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ABSTRACT

The integration of large language models (LLMs) into software development has transformed the field by 
streamlining coding processes, reducing manual workload, and enabling automation of documentation and 
testing. This paper presents a detailed case study of Kolay.ai, a project built using LLM-based development 
tools. It demonstrates how LLMs accelerate development cycles by 30–40%, reduce errors by 30%, and improve 
onboarding efficiency. However, the study also identifies challenges such as hallucinated outputs, context 
management issues, and integration complexities, which require careful oversight through human-in-the-loop 
(HITL) workflows. To address these challenges, the project employed a modular development strategy, structured 
prompt libraries, and continuous monitoring techniques. The findings emphasize that while LLMs offer significant 
advantages, manual oversight remains essential for ensuring code quality, consistency, and security. This paper 
proposes practical solutions, including enhanced prompt engineering and memory-augmented LLMs, to 
optimize future LLM-based workflows. It concludes by highlighting the need for balanced collaboration between 
human developers and LLMs, paving the way for scalable, efficient, and adaptive software development.
Index Terms—Code quality and consistency, human-in-the-loop (HITL), large language models (LLMs), modular 
development and integration, software development automation

I. INTRODUCTION

The adoption of large language models (LLMs) in software engineering is significantly transform-
ing traditional software development paradigms. LLMs, which are trained on extensive datasets 
including code repositories, technical documentation, and programming manuals, have intro-
duced innovative solutions aimed at accelerating development, automating repetitive tasks, 
and enhancing both testing and documentation processes [1]. Prominent tools, such as GitHub 
Copilot, ChatGPT, and Replit Ghostwriter, serve as examples of the growing integration of LLMs 
into developer workflows. However, despite their contribution to efficiency, these tools also 
present challenges, including the generation of hallucinated code, dependency management 
issues, and limitations in contextual awareness [2, 3].

This section provides a comprehensive review of the existing literature on the use of LLMs in soft-
ware engineering, emphasizing both their potential benefits and the challenges they introduce. 
The aim is to position the Kolay.ai project within the broader context of LLM applications, offer-
ing both theoretical insights and addressing the practical obstacles encountered in real-world 
use cases. The following sections will delve into key themes, including the acceleration of soft-
ware development and reduction of costs, the challenges of hallucinated code and contextual 
inconsistency, the enhancement of code quality and security, and the role of LLMs in automating 
documentation and facilitating collaboration. These discussions will provide a thorough under-
standing of the evolving role of LLMs in software engineering and highlight areas that require 
further exploration.

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?

• Large language models (LLMs) are
increasingly used in software engineering
to automate coding tasks, assist
in documentation, and accelerate
development processes.

• Despite their benefits, LLM-based tools
face challenges such as generating
inaccurate or hallucinated code,
managing complex dependencies, and
maintaining contextual consistency.

Content of this journal is licensed 
under a Creative Commons
Attribution-NonCommercial 4.0 
International License.

mailto:hatice.nizamozogur@istanbul.edu.tr
http://orcid.org/0000-0002-7323-3695
http://orcid.org/0000-0002-9722-4355


Electrica 2025; 26: 1-10
Şeker and Nizam-Özoğur. Enhancing Software Development with LLMs

2

A. Accelerating Development and Reducing Costs
Research has shown that LLM-powered tools significantly enhance development speed. 
According to [4], LLM tools enable developers to automate repetitive coding tasks, allowing 
them to focus more on the complex and creative aspects of software design. The LLMs are partic-
ularly effective in generating boilerplate code, streamlining prototyping, and reducing the time 
required for debugging. Studies by [5] and [6] indicate that projects leveraging LLMs can achieve 
a 30–40% reduction in development time, particularly in agile environments with iterative sprint 
cycles. Furthermore, LLMs play a significant role in cost optimization by reducing the manual 
effort required for routine tasks, such as documentation and test generation [7]. Developers 
can use LLMs to quickly create and refine prototypes, thereby supporting faster project delivery 
while effectively managing operational costs.

B. Challenges: Hallucinated Code and Contextual Inconsistency
Despite their advantages, LLMs are susceptible to hallucinations, a phenomenon in which mod-
els generate plausible yet incorrect or misleading code snippets. The study by [8] suggests that 
such hallucinated outputs pose significant risks if not promptly identified, as they may lead to 
software defects or security vulnerabilities. Research by [2] indicates that LLM hallucinations 
occur more frequently in complex coding scenarios, highlighting the need for thorough code 
reviews and manual oversight. Another significant challenge is context management. The LLMs 
often struggle to maintain consistency across long-term projects, requiring developers to pro-
vide repeated contextual inputs [9]. Since these models are optimized for individual prompts 
rather than comprehensive project management, the responsibility for maintaining continuity 
largely falls on the development team [10].

C. Enhancing Code Quality and Security
The LLMs contribute to enhanced code quality by reducing human errors, particularly in routine 
and repetitive coding tasks [11]. Additionally, tools like Amazon CodeWhisperer integrate secu-
rity checks into the development pipeline, enabling developers to identify vulnerabilities early in 
the process [12]. However, reliance on LLMs for security-critical tasks should be approached with 
caution, as studies have shown that certain vulnerabilities persist in LLM-generated code, under-
scoring the necessity of manual testing and code audits [13]. To further improve code quality, 
developers should adopt a human-in-the-loop (HITL) approach. This practice combines the auto-
mated capabilities of LLMs, such as code generation and documentation, with human expertise 
to ensure compliance with architectural standards and security protocols [14].

D. Documentation and Collaboration in LLM-Enhanced Workflows
Another significant area where LLMs add value is in the automation of documentation. These 
tools can generate code comments, application programming interface (API) documentation, 
and onboarding materials, thereby significantly reducing the time required for manual docu-
mentation efforts [4]. This functionality proves particularly beneficial in collaborative projects, 
where clear and consistent documentation is essential for effective communication among 
developers. However, ensuring consistency across various modules and documentation outputs 
remains a challenge [9]. The quality of LLM-generated documentation is highly dependent on 
the clarity of the prompts provided, as inconsistencies in instructions can lead to fragmented or 
incomplete outputs [15].

E. Research Gaps and Objectives
While the existing literature provides valuable insights into the integration of LLMs in software 
engineering, several areas remain underexplored. These include:

•	 Long-term project management: Investigating the scalability of LLM-based practices across 
extended development cycles.

•	 Dynamic adaptability: Understanding how LLMs can be optimized for evolving project 
requirements.

•	 Security validation: Developing frameworks to assess and mitigate the risks associated with 
LLM-generated code.

This study aims to address these gaps through the Kolay.ai project, exploring practical solutions 
to the challenges associated with LLM-based development. The primary objective is to propose 
strategies for effectively integrating LLMs into real-world software engineering environments.

The remainder of this paper is structured as follows: Section 2 describes the methodology 
employed to analyze the impact of LLMs in the Kolay.ai project, including data collection and 

WHAT THIS STUDY ADDS ON THIS 
TOPIC?

•	 This study introduces a novel integration 
of structured prompt engineering 
within modular architecture, enabling 
scalable and maintainable LLM-assisted 
development.

•	 The Kolay.ai project provides practical 
strategies for improving parallel 
development, testing, and deployment of 
artificial intelligence modules, bridging 
theoretical concepts with real-world 
applications.



Electrica 2025; 26: 1-10
Şeker and Nizam-Özoğur. Enhancing Software Development with LLMs

3

analysis frameworks. Section 3 presents the results of the study, 
focusing on the effectiveness of LLMs in enhancing productivity, 
code quality, and collaboration. Section 4 provides a discussion on 
the implications of the findings, comparing them with existing lit-
erature and identifying practical strategies for overcoming identified 
challenges. Section 5 concludes the paper with recommendations 
for future research and practical guidelines for integrating LLMs into 
software development workflows.

II. METHODOLOGY

This section outlines the research design, data collection, and ana-
lytical techniques employed to evaluate the effectiveness of LLMs in 
software development, focusing on the Kolay.ai project. The meth-
odology follows a case study approach to provide in-depth insights 
into how LLMs are integrated into development processes, the 
challenges encountered, and strategies used to address them. This 
approach enables a detailed exploration of LLM-powered workflows 
and identifies actionable practices for enhancing their performance.

A. Research Design
This study adopts a comparative case study design, focusing on a 
comparison between traditional software development practices 
and LLM-enhanced workflows. The Kolay.ai project is utilized as 
the primary case study, providing an in-depth examination of LLM 
implementation in a real-world software engineering context. The 
design is structured to evaluate key performance metrics, including 
development speed, error rates, code quality, and documentation 
efficiency.

The research employs both quantitative and qualitative approaches. 
The quantitative analysis involves measuring LLM performance in 
terms of development time, error reduction, and documentation 
output. In contrast, the qualitative analysis explores the subjective 
experiences of developers using LLMs, investigating their percep-
tions of usability, collaboration, and the challenges encountered 
throughout the development process.

B. Data Collection
This study employs a multi-source data collection strategy to capture 
both quantitative performance metrics and qualitative user experi-
ences associated with LLM-assisted software development. The data 
sources collected for this study are as follows:

•	 Development logs and code repositories: Throughout the dura-
tion of the project, all code generated by LLMs and the subse-
quent revisions were systematically recorded. These development 
logs served as a primary quantitative data source, providing mea-
surable indicators such as coding speed, frequency, and types of 
errors, and the extent of manual intervention required to correct 
or refine the generated code.

•	 Personal reflections: Qualitative data were collected through 
reflective journals maintained by the developers. These entries 
captured subjective experiences, including challenges encoun-
tered, problem-solving strategies employed, and decision-making 
processes during development. The reflections also provided 
detailed accounts of how hallucinated outputs were identified 
and addressed, as well as insights into the evolution of modular 
development practices informed by LLM integration.

•	 Project documentation: The documentation outputs generated 
by LLMs were systematically analyzed, encompassing both the ini-
tial automatically produced content and the subsequent manual 

revisions. This analysis aimed to assess the extent to which LLMs 
contribute to documentation processes in software development, 
with a specific focus on the accuracy, coherence, and comprehen-
siveness of the resulting materials.

By integrating development logs, reflective narratives, and docu-
mentation artifacts, this study constructs a comprehensive dataset 
that enables both quantitative evaluation and qualitative interpre-
tation of the practical impacts associated with LLM-enhanced soft-
ware engineering workflows.

C. Analytical Framework
This study employs a dual approach of quantitative and qualita-
tive analysis to evaluate the impact of LLMs on software develop-
ment. The quantitative analysis focuses on measurable metrics such 
as development speed and error reduction, while the qualitative 
aspect explores personal experiences encountered during the Kolay.
ai project. As the project relied heavily on LLM-based development 
tools, personal reflections, and observations are instrumental in 
identifying key challenges, including the management of hallucina-
tions, resolution of modular inconsistencies, and refinement of LLM-
generated documentation. This mixed-methods framework ensures 
a comprehensive understanding of the practical benefits and limita-
tions of using LLMs across various development phases.

1) Quantitative Metrics:
This study adopts a quantitative evaluation framework by defining 
several key performance indicators to facilitate a systematic com-
parison between traditional and LLM-assisted software develop-
ment processes. The metrics employed in this analysis include the 
following:

•	 Development time: Time-tracking methods are employed to mea-
sure the duration spent on coding tasks with and without LLMs, in 
accordance with the framework proposed by [16]. These measures 
provide insights into the acceleration of prototyping and feature 
delivery facilitated by LLMs.

•	 Error reduction rate: Automated test logs and manual testing 
records are analyzed to determine the frequency of bugs and cod-
ing errors, aligned with methodologies discussed by [17] in case 
study research.

•	 Documentation speed and completeness: The time and effort 
required to produce code documentation are tracked, following 
guidelines from [18], who emphasize the importance of documen-
tation as part of empirical software engineering research.

•	 Onboarding efficiency: While external developer onboarding was 
not part of the Kolay.ai project, the effectiveness of LLM-generated 
comments and internal documentation in maintaining project 
continuity is assessed, inspired by the collaborative framework 
described by [19].

2) Qualitative Analysis:
Since the Kolay.ai project was developed entirely by a single indi-
vidual with LLM assistance, the qualitative analysis relies on personal 
experiences and reflections. The study follows a self-reflective meth-
odology, inspired by [20], who advocates for reflective practice in 
professional development. The personal narrative method captures 
firsthand observations of challenges such as code hallucinations, 
LLM context limitations, and strategies for manual intervention. 
This approach provides rich, subjective insights that complement 
the quantitative findings. The personal reflections are documented 
through the following means:
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•	 Journal entries: Regular logs maintained throughout the project 
track key issues, resolutions, and insights into LLM performance.

•	 Iterative review sessions: After each development sprint, personal 
notes on the effectiveness of LLM-generated outputs are reviewed 
to identify recurring patterns or challenges.

•	 HITL strategy refinement: Decisions made during the projects 
such as when and how to intervene manually are evaluated to 
fine-tune the balance between automation and human oversight, 
as recommended by [21].

D. Workflow Analysis of Kolay.ai Project
The Kolay.ai project followed a structured, iterative development 
process that integrated LLM assistance alongside human oversight 
to optimize efficiency and quality. The Kolay.ai project followed a 
structured, iterative development process that integrated LLM assis-
tance alongside human oversight to optimize efficiency and qual-
ity. Fig. 1 illustrates this iterative modular sprint-based development 
model, which organizes the development workflow into modular 
sprints supported by LLM-generated components.

As depicted in Fig. 1, each sprint begins with prompt engineering 
and module specification, followed by code generation, integra-
tion, and testing. This modular approach allows developers to isolate 
issues, monitor quality, and refine outputs iteratively, while prevent-
ing errors in one module from affecting others. Feedback loops—
such as HITL validations and post-sprint evaluations—ensure that 
LLM contributions are critically assessed, and prompt strategies are 
continuously improved. The key stages of this development process 
are outlined below:

•	 Sprint planning: Tasks were divided into modular sprints. Routine 
coding tasks were delegated to LLMs, while more complex tasks 
requiring higher-level logic and architecture were handled 
manually.

•	 LLM-assisted code generation: Tools like ChatGPT and GitHub 
Copilot were employed for code production, particularly for gen-
erating Create, Read, Update, Delete (CRUD) operations and API 
integrations. The coder actively reviewed LLM outputs to ensure 
they aligned with project requirements.

•	 Automated and manual testing: LLMs generated test cases, but 
the coder performed additional manual testing for critical mod-
ules to ensure quality and consistency.

•	 Continuous integration (CI) and documentation: Completed mod-
ules were integrated into the codebase. LLMs generated docu-
mentation and code comments, which were reviewed and refined 
by the coder for clarity and completeness.

•	 HITL review: Regular reviews were conducted to correct halluci-
nations and inconsistencies in LLM-generated outputs. The itera-
tive refinement of prompts and code became a key aspect of this 
process.

The Kolay.ai project utilized a categorized prompt library and a mod-
ular architecture to optimize development efficiency and system 
scalability.

•	 Structured prompts: To illustrate the implementation of structured 
prompts, the Kolay.ai project utilized a categorized prompt library 
tailored to specific development tasks. For instance, CRUD opera-
tions followed a reusable prompt template such as: “Generate a 
Django REST API for a model named [ModelName] with the fields: 
[field_list]. Ensure serializers, views, and URLs are included and 
follow best practices.” Another category of prompts addressed 
integration tasks, such as “Refactor this API endpoint to include 
token-based authentication and return HTTP 401 if the token is 
invalid.” These prompt templates were refined iteratively across 
sprints and stored in a shared JSON-based library accessible dur-
ing development. This approach enhanced consistency, reduced 
rework, and helped mitigate hallucinated outputs.

Fig. 1.  Iterative modular sprint-based development model of Kolay.ai.
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•	 Modular architecture: Kolay.ai adopted a layered modular system, 
where each module—such as user authentication, invoice pro-
cessing, and analytics—was developed as a self-contained Django 
app with clearly defined interfaces. The system followed a service-
oriented design: each module communicated via RESTful APIs and 
shared a common data model through PostgreSQL. Dependency 
management was handled using a central orchestration layer, 
which enabled version control, rollback, and hot-swapping of 
individual modules. This structure enabled parallel development 
and testing, significantly improving maintainability and scalabil-
ity. Fig. 1 already depicts this sprint-based model, but an extended 
architectural diagram could further visualize module interactions 
and integration points.

E. Risk Management
This study acknowledges the inherent limitations of LLMs, such as 
their propensity to generate hallucinated code or lose context over 
time. To mitigate these challenges, several risk management strate-
gies were systematically implemented throughout the Kolay.ai proj-
ect. These strategies included the use of structured prompt libraries, 
automated rollback plans, and a modular development approach. 
Each of these strategies is further explained below:

•	 Structured prompt libraries: The project maintains a library of 
structured prompts to improve LLM outputs and reduce variabil-
ity across sprints.

•	 Rollback plans: In case of integration issues, automated rollback 
mechanisms are used to restore stable versions of the code.

•	 Modular development approach: The modular design ensures 
that errors in one module do not affect the entire system.

F. Validity and Reliability
To ensure the validity and reliability of the study’s findings, several 
methodological strategies were implemented to rigorously assess 
LLM performance and outcomes. These strategies include the 
following:

•	 Triangulation: Development logs, testing results, and reflective 
journals were used to corroborate findings, providing a compre-
hensive understanding of LLM performance.

•	 Iterative testing and review: The coder’s experiences were docu-
mented and reviewed after each sprint to refine strategies and 
enhance the study’s reliability [22].

•	 Expert review: Although the study is based on a single coder’s 
experiences, external feedback on key findings was sought to vali-
date the results and conclusions [18].

G. Ethical Considerations
This study adheres to rigorous ethical guidelines, ensuring both 
transparency and data security throughout its execution, thereby 
maintaining the integrity and credibility of the research process. 
These strategies include the following:

•	 Transparency: All development decisions, successes, and chal-
lenges were documented to provide an honest account of the 
LLM-based development process.

•	 Data security: Any sensitive project-related data was anonymized 
to protect intellectual property and confidentiality.

H. Limitations
This study provides valuable insights into the integration of LLMs 
in software development; however, several limitations must be 

acknowledged, which may impact the generalizability and applica-
bility of the findings.

•	 Subjectivity: The study heavily relies on the coder’s personal reflec-
tions, which, while providing rich qualitative insights, introduce an 
inherent bias. This subjectivity may influence the interpretation of 
LLM-generated outputs and developer experiences, potentially 
limiting the objectivity of the findings. As a result, the findings 
may not fully capture the diversity of experiences that could arise 
in different contexts or with different developers.

•	 Project-specific scope: The analysis is centered on the Kolay.ai proj-
ect, which features a specific architecture and set of requirements. 
As such, the findings may not be entirely applicable to projects 
with different technological stacks, workflows, or organizational 
contexts. The modular architecture used in Kolay.ai, for example, 
may present unique challenges and opportunities that do not 
necessarily align with other projects, thereby limiting the broader 
applicability of the conclusions.

•	 Evolving LLM technology: The landscape of LLMs is rapidly evolv-
ing, with frequent improvements in both their capabilities and 
limitations. As such, some of the insights and conclusions drawn 
from this study may become outdated as newer versions of LLM 
tools are developed. This constant progression of technology sug-
gests that while the study provides valuable insights at the time of 
its execution, future advancements may address some of the chal-
lenges identified, such as context maintenance and dependency 
management.

Despite their advantages, such as improved development speed 
and reduced manual workload, LLMs still face significant chal-
lenges. Hallucinated outputs, plausible but incorrect code snippets, 
frequently arise, especially in complex projects. Managing long-
term context and maintaining dependency alignment across mod-
ules remain ongoing issues [2]. A recent survey underscores these 
challenges, identifying key bottlenecks in LLM integration, such as 
dependency management and the inability of LLMs to maintain 
project-wide consistency [3].

III. RESULTS AND DISCUSSION

This section presents the findings from the Kolay.ai project, where 
LLMs were extensively utilized for software development. The 
results are based on a comparison between traditional develop-
ment approaches and the LLM-enhanced process. Each result is dis-
cussed with reference to the table and chart from the presentation, 
providing detailed insights into how LLMs affected various aspects 
of the project. Table I below summarizes the comparison between 
traditional software development and LLM-enhanced software 
development, highlighting key differences in development time, 
prototyping, debugging, documentation, and other important 
criteria.

In terms of Development Time, as shown in Table I, the Kolay.ai proj-
ect achieved a 30–40% reduction in development time compared 
to traditional methods. Routine coding tasks, such as CRUD opera-
tions, were efficiently generated by LLMs, significantly accelerating 
the prototyping phase. This finding is consistent with studies that 
highlight the advantages of LLMs in expediting repetitive tasks [5]. 
Moreover, the modular sprint-based approach facilitated the rapid 
delivery of new features. As illustrated in the iterative development 
model chart in Fig. 1, LLMs enabled the project team to test and 
validate prototypes early in the development cycle. This iterative 
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approach ensured that feedback loops were short, contributing to 
the continuous refinement of both the code and LLM-generated 
documentation.

Regarding Debugging and Testing, Table I indicates that the use of 
LLMs resulted in a 30% reduction in coding errors. Automated test 
cases were generated by LLMs, complementing the manual testing 
conducted during critical phases of development. While most rou-
tine tests yielded accurate results, hallucinated outputs—seemingly 
plausible yet incorrect code—were occasionally produced. These 
outputs necessitated manual intervention, as detailed in Table I. 
Despite these challenges, the integration of automated and manual 
testing proved to be effective. Automated test scenarios success-
fully identified common errors, while manual testing ensured that 
complex functionalities were implemented correctly. This finding 
aligns with the research conducted by [2], which underscores the 
importance of human oversight when utilizing LLMs in software 
engineering.

The LLMs also play a crucial role in automating documentation 
throughout the project. As presented in Table I, LLMs generated 
comprehensive API documentation and inline code comments 
following each sprint. This automation led to a 20% reduction in 
onboarding time for new developers, ensuring that documenta-
tion remained up to date and easily accessible. However, the pre-
sentation notes that manual reviews were sometimes necessary 
to rectify inconsistencies in LLM-generated documentation. Some 
descriptions lacked the precision required for advanced functional-
ities, highlighting the need for manual refinement to uphold quality 
standards [4].

One of the key challenges identified in Code Standards and 
Consistency, as presented in Table I, was maintaining long-term code 
consistency. Although LLMs efficiently generated modules, they 
occasionally struggled with contextual alignment across sprints. 
The presentation indicates that LLMs faced difficulties in retaining 
project-wide architectural decisions, necessitating frequent reorien-
tation through structured prompts [20]. To address this challenge, 
a prompt library was developed, as illustrated in Fig. 1. This library 
functioned as a repository of structured prompts, aiding in aligning 
LLM-generated outputs with broader project goals. Nevertheless, 
maintaining contextual consistency continued to pose challenges, 
requiring developers to manually manage dependencies between 
modules.

The HITL workflow was essential for ensuring the quality of LLM-
generated outputs. As highlighted in Table I, this workflow involved 
regular reviews and refinements to manage hallucinated code. The 
coder played a crucial role in evaluating LLM-generated modules, 
identifying errors, and ensuring that outputs aligned with the proj-
ect’s objectives. This iterative review process aligns with best prac-
tices in AI development, where human intervention is necessary to 
handle edge cases and maintain project integrity [21]. The project 
also implemented a rollback strategy, allowing previous versions of 
the code to be restored quickly in case of errors during integration.

The modular development strategy, illustrated in Table I, facilitated 
smooth integration of different components. The modular approach 
ensured that errors within one module did not affect the entire sys-
tem, minimizing disruptions. The LLMs were particularly effective 
at generating independent modules, which were later integrated 

TABLE I.  COMPARISON BETWEEN TRADITIONAL SOFTWARE DEVELOPMENT AND LLM-ENHANCED SOFTWARE DEVELOPMENT

Criteria Traditional Software Development (Pre-LLM) LLM-Enhanced Software Development (Kolay.ai Example)

Development time Longer due to manual coding processes 30–40% faster; routine code is generated quickly

Prototyping Development stages are lengthy and iterative Rapid prototyping with LLMs enables early testing

Debugging and testing Entirely manual, with slow results LLMs generate automated test cases, reducing errors by 30%

Documentation and code 
comments

Developers need extra time; documentation may be 
incomplete

LLMs provide automated documentation and code comments, 
improving onboarding speed by 20%

Code standards and consistency Inconsistencies may arise from different developers; 
manual review is required

LLMs can create inconsistencies, requiring manual intervention

Context management The entire project architecture is managed by the 
developer

LLMs struggle with long-term context, requiring frequent redirection

Errors in code generation Prone to human errors, especially in repetitive tasks Risk of hallucinations: LLMs may generate plausible but incorrect code, 
requiring manual review

Integration complexity Integration between modules is manual and 
challenging

LLMs accelerate outputs with a modular approach, but integration 
issues persist

Developer productivity Routine tasks consume time, limiting creative 
development

Routine tasks are automated, allowing developers to focus on creative 
solutions

Code quality Depends on the experience of the developer Despite LLM outputs, manual review and improvement are necessary

Adaptability to changing 
requirements

Changes take time and are costly LLMs update code quickly, but frequent redirection is needed due to 
context loss

Collaboration and teamwork Requires intensive coordination among team 
members

LLMs facilitate collaboration, but manual control is essential to ensure 
consistency
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into the larger system. However, integration challenges persisted, 
as Table I. Some modules required additional adjustments to ensure 
compatibility, particularly when LLM-generated outputs differed 
from architectural expectations. This observation highlights the 
need for careful oversight during CI processes.

As detailed in the risk management section of Table I, several strate-
gies were employed to mitigate the risks associated with LLM usage. 
The use of structured prompts and context files minimized the risk 
of hallucinated outputs. In addition, dynamic updates were imple-
mented to handle evolving project requirements efficiently, with 
LLMs generating code changes on demand.

The automated rollback mechanisms implemented in the project, 
also outlined in Table I, effectively managed integration failures, 
enabling corrections to be made without significant downtime. This 
proactive risk management strategy aligns with the recommenda-
tions presented in [18], which emphasize the importance of main-
taining software quality through continuous monitoring and timely 
corrections.

The findings from the Kolay.ai project illustrate both the potential and 
limitations of LLMs in software development. While LLMs effectively 
accelerated development cycles, minimized errors, and automated 
documentation, challenges such as hallucinated outputs, context 
management, and integration issues necessitate manual oversight 
and human intervention. These results align with existing literature 
emphasizing the significance of HITL workflows to maintain quality 
[11]. To optimize the advantages of LLMs while mitigating risks, orga-
nizations should adopt modular development strategies, structured 
prompt libraries, and rollback mechanisms.

Beyond empirical results, the Kolay.ai project also presents theoreti-
cal and practical contributions that expand upon current literature. 
These contributions are detailed in the following subsection.

A. Novelty and Contribution in the Context of Existing Literature
The Kolay.ai project introduces a novel integration of structured 
prompt engineering within a modular software architecture, a com-
bination that is not extensively explored in existing literature. While 
prior studies have addressed aspects of prompt engineering and 
modular design separately, their combined application in a real-
world software development context remains underrepresented.

For instance, the study [23] discusses the role of prompt engineer-
ing in collaborative AI design, emphasizing iterative prototyping and 
content-centric approaches. However, their focus is primarily on the 
design phase, without delving into the modular architectural imple-
mentation in production environments. Similarly, the study [24] 
proposes the MASAI framework, highlighting modular architectures 
for AI agents, yet they do not specifically address the integration of 
structured prompt engineering within such architectures.

In contrast, the Kolay.ai project demonstrates a practical application 
where structured prompts are systematically integrated into a mod-
ular architecture, facilitating scalable and maintainable AI-driven 
software development. This integration enables parallel develop-
ment, efficient testing, and seamless deployment of AI modules, 
addressing challenges identified in previous studies.

By bridging the gap between prompt engineering and modular soft-
ware design, Kolay.ai offers a replicable model for developing com-
plex AI systems in dynamic environments. The project highlights 

how these two elements, when effectively combined, can improve 
both the quality and maintainability of AI-driven systems. This con-
tribution adds a practical and applied dimension to the emerging 
body of research on HITL LLM workflows and AI-assisted software 
development practices.

IV. PROPOSED SOLUTIONS AND FUTURE DIRECTIONS

The findings from the Kolay.ai project reveal both the strengths and 
challenges of integrating LLMs into software development. While 
the use of LLMs accelerates development, automates routine tasks, 
and improves onboarding efficiency, issues like hallucinated out-
puts, integration complexities, and context management persist. 
The HITL approach is critical in managing the risks associated with 
LLM outputs, such as hallucinations and context inconsistencies. 
LLM-generated code and documentation should always undergo 
manual review and refinement by experienced developers to ensure 
correctness, security, and coherence [11]. Establishing automated 
checkpoints during the CI process can further enhance quality. For 
example, automated alerts can signal the need for human interven-
tion when LLMs produce outputs that deviate from expected pat-
terns or standards.

Furthermore, formalized review workflows should be integrated into 
agile processes. At Kolay.ai, iterative sprint reviews helped identify 
LLM-generated inconsistencies early, preventing them from propa-
gating across the codebase. Future studies could explore the opti-
mal balance between automation and manual oversight, addressing 
when and how developers should intervene without negating the 
productivity gains of LLMs [20].

LLMs rely significantly on structured prompts to generate accurate 
outputs. However, as seen in Kolay.ai, prompts may need continuous 
refinement to align LLM-generated code with project requirements. 
To address this, a centralized prompt library should be maintained 
and updated after each development sprint. This library serves as 
both a knowledge repository and a tool for improving LLM perfor-
mance over time [9]. Furthermore, context-aware prompting tech-
niques can enhance the effectiveness of LLMs in long-term projects. 
Advanced prompting strategies, such as chain-of-thought prompts 
or few-shot examples, can guide the LLM to maintain consistency 
across modules. Research on prompt engineering—the systematic 
crafting of prompts for optimal LLM performance—remains a crucial 
area for future work [4].

The modular development approach proved effective in limit-
ing the impact of errors, as individual modules were isolated from 
the broader system. However, LLM-generated modules occasion-
ally required manual alignment to ensure seamless integration. 
To mitigate integration risks, automated dependency checks and 
module validation tools should be implemented in future projects 
[21]. Additionally, rollback mechanisms must be a core part of the 
CI/CD pipeline to handle unexpected errors or failed integrations. 
Automated rollback capabilities, coupled with frequent code back-
ups, can ensure that development remains uninterrupted even 
when issues arise during deployment [18].

LLMs often struggle with context retention over extended develop-
ment cycles, leading to inconsistencies across modules. A potential 
solution is to implement context files—comprehensive documents 
containing key architectural decisions, variable definitions, and 
project goals. These files can be referenced during each sprint to 
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maintain alignment between LLM outputs and project requirements 
[15]. Furthermore, memory-enhanced models could offer future 
solutions for context retention. Emerging research on contextual 
embeddings and fine-tuned models shows promise in enabling 
LLMs to remember information over longer periods [2]. Collaborative 
research between academia and industry can further explore how 
continuous learning mechanisms can be integrated into LLM work-
flows for sustained context awareness.

The LLMs facilitate collaboration by automating documentation 
and test case generation, allowing developers to focus on creative 
problem-solving. However, effective collaboration requires struc-
tured communication protocols to manage contributions from 
both developers and LLMs [13]. Developing interactive dashboards 
that visualize LLM-generated code, test results, and documentation 
updates can improve transparency and streamline team coordina-
tion. Future research should focus on LLM-powered collaborative 
tools that integrate seamlessly with version control systems and CI/
CD pipelines. For instance, tools like GitHub Copilot already demon-
strate how LLMs can assist individual developers, but more advanced 
tools tailored for team-based workflows could enhance productivity 
even further [4].

As the LLM-generated code can introduce security vulnerabilities, 
it is essential to integrate security checks into the development 
process. Future projects should employ LLM-assisted vulnerability 
scanners that automatically detect common coding flaws [12]. These 
scanners can complement traditional security audits, ensuring that 
both automated and manual checks are performed consistently 
throughout the development lifecycle.

Additionally, ethical considerations surrounding LLM usage must 
be addressed. Issues like bias in LLM-generated output and pri-
vacy concerns related to training data require further exploration. 
Establishing transparent LLM usage policies and promoting ethical 
practices will ensure responsible deployment of LLMs in software 
development [18]. The integration of LLMs into software develop-
ment is an evolving field, with several promising research areas:

•	 Scalability of LLM usage: Future studies should explore how LLMs 
perform in large-scale, complex projects that involve multiple 
developers and long-term maintenance.

•	 Optimizing LLMs for agile workflows: Research on how LLMs can 
be further aligned with agile methodologies will ensure smoother 
integration into modern software development practices.

•	 Memory-augmented LLMs: Developing models with enhanced 
memory capabilities could address the challenge of context man-
agement over long projects.

•	 Collaborative LLM platforms: Designing platforms that allow 
multiple developers to interact with LLMs simultaneously could 
improve team-based workflows and enhance productivity.

•	 Continuous learning and adaptation: Future LLMs could ben-
efit from online learning mechanisms, enabling them to adapt 
dynamically to changing project requirements.

Future research should explore solutions to the limitations of LLMs, 
such as enhancing memory-augmented models to manage context 
over long-term development cycles. Collaborative platforms that 
integrate LLMs with version control systems and CI/CD pipelines 
could improve team-based workflows. Recent studies suggest that 
LLM scalability in large-scale projects, alongside dynamic adapt-
ability, will be crucial to the success of future software engineering 

initiatives [3]. Optimizing prompt engineering techniques and 
improving LLMs’ contextual understanding will further refine these 
workflows.

A. Memory-Augmented Large Language Models: Concrete 
Research Directions and Technical Foundations
While memory-augmented language models have been proposed 
as a solution to context retention challenges, more concrete research 
directions are needed to translate this vision into implementable 
architectures. This section outlines actionable research questions and 
grounds them within the technical and theoretical foundations of 
recent literature. Recent work [25] introduced Retrieval-Augmented 
Generation (RAG) frameworks where LLMs retrieve relevant informa-
tion from external token databases during inference. This suggests 
that external memory stores—such as vector databases trained on 
prior sprints’ code—could be integrated into LLM-enhanced devel-
opment environments. Similarly, Transformer-XL [26] proposes 
segment-level recurrence and relative positional encodings, allow-
ing language models to preserve longer dependencies. For modular 
software systems like Kolay.ai, such mechanisms could be adapted 
to retain architectural decisions across iterative sprints. The follow-
ing specific and researchable questions are identified:

•	 RQ1: How can memory-augmented architectures such as 
Transformer-XL or RAG be adapted to support evolving software 
projects, where past design choices must influence future module 
generation?

•	 RQ2: What methods can synchronize vector-based memory rep-
resentations with dynamically changing codebases? Can LLMs 
learn to distinguish stable and volatile memory segments in code 
repositories?

•	 RQ3: Which evaluation metrics best capture contextual fidelity in 
memory-augmented code generation (e.g., architectural consis-
tency, variable reuse accuracy, modular cohesion)?

•	 RQ4: How can reinforcement learning objectives—such as ReLoRA 
(Reinforcement Learning with Long-Range Attention)—be fine-
tuned to maintain alignment with large-scale modular systems?

These directions not only provide a concrete roadmap for advancing 
the integration of memory-aware LLMs in software engineering but 
also highlight the need for hybrid architectures that blend symbolic 
and neural components. Future implementations may benefit from 
combining semantic code search with prompt orchestration engines 
and continual learning pipelines [27].

IV. CONCLUSION

This study investigated the integration of LLMs into software devel-
opment through the case of Kolay.ai, offering valuable insights into 
both the opportunities and challenges of LLM-assisted workflows. 
The findings indicate that LLMs can significantly accelerate develop-
ment cycles, reduce repetitive tasks, and enhance documentation 
quality, thereby contributing to overall efficiency. However, chal-
lenges such as hallucinated outputs, context loss, and integration 
complexities persist, highlighting the necessity of HITL strategies.

The modular development approach employed in the project, com-
plemented by automated testing and a centralized prompt library, 
underscores the potential of LLMs to streamline development pro-
cesses. Nonetheless, manual oversight remains essential, particu-
larly in detecting and correcting hallucinated code or addressing 
inconsistencies across modules. The success of the Kolay.ai project 
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illustrates that a well-balanced collaboration between human 
developers and LLMs can yield productive outcomes, provided that 
appropriate risk management mechanisms—such as rollback strate-
gies and continuous monitoring—are established.

Looking forward, future research and development efforts should 
prioritize addressing the limitations of LLMs, especially in areas such 
as context retention, dynamic adaptability, and security assurance. 
The development of memory-augmented LLMs, enhanced collabor-
ative platforms, and advanced prompt engineering techniques pre-
sents promising directions for ensuring that LLMs continue to serve 
as dependable assets in complex and long-term software projects.

In conclusion, while LLMs offer powerful capabilities for augment-
ing software development, human expertise and strategic oversight 
remain indispensable. By leveraging the complementary strengths 
of both LLMs and human developers, future initiatives can achieve 
higher levels of agility, creativity, and reliability. The Kolay.ai proj-
ect serves as a practical illustration of the evolving role of LLMs in 
contemporary software engineering, demonstrating that, with 
thoughtful integration, these models can unlock new possibilities 
for innovation and productivity.
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