (coincidence factor=1).

2. Scenario 2: Realistic operation—applying optimized coinci-
dence factors derived from actual field measurements.

The following steps were undertaken:

- Contracted and peak demand powers were calculated for each
building.

- Diversity indices were determined at building, transformer, and
district levels.

« Preliminary analysis and statistical modeling were performed
using Microsoft Excel.

- Final technical evaluations were conducted using the bPRO-ED$S
software, a nationally recognized engineering platform for design-
ing and analyzing distribution networks.

This dual-scenario analysis enabled comparison between conven-
tional and optimized planning methods.

Although the bPRO-EDS software offers a robust framework for dis-
tribution network design and evaluation, it has certain limitations.
Specifically, the tool is primarily oriented toward static load analysis
and does not dynamically model load variations or include certain
emerging load types such as EV charging patterns or responsive
demand-side behaviors. While this constraint does not affect the
validity of the current comparative analysis, it suggests that future
studies could benefit from integrating more dynamic simulation
platforms to capture broader behavioral nuances. bPRO-EDS was
selected for this study due to its compliance with national standards,
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Fig. 1. Data collection regions.

local utility adoption, and proven accuracy in thermal and voltage
constraint evaluations.

C. Factors Influencing Demand Growth

Understanding future demand is critical for defining robust coinci-
dence factors. The analysis took into account foreseeable changes in
energy usage habits, categorized as follows:

Positive Drivers of Increased Demand:

« Rising adoption of EVs with home charging infrastructure.
« Shift from conventional heating to heat pumps.

« Increased air conditioning use due to climate variability.

« Proliferation of energy-intensive home appliances.

Negative Drivers Reducing Demand:

« Widespread use of energy-efficient LED lighting.

« Integration of rooftop PV systems, reducing grid dependency.

« Deployment of smart home automation for demand-side
management.

These elements were modeled into the estimation of future demand
scenarios, especially for urban areas where a 50% increase in average
residential energy use is projected by 2050.

IV. TECHNICAL ANALYSIS AND SCENARIO-BASED COST
COMPARISONS

This section evaluates technical and cost outcomes from applying
the optimized coincidence factors versus the traditional 100% simul-
taneity assumption. Using bPRO-EDS simulations, side-by-side com-
parisons were conducted for representative cases in both urban and
rural settings.

A. Urban Network: Simulation and Cost Evaluation

In the base case scenario assuming full simultaneity (coincidence
factor=1.0), the urban network was modeled with oversized cable
profiles to meet theoretical maximum load conditions. The thermal
loading analysis (Fig. 2) reveals that large cable cross-sections (e.g.,
3% 240+ 120 mm?) are required to maintain safe operating tempera-
tures. This not only increases material costs but also complicates
installation due to additional weight and rigidity.

Subsequently, the low-voltage (LV) drop analysis (Fig. 3) demon-
strates that, while the oversized infrastructure meets voltage regu-
lations, the design efficiency is low. Voltage levels remain within
permissible limits, but only at the expense of significantly over-
dimensioned infrastructure.

The costimplications of this design approach are presented in Table |,
which outlines the quantities, unit prices, and installation costs of
the required materials. The total estimated cost of 665633.63 TL
highlights the financial burden associated with conventional design
assumptions.

In contrast, the optimized scenario applied an empirically derived
coincidence factor of 0.60, reflecting actual simultaneity behavior
in multi-unit buildings. Fig. 4 presents the updated thermal analy-
sis, which confirms that smaller conductors (e.g., 3 x 120+ 70 mm?)
adequately handle thermal constraints, maintaining performance
within safe margins.

Voltage drop values for the optimized case are visualized in Fig. 5.
Despite the downsized cable profiles, all voltage values remain well
within regulatory thresholds (e.g., <5% for LV feeders), affirming the
technical sufficiency of the refined design.

The revised single-line diagram, shown in Fig. 6, illustrates the
streamlined configuration enabled by the optimized coincidence
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Fig. 2. LV cable thermal analysis for the urban area without applying the coincidence factor (bPRO EDS output).

factors. Table Il provides the updated bill of materials and associated
costs, amounting to 375347.48 TL. This represents a cost reduction
of 43.6%—a significant economic gain without compromising net-
work integrity.

B. Rural Network: Simulation and Cost Evaluation

The rural case study, conducted in the Devrek district, followed a
similar dual-scenario evaluation approach. Fig. 7 and 8 show thermal
and voltage oversizing under the 100% coincidence assumption,
similar to the urban scenario.

The corresponding cost summary is detailed in Table lll, where the total
project cost under this assumption was calculated as 161950.39 TL.

When redesigned with an optimized coincidence factor (approxi-
mately 0.60), the thermal and voltage conditions shown in Fig. 9 and

10; remained well within engineering limits, even with smaller con-
ductor profiles.

Table IV outlines the revised material and installation costs under
this optimized design, totaling 110732.89 TL. This equates to a cost
savings of more than 31.6%, reinforcing the financial and technical
benefits of data-driven planning in rural contexts.

These results underscore the value of localized optimization and
provide compelling justification for updating distribution planning
standards.

C. Synthesis and Broader Implications

The findings from both urban and rural simulations affirm the cen-
tral thesis of this study: that adopting regionally optimized coinci-
dence factors, grounded in empirical field data, yields significant
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Fig. 3. LV cable voltage drop analysis for the urban area without applying the coincidence factor (bPRO EDS output).
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TABLE I. COST ESTIMATION FOR THE URBAN AREA WITHOUT APPLYING THE COINCIDENCE FACTOR (BASED ON BPRO EDS ANALYSIS)

Material Material Installation Installation Total
Unit Price Amount Unit Price Amount Amount
Item No Type of Material Unit Quantity (TL) (TL) (TL) (TL) (TL)
Cost
Estimation
30.2.1 2 m galvanized grounding rod (65 x 65 X 7 mm) Piece 1.00 1688.33 1688.33 1653.83 1653.83 11.342.16
32.12.080 3% 150470 mm?0.6/1 kVYVV (NYY) cable with Metre 2.00 1223703 14474.06 b137.75 £275.50 1474956
screened neutral
32.12.081 3% 185495 mm?0.6/1 kVYVV (NYY) cable with Metre 2.00 £2750.39 £5500.78 £153.34 1£306.68 15807.46
screened neutral
32.12.082 3% 2404120 mm? 0.6/1 kV YWV (NYY) cable with Metre 2.00 $3599.65 £7199.30 $176.98 $353.96 17553.26
screened neutral
32.16.007 1 x 50 mm? 0.6/1 kV YWV (NYY) screened cable Metre  20.00 1209.17 14183.40 15933 11186.60 15370.00
32.16.080 3% 150470 mm?0.6/1 kV YWV (NYY) cable with Metre 108.00 1223703  1241599.24 £115.10 11243080 ©254030.04
screened neutral
32.16.081 3% 185495 mm?0.6/1 kV YWV (NYY) cable with Metre 73.00 £275039 120077847 £130.92 £9557.16 1210335.63
screened neutral
32.16.082 3% 2404120 mm?0.6/1 kVYVV (NYY) cable with Metre 47.00 £3599.65 $H169183.55 £154.51 17261.97 117644552
screened neutral
1633607.13 132026.50 1665633.63

improvements in both technical reliability and cost efficiency within
electricity distribution networks.

In the urban context, where residential clusters tend to exhibit diversi-
fied usage patterns, the application of a standard 1.0 coincidence factor
led to substantial overdesign. This manifested in the form of oversized
cables, increased installation complexity, and inflated project costs. In
contrast, the use of optimized factors, such as 0.60 for clusters of 3-6
buildings, enabled the selection of more suitable cable cross-sections
without compromising voltage stability or thermal safety.

The rural case reinforced similar conclusions, albeit under different
usage dynamics. Here, consumption profiles are shaped by sea-
sonal demands and specific agricultural activities. By aggregating
demand at the village level, the study derived tailored coincidence
factors that aligned more accurately with actual load behavior. These
adjustments resulted in up to 31.6% cost savings while maintaining
full technical compliance.

Collectively, these simulations underscore the economic and
operational inefficiencies embedded in traditional, static design
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Fig. 4. LV cable thermal analysis for the urban area with a 60% coincidence factor applied (bPRO EDS output).
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Fig. 5. LV cable voltage drop analysis for the urban area with a 60% coincidence factor applied (bPRO EDS output).

methodologies. The study demonstrates how tools such as bPRO-
EDS, when coupled with real consumption data, enable a paradigm
shift toward more rational and adaptive infrastructure planning.

In light of future demand growth, driven by trends such as elec-
trification of transport, climate-responsive appliances, and smart
energy systems, these results highlight an urgent need to institu-
tionalize localized coincidence factor modeling as part of national
grid planning policies. This approach not only supports long-term
infrastructure sustainability but also contributes to optimizing pub-
licinvestment in energy systems.

V. RESULTS AND DISCUSSION

A. Urban Network Findings and Interpretation

Across eight districts in Zonguldak revealed significant discrepan-
cies between contracted and actual demand values. As illustrated
in Table V, the total contracted power across 433 buildings was
26654.86 kWh, while the recorded peak demand was only 10222.06

kWh, yielding an average coincidence factor of 0.38. This finding
underscores a prevalent overdesign in conventional network plan-
ning, where assumptions of full simultaneity are not aligned with
actual user behavior.

Fig. 11 visualizes the district-based demand-to-contracted ratios.
Districts such as Kilimli and Caycuma exhibit especially low demand
utilization—well below 30%—suggesting that their infrastruc-
tures may be significantly oversized. In contrast, Kilimli, with a
relatively higher coincidence factor of 0.57, still falls short of justify-
ing a 1.0 factor, thus reinforcing the inefficacy of a uniform design
assumption.

Fig. 12 presents transformer-level comparisons, highlighting that
many transformers operate at less than 40% of their capacity. This
transformer-level granularity affirms that the inefficiencies are
not confined to district averages but persist across specific local
infrastructures.
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TABLE II. COST ESTIMATION FOR THE URBAN AREA WITH A 60% COINCIDENCE FACTOR APPLIED (BASED ON BPRO EDS ANALYSIS)

Material Material Installation Installation Total
Unit Price  Amount Unit Price Amount Amount
Item No Type of Material Unit Quantity (TL) (TL) (TL) (TL) (TL)
Cost
Estimation
30.2.1 2 m galvanized grounding rod (65 x 65 X 7 mm) Piece 1.00 688.33 688.33 653.83 653.83 1342.16
32.12.079 3% 120470 mm?0.6/1 KV YWV (NYY) cable with screened  Metre 4.00 1823.28 729312 128.00 512.00 7805.12
neutral
32.12.080 3% 150470 mm?0.6/1 kV YWV (NYY) cable with screened  Metre 1.00 2237.03 2237.03 137.75 137.75 237478
neutral
32.16.007 1 x50 mm?0.6/1 kV YWV (NYY) screened cable Metre 20.00 209.17 418340 59.33 1186.60 5370.00
32.16.079 3% 120470 mm? 0.6/1 kV YWV (NYY) cable with screened  Metre  120.00 182328  218793.60 105.39 12646.80 23144040
neutral
32.16.080 3% 150470 mm?0.6/1 KV YWV (NYY) cable with screened  Metre 54.00 2237.03 120799.62 115.10 6215.40 127015.02
neutral
353995.10 21352.38 375347.48

Further investigation into simultaneity across building clusters
is illustrated in Fig. 13. The X-axis represents the number of resi-
dential units connected to each transformer zone. The left Y-axis
shows the total contracted power (blue bars) and actual measured
demand (orange bars) in kilowatts (kW). The right Y-axis (gray line)
indicates the calculated diversity factor (demand/contracted). The
figure illustrates how diversity improves as the number of units
increases, supporting the use of adjusted coincidence factors in
planning.

Table VI synthesizes these observations into a set of recommended
coincidence factors, suggesting: 0.55 for 2-3 buildings, 0.60 for 4-6
buildings, and 0.75 for 7 or more. These refined coefficients allow for

a more rational allocation of conductor sizes and protective devices
in new designs, without compromising operational reliability.

Fig. 14 presents the total contracted power and actual peak
demand (bars) as a function of the number of buildings served per
transformer zone (X-axis). The gray line shows the resulting diver-
sity factor, indicating the degree to which actual demand deviates
from contracted capacity. Higher building counts correlate with
greater diversity, justifying more efficient system design through
tailored coincidence factors. As the number of buildings increases,
the observed simultaneity factor stabilizes, especially beyond
seven units. This suggests a reduction in peak simultaneity due to
diversified consumption behaviors across larger building clusters.

Yuk / Maks. Yik
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Fig. 7. LV cable thermal analysis for the rural network without applying the coincidence factor (bPRO EDS output).




Electrica 2026; 26: 1-16
Kok and Alhajomar. Optimizing Coincidence Factors in LV Networks

% Gerilim Duigimii X
— 000-099
— 1.00-1.93
1 200-299
=== 300-399
mm 400-499
500

3x70/16+95 AER

2(3x95/16+95)AER

Fig. 8. LV cable voltage drop analysis for the rural network without applying the coincidence factor (bPRO EDS output).

Additionally, the figure integrates projected increases in urban
energy demand, estimated at 50% by 2050, highlighting the neces-
sity of forward-looking planning. These insights support the imple-
mentation of scalable and future-resilient coincidence coefficients,
aligned with both present consumption realities and anticipated
technological adoption.

B. Rural Network Findings and Interpretation

The rural electricity distribution network analysis revealed distinct
consumption patterns that diverge significantly from urban behav-
iors. This divergence stems primarily from the influence of agri-
cultural and livestock activities, seasonal demand shifts, and the
typically lower density of household appliances. Instead of assessing
individual residential units, the rural evaluation focused on aggre-
gated data at the village level to better reflect actual field conditions
and network topology.

Table VIl reveals notable district-level disparities between contracted
and actual demand, confirming the necessity of location-specific
modeling over uniform assumptions. For instance, the Eregli and

Gokegebey regions demonstrate relatively high coincidence factors
(above 0.70), which are likely attributable to intensive farming oper-
ations and denser village structures. In contrast, Kilimli and Devrek
display much lower coincidence ratios (around 0.35 to 0.45), sug-
gesting that applying a fixed factor of 1.0 across all rural areas would
misrepresent actual load profiles.

Fig. 15 graphically illustrates the variation in coincidence factors
by district. This visual reinforces the inconsistencies in applying
universal coefficients and highlights the danger of overdesign.
The graph shows how transformer loads in low-demand districts
significantly lag behind their contracted capacity, signaling excess
investment in materials and infrastructure that do not align with
field realities.

This observation is further confirmed in Fig. 16, which compares
transformer contracted capacities with recorded peak demands.
Across the sampled regions, no transformer reaches full utilization.
Many operate at or below 50% of their rated capacity. Such wide-
spread underuse supports the conclusion that the assumption of

TABLE Ill. COST ESTIMATION FOR THE RURAL NETWORK WITHOUT APPLYING THE COINCIDENCE FACTOR (BASED ON BPRO EDS ANALYSIS)

Material Material Installation Installation Total
Unit Price Amount Unit Price Amount Amount
Item No Type of Material Unit  Quantity (TL) (TL) (TL) (TL) (TL)
Cost
Estimation
9.5.0.15 3% 25/16+35 mm? (0.460 kg/m) Alpek cable Metre 57.00 178.18 14456.26 £40.96 1233472 $6790.98
9.5.0.16 3% 35/16+50 mm? (0.620 kg/m) Alpek cable Metre 70.00 1£95.01 £6650.70 147.74 13341.80 £9992.50
9.5.0.18 3% 70/16+95 mm? (1.060 kg/m) Alpek cable Metre 294.00 £175.40 151567.60 166.46 $19539.24 171106.84
9.50.24 3% 95/16+95 mm? (1.410 kg/m) Alpek cable  Metre 249.00 123932 159590.68 158.11 $14469.39 174060.07
1122265.24 139685.15 1161950.39
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Fig. 9. LV cable voltage drop analysis for the rural network with the coincidence factor applied (bPRO EDS output).

100% simultaneity in rural design is neither technically justified nor Special planning considerations are reserved for high-demand

economically viable. installations, such as collective farms or large-scale irrigation sys-
tems, where near-simultaneous equipment operation is common.
To mitigate this issue, Table VIl proposes optimized coincidence fac-  For such cases, the coincidence factor remains fixed at 1.0 to ensure

tors for each district. These values were derived based on current  adequate capacity and operational safety.

consumption trends, complemented by a forward-looking projec-

tion of a 10% increase in rural electricity demand due to gradual Overall, the rural findings strongly reinforce the necessity of aban-
modernization. For example, while Eregli maintains a recommended doning uniform assumptions in favor of empirical, data-driven
factor of 0.85, Kilimli is set at 0.60, reflecting the stark difference in planning. When applied systematically, such an approach yields
load behavior. substantial infrastructure savings while safeguarding technical stan-

dards, offering a scalable model for broader implementation across
These refinements are not only cost-effective but also enhance the rural regions nationally.

realism and adaptability of network design. By aligning planning
parameters with on-ground realities, utilities can avoid excessive The recommended coincidence factors presented in Table VI and
infrastructure deployment while maintaining high reliability. Table VIl were empirically derived based on actual consumption data

3x95/16+95 AER

3x35/16+50AER
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Fig. 10. LV cable thermal analysis for the rural network with the coincidence factor applied (bPRO EDS output).
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TABLE IV. COST ESTIMATION FOR THE RURAL NETWORK WITH A 60% COINCIDENCE FACTOR APPLIED (BASED ON BPRO EDS ANALYSIS)

Material Material Installation Installation Total
Unit Price  Amount Unit Price Amount Amount
Item No Type of Material Unit Quantity (TL) (TL) (TL) (TL) (TL)
Cost
Estimation
9.5.0.15 3% 25/16+ 35 mm? (0.460 kg/m) Alpek cable Metre 127.00 17818 $9928.86 £40.96 $5201.92 $15130.78
9.5.0.16 3% 35/16+50 mm? (0.620 kg/m) Alpek cable Metre 206.00 1£95.01 $19572.06 147.74 19834.44 1$29406.50
9.5.0.18 3% 70/16+95 mm? (1.060 kg/m) Alpek cable Metre 88.00 17540 $15435.20 166.46 1$5848.48 $21283.68
9.5.0.24 3% 95/16+95 mm? (1.410 kg/m) Alpek cable Metre 151.00 $239.32 $36137.32 B58.11 18774.61 £44911.93
181073.44 £29659.45 1110732.89
distribution box) to yield representative values. Seasonal variations
TABLEV. DISTRICT-BASED COINCIDENCE FACTOR ANALYSIS and projected future increases in residential electricity use, due to
District Contracted Power Demand Diversity, % e.Iectrlﬁca.tlon trends, were also factored into the final recommenda-
tions. While the bPRO-EDS software does not calculate coincidence
Alaph 846.968 351.717 4153 factors automatically, the derived values were externally computed
Vi imul listic olanni itions.
Caycuma 7751 8842 3199.75) 4128 and manually input to simulate realistic planning conditions
Devrek 17183524 583501 3396 C. Recommendatlons for Futurg Research 3
While this study offers robust evidence on the benefits of empirically
Eregli 216196 744757 3445 derived coincidence factors in distribution planning, several direc-
. tions remain open for future exploration:
Gokcebey 5687.4772 2079.322 36.56
o - Regional Expansion: Replicating this methodology across differ-
Kilimli 927.584 536.696 57.86 . . . . . . . .
ent provinces—particularly in regions with varying climate, socio-
Kozlu 4550.0084 1578.309 34.69 economic status, and consumption patterns—would allow for the
creation of a national coincidence factor database. Such a data-
Merkez 30106254 1147917 3813 base could support a regulatory framework that accommodates
Total 26654.8596 10222.06 38.35 regional diversity.

+ Temporal Dynamics: Future studies should investigate how

coincidence factors vary over time (e.g., hourly, seasonally), par-

collected from 64 transformer zones across urban and rural districts
in Zonguldak Province. For each zone, the peak measured demand
was compared to the contracted capacity, and coincidence ratios
were computed accordingly. These ratios were statistically averaged
across clusters of buildings (grouped by number of consumers per

ticularly in rural areas with agricultural cycles and in urban zones
influenced by heating/cooling demand.

- Integration with Smart Grid Technologies: Incorporating real-
time metering and demand response systems into coincidence
factor modeling could further enhance planning precision. These

District Based Analysis
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Fig. 11. District-based graphical representation of coincidence factors based on contracted and demand power.
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Fig. 13. Distribution of contracted and actual demand power across different transformer zones based on installed load.

systems may enable adaptive network control based on actual The results are conclusive: applying optimized coincidence factors
usage behavior. that reflect local consumption behavior led to significant reductions
+ Machine Learning Applications: Leveraging Al and machine in material costs—43.6% in urban and 31.6% in rural networks—
learning to predict future load patterns and derive dynamic coin- while maintaining full compliance with thermal and voltage stan-
cidence factors could automate and improve the forecasting pro- dards. These findings confirm that adapting coincidence factors to
cess, especially in fast-growing urban centers. region-specific demand profiles not only preserves technical reliabil-

- Policy and Standardization Impacts: An in-depth evaluation of ity but also unlocks considerable economic efficiencies.
how national and international design standards may need to be

revised to integrate empirical coincidence modeling would ben- Incorporating field-based coincidence factors into standard plan-
efit requlatory bodies and infrastructure planners alike. ning practices represents a vital step toward more sustainable,
data-driven energy infrastructure. As future residential demand is

By addressing these areas, future research can further refine distribu- expected to increase due to EVs, climate-responsive technologies,
tion network planning and contribute to a more resilient, efficient, and modern living standards, dynamic planning approaches will
and economically sustainable energy infrastructure. become even more critical. It is therefore recommended that national

VI. CONCLUSION

TABLE VI. RECOMMENDED COINCIDENCE FACTORS FOR URBAN

This study has demonstrated that conventional electricity distri- ELECTRICITY NETWORKS IN ZONGULDAK PROVINCE
bution planning—based on the assumption of full simultaneity
(coincidence factor=1.0)—leads to systematic overdesign, inflated Number of Buildings Coincidence Factors

infrastructure requirements, and unnecessary capital expenditures.
By analyzing real consumption data from 5422 residences across
both urban and rural transformer zones in Zonguldak Province, 4,5,and 6 60%
empirically derived coincidence factors were proposed and applied
through dual-scenario simulations using the bPRO-EDS software.

2,3 55%

7 and above 75%
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Fig. 14. Variation in demand diversity according to the number of connected buildings.

TABLE VII. DISTRICT-BASED COINCIDENCE FACTOR VALUES DETERMINED TABLE VIII. RECOMMENDED COINCIDENCE FACTOR VALUES FOR RURAL
FROM RURAL AREA DATA IN ZONGULDAK PROVINCE LOW-VOLTAGE (LV) DISTRIBUTION NETWORKS
Applied Calculated Recommended
Coincidence District Coincidence Factor, % Coincidence Factor, %
District Contracted Power Demand Factor, %
ALAPLI 64.97 70
Alapli 2036.2922 880.838 43.26
CAYCUMA 79.53 85
Caycuma 1013.2518 469.747 46.36
DEVREK 50.68 60
Devrek 692.254 308.024 44.50
EREGLI 84.48 85
Eregli 832.8460006 620.573 74.51
GOKCEBEY 83.96 85
Gokgebey 839.9996 62299 74.17 —
KILIMLI 50.03 60
Kilimli 590.99 207.044 35.03
KOZLU 70.46 75
Kozlu 1366.668 899.017 65.78
Central District 69.06 75
Central District 762463 431.734 56.62
and regional energy authorities adopt localized coincidence model-  1- Mal.1date the use of.reglon—speaﬁc comclldence factors in distri-
ing as a core planning principle, ensuring that grid expansion efforts b_Ut'°n nerork deSIgp standards, replacing the outdated 100%
align with real-world usage and long-term investment optimization. simultaneity assumption.
2. Encourage local electricity authorities to build and maintain real
To translate the study’s insights into actionable energy planning consumption datasets at the transformer zone level to enable
practices, the following policy recommendations are proposed: data-driven planning.

District Based Analysis
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Fig. 15. District-based coincidence factor analysis for rural electricity networks.
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Village Transformer Analysis
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Fig. 16. Comparison of connection capacity and demand values of rural transformers.

Integrate coincidence factor optimization into national grid
expansion policies, prioritizing cost-effective and resilient infra-
structure development.

Update planning software used by engineering firms and utili-
ties to accommodate variable coincidence factors as standard
input parameters.

Promote pilot studies in other provinces to validate the repli-
cability of this methodology and guide broader regulatory
adoption.
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