
1

Şeker and Nizam-Özoğur.

Enhancing Software Development with LLMs

Corresponding author:
Hatice Nizam Özoğur

E-mail:
hatice.nizamozogur@istanbul.edu.tr

Received: February 24, 2025
Revision Requested: April 29, 2025
Last Revision Received: September 9, 2025
Accepted: September 14, 2025
Publication Date: January 30, 2026

DOI: 10.5152/electrica.2026.25033

ORIGINAL ARTICLE

Enhancing Software Development with Large Language Models:
A Case Study of Kolay.ai
Sadi Evren Şeker1 , Hatice Nizam-Özoğur2

1Department of Computer Engineering, İstanbul University Faculty of Computer and Information Technologies, istanbul, Türkiye
2Department of Artificial Intelligence and Data Engineering, , İstanbul University Faculty of Computer and Information Technologies, İstanbul, Türkiye

Cite this article as: S. E. Şeker and H. Nizam-Özoğur, “Enhancing software development with large language models: A case study of kolay.ai,” Electrica, 26, 0033,
2026. doi:10.5152/electrica.2026.25033.

1

26

Electrica 2026; 26: 1-10

ABSTRACT

The integration of large language models (LLMs) into software development has transformed the field by
streamlining coding processes, reducing manual workload, and enabling automation of documentation and
testing. This paper presents a detailed case study of Kolay.ai, a project built using LLM-based development
tools. It demonstrates how LLMs accelerate development cycles by 30–40%, reduce errors by 30%, and improve
onboarding efficiency. However, the study also identifies challenges such as hallucinated outputs, context
management issues, and integration complexities, which require careful oversight through human-in-the-loop
(HITL) workflows. To address these challenges, the project employed a modular development strategy, structured
prompt libraries, and continuous monitoring techniques. The findings emphasize that while LLMs offer significant
advantages, manual oversight remains essential for ensuring code quality, consistency, and security. This paper
proposes practical solutions, including enhanced prompt engineering and memory-augmented LLMs, to
optimize future LLM-based workflows. It concludes by highlighting the need for balanced collaboration between
human developers and LLMs, paving the way for scalable, efficient, and adaptive software development.
Index Terms—Code quality and consistency, human-in-the-loop (HITL), large language models (LLMs), modular
development and integration, software development automation

I. INTRODUCTION

The adoption of large language models (LLMs) in software engineering is significantly transform-
ing traditional software development paradigms. LLMs, which are trained on extensive datasets
including code repositories, technical documentation, and programming manuals, have intro-
duced innovative solutions aimed at accelerating development, automating repetitive tasks,
and enhancing both testing and documentation processes [1]. Prominent tools, such as GitHub
Copilot, ChatGPT, and Replit Ghostwriter, serve as examples of the growing integration of LLMs
into developer workflows. However, despite their contribution to efficiency, these tools also
present challenges, including the generation of hallucinated code, dependency management
issues, and limitations in contextual awareness [2, 3].

This section provides a comprehensive review of the existing literature on the use of LLMs in soft-
ware engineering, emphasizing both their potential benefits and the challenges they introduce.
The aim is to position the Kolay.ai project within the broader context of LLM applications, offer-
ing both theoretical insights and addressing the practical obstacles encountered in real-world
use cases. The following sections will delve into key themes, including the acceleration of soft-
ware development and reduction of costs, the challenges of hallucinated code and contextual
inconsistency, the enhancement of code quality and security, and the role of LLMs in automating
documentation and facilitating collaboration. These discussions will provide a thorough under-
standing of the evolving role of LLMs in software engineering and highlight areas that require
further exploration.

WHAT IS ALREADY KNOWN ON THIS
TOPIC?

• Large language models (LLMs) are
increasingly used in software engineering
to automate coding tasks, assist
in documentation, and accelerate
development processes.

• Despite their benefits, LLM-based tools
face challenges such as generating
inaccurate or hallucinated code,
managing complex dependencies, and
maintaining contextual consistency.

Content of this journal is licensed
under a Creative Commons
Attribution-NonCommercial 4.0
International License.

mailto:hatice.nizamozogur@istanbul.edu.tr
http://orcid.org/0000-0002-7323-3695
http://orcid.org/0000-0002-9722-4355

Electrica 2025; 26: 1-10
Şeker and Nizam-Özoğur. Enhancing Software Development with LLMs

2

A. Accelerating Development and Reducing Costs
Research has shown that LLM-powered tools significantly enhance development speed.
According to [4], LLM tools enable developers to automate repetitive coding tasks, allowing
them to focus more on the complex and creative aspects of software design. The LLMs are partic-
ularly effective in generating boilerplate code, streamlining prototyping, and reducing the time
required for debugging. Studies by [5] and [6] indicate that projects leveraging LLMs can achieve
a 30–40% reduction in development time, particularly in agile environments with iterative sprint
cycles. Furthermore, LLMs play a significant role in cost optimization by reducing the manual
effort required for routine tasks, such as documentation and test generation [7]. Developers
can use LLMs to quickly create and refine prototypes, thereby supporting faster project delivery
while effectively managing operational costs.

B. Challenges: Hallucinated Code and Contextual Inconsistency
Despite their advantages, LLMs are susceptible to hallucinations, a phenomenon in which mod-
els generate plausible yet incorrect or misleading code snippets. The study by [8] suggests that
such hallucinated outputs pose significant risks if not promptly identified, as they may lead to
software defects or security vulnerabilities. Research by [2] indicates that LLM hallucinations
occur more frequently in complex coding scenarios, highlighting the need for thorough code
reviews and manual oversight. Another significant challenge is context management. The LLMs
often struggle to maintain consistency across long-term projects, requiring developers to pro-
vide repeated contextual inputs [9]. Since these models are optimized for individual prompts
rather than comprehensive project management, the responsibility for maintaining continuity
largely falls on the development team [10].

C. Enhancing Code Quality and Security
The LLMs contribute to enhanced code quality by reducing human errors, particularly in routine
and repetitive coding tasks [11]. Additionally, tools like Amazon CodeWhisperer integrate secu-
rity checks into the development pipeline, enabling developers to identify vulnerabilities early in
the process [12]. However, reliance on LLMs for security-critical tasks should be approached with
caution, as studies have shown that certain vulnerabilities persist in LLM-generated code, under-
scoring the necessity of manual testing and code audits [13]. To further improve code quality,
developers should adopt a human-in-the-loop (HITL) approach. This practice combines the auto-
mated capabilities of LLMs, such as code generation and documentation, with human expertise
to ensure compliance with architectural standards and security protocols [14].

D. Documentation and Collaboration in LLM-Enhanced Workflows
Another significant area where LLMs add value is in the automation of documentation. These
tools can generate code comments, application programming interface (API) documentation,
and onboarding materials, thereby significantly reducing the time required for manual docu-
mentation efforts [4]. This functionality proves particularly beneficial in collaborative projects,
where clear and consistent documentation is essential for effective communication among
developers. However, ensuring consistency across various modules and documentation outputs
remains a challenge [9]. The quality of LLM-generated documentation is highly dependent on
the clarity of the prompts provided, as inconsistencies in instructions can lead to fragmented or
incomplete outputs [15].

E. Research Gaps and Objectives
While the existing literature provides valuable insights into the integration of LLMs in software
engineering, several areas remain underexplored. These include:

•	 Long-term project management: Investigating the scalability of LLM-based practices across
extended development cycles.

•	 Dynamic adaptability: Understanding how LLMs can be optimized for evolving project
requirements.

•	 Security validation: Developing frameworks to assess and mitigate the risks associated with
LLM-generated code.

This study aims to address these gaps through the Kolay.ai project, exploring practical solutions
to the challenges associated with LLM-based development. The primary objective is to propose
strategies for effectively integrating LLMs into real-world software engineering environments.

The remainder of this paper is structured as follows: Section 2 describes the methodology
employed to analyze the impact of LLMs in the Kolay.ai project, including data collection and

WHAT THIS STUDY ADDS ON THIS
TOPIC?

•	 This study introduces a novel integration
of structured prompt engineering
within modular architecture, enabling
scalable and maintainable LLM-assisted
development.

•	 The Kolay.ai project provides practical
strategies for improving parallel
development, testing, and deployment of
artificial intelligence modules, bridging
theoretical concepts with real-world
applications.

Electrica 2025; 26: 1-10
Şeker and Nizam-Özoğur. Enhancing Software Development with LLMs

3

analysis frameworks. Section 3 presents the results of the study,
focusing on the effectiveness of LLMs in enhancing productivity,
code quality, and collaboration. Section 4 provides a discussion on
the implications of the findings, comparing them with existing lit-
erature and identifying practical strategies for overcoming identified
challenges. Section 5 concludes the paper with recommendations
for future research and practical guidelines for integrating LLMs into
software development workflows.

II. METHODOLOGY

This section outlines the research design, data collection, and ana-
lytical techniques employed to evaluate the effectiveness of LLMs in
software development, focusing on the Kolay.ai project. The meth-
odology follows a case study approach to provide in-depth insights
into how LLMs are integrated into development processes, the
challenges encountered, and strategies used to address them. This
approach enables a detailed exploration of LLM-powered workflows
and identifies actionable practices for enhancing their performance.

A. Research Design
This study adopts a comparative case study design, focusing on a
comparison between traditional software development practices
and LLM-enhanced workflows. The Kolay.ai project is utilized as
the primary case study, providing an in-depth examination of LLM
implementation in a real-world software engineering context. The
design is structured to evaluate key performance metrics, including
development speed, error rates, code quality, and documentation
efficiency.

The research employs both quantitative and qualitative approaches.
The quantitative analysis involves measuring LLM performance in
terms of development time, error reduction, and documentation
output. In contrast, the qualitative analysis explores the subjective
experiences of developers using LLMs, investigating their percep-
tions of usability, collaboration, and the challenges encountered
throughout the development process.

B. Data Collection
This study employs a multi-source data collection strategy to capture
both quantitative performance metrics and qualitative user experi-
ences associated with LLM-assisted software development. The data
sources collected for this study are as follows:

•	 Development logs and code repositories: Throughout the dura-
tion of the project, all code generated by LLMs and the subse-
quent revisions were systematically recorded. These development
logs served as a primary quantitative data source, providing mea-
surable indicators such as coding speed, frequency, and types of
errors, and the extent of manual intervention required to correct
or refine the generated code.

•	 Personal reflections: Qualitative data were collected through
reflective journals maintained by the developers. These entries
captured subjective experiences, including challenges encoun-
tered, problem-solving strategies employed, and decision-making
processes during development. The reflections also provided
detailed accounts of how hallucinated outputs were identified
and addressed, as well as insights into the evolution of modular
development practices informed by LLM integration.

•	 Project documentation: The documentation outputs generated
by LLMs were systematically analyzed, encompassing both the ini-
tial automatically produced content and the subsequent manual

revisions. This analysis aimed to assess the extent to which LLMs
contribute to documentation processes in software development,
with a specific focus on the accuracy, coherence, and comprehen-
siveness of the resulting materials.

By integrating development logs, reflective narratives, and docu-
mentation artifacts, this study constructs a comprehensive dataset
that enables both quantitative evaluation and qualitative interpre-
tation of the practical impacts associated with LLM-enhanced soft-
ware engineering workflows.

C. Analytical Framework
This study employs a dual approach of quantitative and qualita-
tive analysis to evaluate the impact of LLMs on software develop-
ment. The quantitative analysis focuses on measurable metrics such
as development speed and error reduction, while the qualitative
aspect explores personal experiences encountered during the Kolay.
ai project. As the project relied heavily on LLM-based development
tools, personal reflections, and observations are instrumental in
identifying key challenges, including the management of hallucina-
tions, resolution of modular inconsistencies, and refinement of LLM-
generated documentation. This mixed-methods framework ensures
a comprehensive understanding of the practical benefits and limita-
tions of using LLMs across various development phases.

1) Quantitative Metrics:
This study adopts a quantitative evaluation framework by defining
several key performance indicators to facilitate a systematic com-
parison between traditional and LLM-assisted software develop-
ment processes. The metrics employed in this analysis include the
following:

•	 Development time: Time-tracking methods are employed to mea-
sure the duration spent on coding tasks with and without LLMs, in
accordance with the framework proposed by [16]. These measures
provide insights into the acceleration of prototyping and feature
delivery facilitated by LLMs.

•	 Error reduction rate: Automated test logs and manual testing
records are analyzed to determine the frequency of bugs and cod-
ing errors, aligned with methodologies discussed by [17] in case
study research.

•	 Documentation speed and completeness: The time and effort
required to produce code documentation are tracked, following
guidelines from [18], who emphasize the importance of documen-
tation as part of empirical software engineering research.

•	 Onboarding efficiency: While external developer onboarding was
not part of the Kolay.ai project, the effectiveness of LLM-generated
comments and internal documentation in maintaining project
continuity is assessed, inspired by the collaborative framework
described by [19].

2) Qualitative Analysis:
Since the Kolay.ai project was developed entirely by a single indi-
vidual with LLM assistance, the qualitative analysis relies on personal
experiences and reflections. The study follows a self-reflective meth-
odology, inspired by [20], who advocates for reflective practice in
professional development. The personal narrative method captures
firsthand observations of challenges such as code hallucinations,
LLM context limitations, and strategies for manual intervention.
This approach provides rich, subjective insights that complement
the quantitative findings. The personal reflections are documented
through the following means:

Electrica 2025; 26: 1-10
Şeker and Nizam-Özoğur. Enhancing Software Development with LLMs

4

•	 Journal entries: Regular logs maintained throughout the project
track key issues, resolutions, and insights into LLM performance.

•	 Iterative review sessions: After each development sprint, personal
notes on the effectiveness of LLM-generated outputs are reviewed
to identify recurring patterns or challenges.

•	 HITL strategy refinement: Decisions made during the projects
such as when and how to intervene manually are evaluated to
fine-tune the balance between automation and human oversight,
as recommended by [21].

D. Workflow Analysis of Kolay.ai Project
The Kolay.ai project followed a structured, iterative development
process that integrated LLM assistance alongside human oversight
to optimize efficiency and quality. The Kolay.ai project followed a
structured, iterative development process that integrated LLM assis-
tance alongside human oversight to optimize efficiency and qual-
ity. Fig. 1 illustrates this iterative modular sprint-based development
model, which organizes the development workflow into modular
sprints supported by LLM-generated components.

As depicted in Fig. 1, each sprint begins with prompt engineering
and module specification, followed by code generation, integra-
tion, and testing. This modular approach allows developers to isolate
issues, monitor quality, and refine outputs iteratively, while prevent-
ing errors in one module from affecting others. Feedback loops—
such as HITL validations and post-sprint evaluations—ensure that
LLM contributions are critically assessed, and prompt strategies are
continuously improved. The key stages of this development process
are outlined below:

•	 Sprint planning: Tasks were divided into modular sprints. Routine
coding tasks were delegated to LLMs, while more complex tasks
requiring higher-level logic and architecture were handled
manually.

•	 LLM-assisted code generation: Tools like ChatGPT and GitHub
Copilot were employed for code production, particularly for gen-
erating Create, Read, Update, Delete (CRUD) operations and API
integrations. The coder actively reviewed LLM outputs to ensure
they aligned with project requirements.

•	 Automated and manual testing: LLMs generated test cases, but
the coder performed additional manual testing for critical mod-
ules to ensure quality and consistency.

•	 Continuous integration (CI) and documentation: Completed mod-
ules were integrated into the codebase. LLMs generated docu-
mentation and code comments, which were reviewed and refined
by the coder for clarity and completeness.

•	 HITL review: Regular reviews were conducted to correct halluci-
nations and inconsistencies in LLM-generated outputs. The itera-
tive refinement of prompts and code became a key aspect of this
process.

The Kolay.ai project utilized a categorized prompt library and a mod-
ular architecture to optimize development efficiency and system
scalability.

•	 Structured prompts: To illustrate the implementation of structured
prompts, the Kolay.ai project utilized a categorized prompt library
tailored to specific development tasks. For instance, CRUD opera-
tions followed a reusable prompt template such as: “Generate a
Django REST API for a model named [ModelName] with the fields:
[field_list]. Ensure serializers, views, and URLs are included and
follow best practices.” Another category of prompts addressed
integration tasks, such as “Refactor this API endpoint to include
token-based authentication and return HTTP 401 if the token is
invalid.” These prompt templates were refined iteratively across
sprints and stored in a shared JSON-based library accessible dur-
ing development. This approach enhanced consistency, reduced
rework, and helped mitigate hallucinated outputs.

Fig. 1.  Iterative modular sprint-based development model of Kolay.ai.

Electrica 2025; 26: 1-10
Şeker and Nizam-Özoğur. Enhancing Software Development with LLMs

5

•	 Modular architecture: Kolay.ai adopted a layered modular system,
where each module—such as user authentication, invoice pro-
cessing, and analytics—was developed as a self-contained Django
app with clearly defined interfaces. The system followed a service-
oriented design: each module communicated via RESTful APIs and
shared a common data model through PostgreSQL. Dependency
management was handled using a central orchestration layer,
which enabled version control, rollback, and hot-swapping of
individual modules. This structure enabled parallel development
and testing, significantly improving maintainability and scalabil-
ity. Fig. 1 already depicts this sprint-based model, but an extended
architectural diagram could further visualize module interactions
and integration points.

E. Risk Management
This study acknowledges the inherent limitations of LLMs, such as
their propensity to generate hallucinated code or lose context over
time. To mitigate these challenges, several risk management strate-
gies were systematically implemented throughout the Kolay.ai proj-
ect. These strategies included the use of structured prompt libraries,
automated rollback plans, and a modular development approach.
Each of these strategies is further explained below:

•	 Structured prompt libraries: The project maintains a library of
structured prompts to improve LLM outputs and reduce variabil-
ity across sprints.

•	 Rollback plans: In case of integration issues, automated rollback
mechanisms are used to restore stable versions of the code.

•	 Modular development approach: The modular design ensures
that errors in one module do not affect the entire system.

F. Validity and Reliability
To ensure the validity and reliability of the study’s findings, several
methodological strategies were implemented to rigorously assess
LLM performance and outcomes. These strategies include the
following:

•	 Triangulation: Development logs, testing results, and reflective
journals were used to corroborate findings, providing a compre-
hensive understanding of LLM performance.

•	 Iterative testing and review: The coder’s experiences were docu-
mented and reviewed after each sprint to refine strategies and
enhance the study’s reliability [22].

•	 Expert review: Although the study is based on a single coder’s
experiences, external feedback on key findings was sought to vali-
date the results and conclusions [18].

G. Ethical Considerations
This study adheres to rigorous ethical guidelines, ensuring both
transparency and data security throughout its execution, thereby
maintaining the integrity and credibility of the research process.
These strategies include the following:

•	 Transparency: All development decisions, successes, and chal-
lenges were documented to provide an honest account of the
LLM-based development process.

•	 Data security: Any sensitive project-related data was anonymized
to protect intellectual property and confidentiality.

H. Limitations
This study provides valuable insights into the integration of LLMs
in software development; however, several limitations must be

acknowledged, which may impact the generalizability and applica-
bility of the findings.

•	 Subjectivity: The study heavily relies on the coder’s personal reflec-
tions, which, while providing rich qualitative insights, introduce an
inherent bias. This subjectivity may influence the interpretation of
LLM-generated outputs and developer experiences, potentially
limiting the objectivity of the findings. As a result, the findings
may not fully capture the diversity of experiences that could arise
in different contexts or with different developers.

•	 Project-specific scope: The analysis is centered on the Kolay.ai proj-
ect, which features a specific architecture and set of requirements.
As such, the findings may not be entirely applicable to projects
with different technological stacks, workflows, or organizational
contexts. The modular architecture used in Kolay.ai, for example,
may present unique challenges and opportunities that do not
necessarily align with other projects, thereby limiting the broader
applicability of the conclusions.

•	 Evolving LLM technology: The landscape of LLMs is rapidly evolv-
ing, with frequent improvements in both their capabilities and
limitations. As such, some of the insights and conclusions drawn
from this study may become outdated as newer versions of LLM
tools are developed. This constant progression of technology sug-
gests that while the study provides valuable insights at the time of
its execution, future advancements may address some of the chal-
lenges identified, such as context maintenance and dependency
management.

Despite their advantages, such as improved development speed
and reduced manual workload, LLMs still face significant chal-
lenges. Hallucinated outputs, plausible but incorrect code snippets,
frequently arise, especially in complex projects. Managing long-
term context and maintaining dependency alignment across mod-
ules remain ongoing issues [2]. A recent survey underscores these
challenges, identifying key bottlenecks in LLM integration, such as
dependency management and the inability of LLMs to maintain
project-wide consistency [3].

III. RESULTS AND DISCUSSION

This section presents the findings from the Kolay.ai project, where
LLMs were extensively utilized for software development. The
results are based on a comparison between traditional develop-
ment approaches and the LLM-enhanced process. Each result is dis-
cussed with reference to the table and chart from the presentation,
providing detailed insights into how LLMs affected various aspects
of the project. Table I below summarizes the comparison between
traditional software development and LLM-enhanced software
development, highlighting key differences in development time,
prototyping, debugging, documentation, and other important
criteria.

In terms of Development Time, as shown in Table I, the Kolay.ai proj-
ect achieved a 30–40% reduction in development time compared
to traditional methods. Routine coding tasks, such as CRUD opera-
tions, were efficiently generated by LLMs, significantly accelerating
the prototyping phase. This finding is consistent with studies that
highlight the advantages of LLMs in expediting repetitive tasks [5].
Moreover, the modular sprint-based approach facilitated the rapid
delivery of new features. As illustrated in the iterative development
model chart in Fig. 1, LLMs enabled the project team to test and
validate prototypes early in the development cycle. This iterative

Electrica 2025; 26: 1-10
Şeker and Nizam-Özoğur. Enhancing Software Development with LLMs

6

approach ensured that feedback loops were short, contributing to
the continuous refinement of both the code and LLM-generated
documentation.

Regarding Debugging and Testing, Table I indicates that the use of
LLMs resulted in a 30% reduction in coding errors. Automated test
cases were generated by LLMs, complementing the manual testing
conducted during critical phases of development. While most rou-
tine tests yielded accurate results, hallucinated outputs—seemingly
plausible yet incorrect code—were occasionally produced. These
outputs necessitated manual intervention, as detailed in Table I.
Despite these challenges, the integration of automated and manual
testing proved to be effective. Automated test scenarios success-
fully identified common errors, while manual testing ensured that
complex functionalities were implemented correctly. This finding
aligns with the research conducted by [2], which underscores the
importance of human oversight when utilizing LLMs in software
engineering.

The LLMs also play a crucial role in automating documentation
throughout the project. As presented in Table I, LLMs generated
comprehensive API documentation and inline code comments
following each sprint. This automation led to a 20% reduction in
onboarding time for new developers, ensuring that documenta-
tion remained up to date and easily accessible. However, the pre-
sentation notes that manual reviews were sometimes necessary
to rectify inconsistencies in LLM-generated documentation. Some
descriptions lacked the precision required for advanced functional-
ities, highlighting the need for manual refinement to uphold quality
standards [4].

One of the key challenges identified in Code Standards and
Consistency, as presented in Table I, was maintaining long-term code
consistency. Although LLMs efficiently generated modules, they
occasionally struggled with contextual alignment across sprints.
The presentation indicates that LLMs faced difficulties in retaining
project-wide architectural decisions, necessitating frequent reorien-
tation through structured prompts [20]. To address this challenge,
a prompt library was developed, as illustrated in Fig. 1. This library
functioned as a repository of structured prompts, aiding in aligning
LLM-generated outputs with broader project goals. Nevertheless,
maintaining contextual consistency continued to pose challenges,
requiring developers to manually manage dependencies between
modules.

The HITL workflow was essential for ensuring the quality of LLM-
generated outputs. As highlighted in Table I, this workflow involved
regular reviews and refinements to manage hallucinated code. The
coder played a crucial role in evaluating LLM-generated modules,
identifying errors, and ensuring that outputs aligned with the proj-
ect’s objectives. This iterative review process aligns with best prac-
tices in AI development, where human intervention is necessary to
handle edge cases and maintain project integrity [21]. The project
also implemented a rollback strategy, allowing previous versions of
the code to be restored quickly in case of errors during integration.

The modular development strategy, illustrated in Table I, facilitated
smooth integration of different components. The modular approach
ensured that errors within one module did not affect the entire sys-
tem, minimizing disruptions. The LLMs were particularly effective
at generating independent modules, which were later integrated

TABLE I.  COMPARISON BETWEEN TRADITIONAL SOFTWARE DEVELOPMENT AND LLM-ENHANCED SOFTWARE DEVELOPMENT

Criteria Traditional Software Development (Pre-LLM) LLM-Enhanced Software Development (Kolay.ai Example)

Development time Longer due to manual coding processes 30–40% faster; routine code is generated quickly

Prototyping Development stages are lengthy and iterative Rapid prototyping with LLMs enables early testing

Debugging and testing Entirely manual, with slow results LLMs generate automated test cases, reducing errors by 30%

Documentation and code
comments

Developers need extra time; documentation may be
incomplete

LLMs provide automated documentation and code comments,
improving onboarding speed by 20%

Code standards and consistency Inconsistencies may arise from different developers;
manual review is required

LLMs can create inconsistencies, requiring manual intervention

Context management The entire project architecture is managed by the
developer

LLMs struggle with long-term context, requiring frequent redirection

Errors in code generation Prone to human errors, especially in repetitive tasks Risk of hallucinations: LLMs may generate plausible but incorrect code,
requiring manual review

Integration complexity Integration between modules is manual and
challenging

LLMs accelerate outputs with a modular approach, but integration
issues persist

Developer productivity Routine tasks consume time, limiting creative
development

Routine tasks are automated, allowing developers to focus on creative
solutions

Code quality Depends on the experience of the developer Despite LLM outputs, manual review and improvement are necessary

Adaptability to changing
requirements

Changes take time and are costly LLMs update code quickly, but frequent redirection is needed due to
context loss

Collaboration and teamwork Requires intensive coordination among team
members

LLMs facilitate collaboration, but manual control is essential to ensure
consistency

Electrica 2025; 26: 1-10
Şeker and Nizam-Özoğur. Enhancing Software Development with LLMs

7

into the larger system. However, integration challenges persisted,
as Table I. Some modules required additional adjustments to ensure
compatibility, particularly when LLM-generated outputs differed
from architectural expectations. This observation highlights the
need for careful oversight during CI processes.

As detailed in the risk management section of Table I, several strate-
gies were employed to mitigate the risks associated with LLM usage.
The use of structured prompts and context files minimized the risk
of hallucinated outputs. In addition, dynamic updates were imple-
mented to handle evolving project requirements efficiently, with
LLMs generating code changes on demand.

The automated rollback mechanisms implemented in the project,
also outlined in Table I, effectively managed integration failures,
enabling corrections to be made without significant downtime. This
proactive risk management strategy aligns with the recommenda-
tions presented in [18], which emphasize the importance of main-
taining software quality through continuous monitoring and timely
corrections.

The findings from the Kolay.ai project illustrate both the potential and
limitations of LLMs in software development. While LLMs effectively
accelerated development cycles, minimized errors, and automated
documentation, challenges such as hallucinated outputs, context
management, and integration issues necessitate manual oversight
and human intervention. These results align with existing literature
emphasizing the significance of HITL workflows to maintain quality
[11]. To optimize the advantages of LLMs while mitigating risks, orga-
nizations should adopt modular development strategies, structured
prompt libraries, and rollback mechanisms.

Beyond empirical results, the Kolay.ai project also presents theoreti-
cal and practical contributions that expand upon current literature.
These contributions are detailed in the following subsection.

A. Novelty and Contribution in the Context of Existing Literature
The Kolay.ai project introduces a novel integration of structured
prompt engineering within a modular software architecture, a com-
bination that is not extensively explored in existing literature. While
prior studies have addressed aspects of prompt engineering and
modular design separately, their combined application in a real-
world software development context remains underrepresented.

For instance, the study [23] discusses the role of prompt engineer-
ing in collaborative AI design, emphasizing iterative prototyping and
content-centric approaches. However, their focus is primarily on the
design phase, without delving into the modular architectural imple-
mentation in production environments. Similarly, the study [24]
proposes the MASAI framework, highlighting modular architectures
for AI agents, yet they do not specifically address the integration of
structured prompt engineering within such architectures.

In contrast, the Kolay.ai project demonstrates a practical application
where structured prompts are systematically integrated into a mod-
ular architecture, facilitating scalable and maintainable AI-driven
software development. This integration enables parallel develop-
ment, efficient testing, and seamless deployment of AI modules,
addressing challenges identified in previous studies.

By bridging the gap between prompt engineering and modular soft-
ware design, Kolay.ai offers a replicable model for developing com-
plex AI systems in dynamic environments. The project highlights

how these two elements, when effectively combined, can improve
both the quality and maintainability of AI-driven systems. This con-
tribution adds a practical and applied dimension to the emerging
body of research on HITL LLM workflows and AI-assisted software
development practices.

IV. PROPOSED SOLUTIONS AND FUTURE DIRECTIONS

The findings from the Kolay.ai project reveal both the strengths and
challenges of integrating LLMs into software development. While
the use of LLMs accelerates development, automates routine tasks,
and improves onboarding efficiency, issues like hallucinated out-
puts, integration complexities, and context management persist.
The HITL approach is critical in managing the risks associated with
LLM outputs, such as hallucinations and context inconsistencies.
LLM-generated code and documentation should always undergo
manual review and refinement by experienced developers to ensure
correctness, security, and coherence [11]. Establishing automated
checkpoints during the CI process can further enhance quality. For
example, automated alerts can signal the need for human interven-
tion when LLMs produce outputs that deviate from expected pat-
terns or standards.

Furthermore, formalized review workflows should be integrated into
agile processes. At Kolay.ai, iterative sprint reviews helped identify
LLM-generated inconsistencies early, preventing them from propa-
gating across the codebase. Future studies could explore the opti-
mal balance between automation and manual oversight, addressing
when and how developers should intervene without negating the
productivity gains of LLMs [20].

LLMs rely significantly on structured prompts to generate accurate
outputs. However, as seen in Kolay.ai, prompts may need continuous
refinement to align LLM-generated code with project requirements.
To address this, a centralized prompt library should be maintained
and updated after each development sprint. This library serves as
both a knowledge repository and a tool for improving LLM perfor-
mance over time [9]. Furthermore, context-aware prompting tech-
niques can enhance the effectiveness of LLMs in long-term projects.
Advanced prompting strategies, such as chain-of-thought prompts
or few-shot examples, can guide the LLM to maintain consistency
across modules. Research on prompt engineering—the systematic
crafting of prompts for optimal LLM performance—remains a crucial
area for future work [4].

The modular development approach proved effective in limit-
ing the impact of errors, as individual modules were isolated from
the broader system. However, LLM-generated modules occasion-
ally required manual alignment to ensure seamless integration.
To mitigate integration risks, automated dependency checks and
module validation tools should be implemented in future projects
[21]. Additionally, rollback mechanisms must be a core part of the
CI/CD pipeline to handle unexpected errors or failed integrations.
Automated rollback capabilities, coupled with frequent code back-
ups, can ensure that development remains uninterrupted even
when issues arise during deployment [18].

LLMs often struggle with context retention over extended develop-
ment cycles, leading to inconsistencies across modules. A potential
solution is to implement context files—comprehensive documents
containing key architectural decisions, variable definitions, and
project goals. These files can be referenced during each sprint to

Electrica 2025; 26: 1-10
Şeker and Nizam-Özoğur. Enhancing Software Development with LLMs

8

maintain alignment between LLM outputs and project requirements
[15]. Furthermore, memory-enhanced models could offer future
solutions for context retention. Emerging research on contextual
embeddings and fine-tuned models shows promise in enabling
LLMs to remember information over longer periods [2]. Collaborative
research between academia and industry can further explore how
continuous learning mechanisms can be integrated into LLM work-
flows for sustained context awareness.

The LLMs facilitate collaboration by automating documentation
and test case generation, allowing developers to focus on creative
problem-solving. However, effective collaboration requires struc-
tured communication protocols to manage contributions from
both developers and LLMs [13]. Developing interactive dashboards
that visualize LLM-generated code, test results, and documentation
updates can improve transparency and streamline team coordina-
tion. Future research should focus on LLM-powered collaborative
tools that integrate seamlessly with version control systems and CI/
CD pipelines. For instance, tools like GitHub Copilot already demon-
strate how LLMs can assist individual developers, but more advanced
tools tailored for team-based workflows could enhance productivity
even further [4].

As the LLM-generated code can introduce security vulnerabilities,
it is essential to integrate security checks into the development
process. Future projects should employ LLM-assisted vulnerability
scanners that automatically detect common coding flaws [12]. These
scanners can complement traditional security audits, ensuring that
both automated and manual checks are performed consistently
throughout the development lifecycle.

Additionally, ethical considerations surrounding LLM usage must
be addressed. Issues like bias in LLM-generated output and pri-
vacy concerns related to training data require further exploration.
Establishing transparent LLM usage policies and promoting ethical
practices will ensure responsible deployment of LLMs in software
development [18]. The integration of LLMs into software develop-
ment is an evolving field, with several promising research areas:

•	 Scalability of LLM usage: Future studies should explore how LLMs
perform in large-scale, complex projects that involve multiple
developers and long-term maintenance.

•	 Optimizing LLMs for agile workflows: Research on how LLMs can
be further aligned with agile methodologies will ensure smoother
integration into modern software development practices.

•	 Memory-augmented LLMs: Developing models with enhanced
memory capabilities could address the challenge of context man-
agement over long projects.

•	 Collaborative LLM platforms: Designing platforms that allow
multiple developers to interact with LLMs simultaneously could
improve team-based workflows and enhance productivity.

•	 Continuous learning and adaptation: Future LLMs could ben-
efit from online learning mechanisms, enabling them to adapt
dynamically to changing project requirements.

Future research should explore solutions to the limitations of LLMs,
such as enhancing memory-augmented models to manage context
over long-term development cycles. Collaborative platforms that
integrate LLMs with version control systems and CI/CD pipelines
could improve team-based workflows. Recent studies suggest that
LLM scalability in large-scale projects, alongside dynamic adapt-
ability, will be crucial to the success of future software engineering

initiatives [3]. Optimizing prompt engineering techniques and
improving LLMs’ contextual understanding will further refine these
workflows.

A. Memory-Augmented Large Language Models: Concrete
Research Directions and Technical Foundations
While memory-augmented language models have been proposed
as a solution to context retention challenges, more concrete research
directions are needed to translate this vision into implementable
architectures. This section outlines actionable research questions and
grounds them within the technical and theoretical foundations of
recent literature. Recent work [25] introduced Retrieval-Augmented
Generation (RAG) frameworks where LLMs retrieve relevant informa-
tion from external token databases during inference. This suggests
that external memory stores—such as vector databases trained on
prior sprints’ code—could be integrated into LLM-enhanced devel-
opment environments. Similarly, Transformer-XL [26] proposes
segment-level recurrence and relative positional encodings, allow-
ing language models to preserve longer dependencies. For modular
software systems like Kolay.ai, such mechanisms could be adapted
to retain architectural decisions across iterative sprints. The follow-
ing specific and researchable questions are identified:

•	 RQ1: How can memory-augmented architectures such as
Transformer-XL or RAG be adapted to support evolving software
projects, where past design choices must influence future module
generation?

•	 RQ2: What methods can synchronize vector-based memory rep-
resentations with dynamically changing codebases? Can LLMs
learn to distinguish stable and volatile memory segments in code
repositories?

•	 RQ3: Which evaluation metrics best capture contextual fidelity in
memory-augmented code generation (e.g., architectural consis-
tency, variable reuse accuracy, modular cohesion)?

•	 RQ4: How can reinforcement learning objectives—such as ReLoRA
(Reinforcement Learning with Long-Range Attention)—be fine-
tuned to maintain alignment with large-scale modular systems?

These directions not only provide a concrete roadmap for advancing
the integration of memory-aware LLMs in software engineering but
also highlight the need for hybrid architectures that blend symbolic
and neural components. Future implementations may benefit from
combining semantic code search with prompt orchestration engines
and continual learning pipelines [27].

IV. CONCLUSION

This study investigated the integration of LLMs into software devel-
opment through the case of Kolay.ai, offering valuable insights into
both the opportunities and challenges of LLM-assisted workflows.
The findings indicate that LLMs can significantly accelerate develop-
ment cycles, reduce repetitive tasks, and enhance documentation
quality, thereby contributing to overall efficiency. However, chal-
lenges such as hallucinated outputs, context loss, and integration
complexities persist, highlighting the necessity of HITL strategies.

The modular development approach employed in the project, com-
plemented by automated testing and a centralized prompt library,
underscores the potential of LLMs to streamline development pro-
cesses. Nonetheless, manual oversight remains essential, particu-
larly in detecting and correcting hallucinated code or addressing
inconsistencies across modules. The success of the Kolay.ai project

Electrica 2025; 26: 1-10
Şeker and Nizam-Özoğur. Enhancing Software Development with LLMs

9

illustrates that a well-balanced collaboration between human
developers and LLMs can yield productive outcomes, provided that
appropriate risk management mechanisms—such as rollback strate-
gies and continuous monitoring—are established.

Looking forward, future research and development efforts should
prioritize addressing the limitations of LLMs, especially in areas such
as context retention, dynamic adaptability, and security assurance.
The development of memory-augmented LLMs, enhanced collabor-
ative platforms, and advanced prompt engineering techniques pre-
sents promising directions for ensuring that LLMs continue to serve
as dependable assets in complex and long-term software projects.

In conclusion, while LLMs offer powerful capabilities for augment-
ing software development, human expertise and strategic oversight
remain indispensable. By leveraging the complementary strengths
of both LLMs and human developers, future initiatives can achieve
higher levels of agility, creativity, and reliability. The Kolay.ai proj-
ect serves as a practical illustration of the evolving role of LLMs in
contemporary software engineering, demonstrating that, with
thoughtful integration, these models can unlock new possibilities
for innovation and productivity.

Data Availability Statement: The data that support the findings of this
study are available on request from the corresponding author.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – S.E.Ş. ; Design – S.E.Ş.; Supervision – S.E.Ş.;
Resources – S.E.Ş.; Materials – S.E.Ş.; Data Collection and Processing – S.E.Ş.;
Analysis and Interpretation – S.E.Ş., H.N.Ö.; Literature Search – S.E.Ş., H.N.Ö.;
Writing – S.E.Ş., H.N.Ö.; Critical Review – S.E.Ş., H.N.Ö.

Declaration of Interests: The authors have no conflicts of interest to declare.

Funding: The authors declared that this study has received no financial
support.

REFERENCES

1.	 X. Hou, Y. Zhao, Y. Liu, K. Wang, and H. Wang, “Large language models
for software engineering: A systematic literature review,” IEEE Trans.
Softw. Eng., vol. 49, no. 3, pp. 1188–1201, 2023.

2.	 Z. Liu, Y. Tang, X. Luo, and L. F. Zhang, “No need to lift a finger anymore?
Assessing the quality of code generation by ChatGPT,” IEEE Trans. Softw.
Eng., vol. 33, no. 5, pp. 1–26, 2024.

3.	 S. E. Seker, “Experiences and challenges in AI-driven modular software
development using large language models for code generation,” 2024.

4.	 A. Agarwal, A. Chan, S. Chandel, J. Jang, S. Miller, and M. Tufano, “Copilot
Evaluation Harness: Evaluating LLM-guided software programming,”
arXiv Preprint, 2024. arXiv:2402.14261.

5.	 S. Wang et al., “Machine/deep learning for software engineering: A sys-
tematic literature review,” IEEE Trans. Softw. Eng., vol. 49, no. 3,
pp. 1188–1231, 2023. [CrossRef]

6.	 S. Rasnayaka, G. Wang, and R. Shariffdeen, “An empirical study on usage
and perceptions of LLMs in software engineering projects,” arXiv Pre-
print, 2024. arXiv:2401.16186.

7.	 A. Madaan, S. Zhou, U. Alon, and G. Neubig, “Language models of code
are few-shot commonsense learners,” arXiv Preprint, 2022.
arXiv:2210.07128.

8.	 F. Tambon, A. M. Dakhel, A. Nikanjam, F. Khomh, M. C. Desmarais, and G.
Antoniol, “Bugs in large language models generated code,” arXiv Pre-
print, 2024. arXiv:2403.08937.

9D. Nam, V. Hellendoorn, B. Vasilescu, A. Macvean, and B. Myers, “Using an
LLM to help with code understanding,” in Proc. IEEE/ACM Int. Conf. Soft-
ware Eng., Association for Computing Machinery, New York, NY, United
States, 2024, pp. 1–13.

10.	 M. Riemer et al., “Learning to learn without forgetting by maximizing
transfer and minimizing interference,” arXiv Preprint, 2018.
arXiv:1810.11910.

11.	 F. Liu et al., “Exploring and evaluating hallucinations in LLM-powered
code generation,” arXiv Preprint, 2024. arXiv:2404.00971.

12.	 R. Tóth, T. Bisztray, and L. Erdődi, “LLMs in web development: Evaluating
LLM-generated PHP code vulnerabilities,” in Int. Conf. Computer Safety,
Reliability, and Security, Springer, Cham, 2024, pp. 425–437.

13.	 N. Nguyen, and S. Nadi, “An empirical evaluation of GitHub Copilot’s
code suggestions,” in Proc. Int. Conf. Mining Software Repositories. New
York, NY, USA: ACM, 2022, pp. 1–5. [CrossRef]

14.	 Z. Chen, and B. Liu, Lifelong Machine Learning. Morgan & Claypool Pub-
lishers, 2022.

15.	 Lomonaco, Vincenzo, Davide Maltoni, and Lorenzo Pellegrini. "Rehearsal-
Free Continual Learning over Small Non-IID Batches." In CVPR work-
shops, Seattle, WA, USA, vol. 1, no. 2, p. 3. 2020.

16.	 R. Baskerville, and M. D. Myers, “Special issue on action research in infor-
mation systems: Making IS research relevant to practice—Foreword,”
MIS Q., vol. 28, no. 3, pp. 329–335, 2004. [CrossRef]

17.	 P. Yin, and G. Neubig, “A syntactic neural model for general-purpose
code generation,” arXiv Preprint, 2017. arXiv:1704.01696.

18.	 P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research in
Software Engineering: Guidelines and Examples. Chichester, UK: John
Wiley & Sons, 2012. [CrossRef]

19.	 D. I. Sjøberg et al., “A survey of controlled experiments in software engi-
neering,” IEEE Trans. Softw. Eng., vol. 31, no. 9, pp. 733–753, 2005.
[CrossRef]

20.	 D. A. Schön, The Reflective Practitioner: How Professionals Think in Action.
Basic Books, 1983.

21.	 A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in informa-
tion systems research,” MIS Q., vol. 28, no. 1, pp. 75–105, 2004. [CrossRef]

22.	 R. K. Yin, Case study research and applications: Design and methods, 6th
ed. Thousand Oaks, CA, USA: Sage Publications, 2017.

23.	 H. Subramonyam, D. Thakkar, A. Ku, J. Dieber, and A. Sinha, “Prototyping
with prompts: Emerging approaches and challenges in generative AI
design for collaborative software teams,”arXiv. CHI Conference on
Human Factors in Computing Systems, 2025. Available: https://​arxiv.or​
g/html/2​402.1772​1v2.

24.	 D. Arora et al., “Masai: Modular architecture for software-engineering AI
agents”. arXiv preprint arXiv:2406.11638, 2024. Available: https://​arxiv.or​
g/abs/24​06.11638.

25.	 S. Borgeaud et al., “Improving language models by retrieving from tril-
lions of tokens,” Proceedings of the 39th International Conference on
Machine Learning (ICML), PMLR, vol. 162, pp. 2206–2240. 2022. Available:
https://​arxiv.or​g/abs/21​12.04426

26.	 Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov, “Trans-
former-XL: Attentive language models beyond a fixed-length context,”
Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 2019, pp. 2978–2988. Available: https://​aclantho​
logy.org​/P19-128​5.

27.	 S. Yao, J. Zhao, and D. Zhang, “Long-term memory for language models:
A survey. arXiv preprint, arXiv:2306.05201,” 2023. Available: https://​arxiv.
or​g/abs/23​06.05201.

https://dx.doi.org/10.1109/TSE.2022.3173346
https://dx.doi.org/10.1145/3524842.3528470
https://dx.doi.org/10.2307/25148642
https://dx.doi.org/10.1002/9781118181034
https://dx.doi.org/10.1109/TSE.2005.97
https://dx.doi.org/10.2307/25148625
https://arxiv.org/html/2402.17721v2
https://arxiv.org/html/2402.17721v2
https://arxiv.org/abs/2406.11638
https://arxiv.org/abs/2406.11638
https://arxiv.org/abs/2112.04426
https://aclanthology.org/P19-1285
https://aclanthology.org/P19-1285
https://arxiv.org/abs/2306.05201
https://arxiv.org/abs/2306.05201

Electrica 2025; 26: 1-10
Şeker and Nizam-Özoğur. Enhancing Software Development with LLMs

10

Şadi Evren Şeker completed his undergraduate, graduate, and Ph.D. degrees in Computer Science and Engineering.
Throughout his academic journey, he specialized in Natural Language Processing and Artificial Intelligence. He also
conducted post-doctoral research at the University of Texas at Dallas (UT Dallas), focusing on streaming data min-
ing and social networks. Dr. Şeker has worked at universities in six different countries, gaining experience across
diverse cultures and academic environments. Currently, he serves as the Dean of the Faculty of Computer and
Information Technologies at Istanbul University. He holds numerous patents and has authored several books and
research papers in the fields of Machine Learning and Artificial Intelligence. His current research interests include
Explainable AI, Responsible AI, AutoML, and the democratization of AI technologies for small and medium-sized
enterprises (SMEs).

Hatice Nizam Özoğur completed her B.Sc., M.Sc., and Ph.D. degrees in Computer Engineering. She is currently an
Assistant Professor in the Department of Artificial Intelligence and Data Engineering at Istanbul University. Her
primary research interests encompass a wide range of topics within Artificial Intelligence and data-driven meth-
odologies, including data mining, machine learning, and deep learning. Additionally, she has developed expertise
in natural language processing, texture classification, fuzzy systems, and image processing techniques. Her work
focuses on designing and implementing algorithms to improve the accuracy and interpretability of data classifica-
tion. Through her contributions, she aims to advance computational efficiency and broaden the applicability of AI
across interdisciplinary fields.

