
160

DDoS Detection Framework

Habib and Khursheed.

Corresponding author:
Beenish Habib

E-mail:
benis h_hab ib@ya hoo.c om or
beeni sh_05 phd17 @nits ri.ne t

Received: January 11, 2022

Revised: May 13, 2022

Accepted: June 20, 2022

Publication Date: October 7, 2022

DOI: 10.5152/electrica.2022.21188

ORIGINAL ARTICLE

Real-Time Transmission Control Proto col-S ynchr onize -Base d
Distributed Denial of Service Detection Framework Using Entropy
Variations in Self-Coded Bot-Network Architecture
Beenish Habib , Farida Khursheed
Department of Electronics and Communication, National Institute of Technology, Srinagar, India

Cite this article as: B. Habib and F. Khursheed, “Real-time transmission control proto col-s ynchr onize -base d distributed denial of service detection framework using
entropy variations in self-coded bot-network architecture,” Electrica, 23(2), 160-176, 2023.

ABSTRACT

Among the recent network infrastructure proliferations, distributed denial of service (DDoS) attack continues to be one of the most severe security threats. It becomes
difficult to detect and demarcate the high volume of data and a huge number of users in any conventional network. The network randomness, physical attacks, and
DDoS attacks leave their imprint through bandwidth profile (throughput), latency (time duration), and network traffic information (metadata). These three parameters
form the crux of any detection setup. In this paper, we propose a fast, cost-efficient, open-source, and effective real-time entropy-based DDoS detector that uses
entropy variations of Transmission Control Protocol-Synchronize packets as a base for attack detection. The attack traffic is self-generated through a compromised
Bot-System controlled by a Command and Control Server. This way, we analyze the actual representative characteristics of the attack pattern. Our DDoS detector not
only detects the attack but also sends the contextual information to a registered email ID. The attack information provides required network traffic characterization for
the threshold-entropy calculations and its mathematical modelling, all that in real time. We code the whole architecture in python. It provides an optimal detection
sensitivity and enhances predicting an attack with less resource utilization.
Index Terms—Botnet, distributed denial of service, email alert, entropy, intrusion detection system, python

2

23

Electrica 2023; 23(2): 160-176

I. INTRODUCTION

With most of the data and information on the internet, the world is now more prone to global
data thefts, intrusions, and bandwidth bankruptcy. In the first half of 2020 itself, there was a 15%
increase in the network traffic with 4.83 million distributed denial of service (DDoS) attacks glob-
ally [1]. The methodology of the DDoS attack and its area of impact got changed due to covid
outbreak and the consequent lockdown. Attackers are now targeting healthcare, e-commerce,
and education. More than 930 000 attacks took place in May 2020, making it the hardest-hit
month of the year [2]. Distributed Denial of Service attack coefficient [3] has increased as attack-
ers do not pay for the bandwidth, leading to its most significant theft globally. As of 2021 [4],
DDoS topped the list of most frequent cybersecurity incidents.

These attacks have affected internet services and telephony, and emergency services like 911
[5]. The global botnet breaches in 2021 have even reached 4G-5G spectrum inculcating short
message service (SMS) flooding, fake signal calls, and cell phone jamming [6]. The DDoS attack
launched by a Bot-Network [7] makes the internet a more vulnerable place. Spam emails with
links to various threats and security breaches are alarming.

To detect such attacks, we need an intelligent detection system. Every detection setup uses
machine learning, artificial intelligence (AI), soft computing, or mathematical and statistical
knowledge. The recent research has also contributed more to studying correlation functions,
fuzzy estimators, regression functions, or linear predicting models [8,9]. There has been an
advancement in machine learning and AI techniques in early anomaly detection [10,11]. The traf-
fic parameters used in most of the detectors include packet length, inter-packet intervals, protocol
used, IP address, and number of packets. In recent techniques, the other parameters for identi-
fying malicious data [12] include distance functions (Euclidean, City-Block, and Mahalanobish),

Content of this journal is licensed
under a Creative Commons
Attribution-NonCommercial 4.0
International License.

mailto:benis​h_hab​ib@ya​hoo.c​om
mailto:beeni​sh_05​phd17​@nits​ri.ne​t
http://orcid.org/0000-0002-4086-6824
http://orcid.org/0000-0001-5087-3254

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

161

correlation functions (Person, Spearman, and Kendall), or entropy
functions (Shannon or Kolmogorov).

A lot of research work is now done on DDoS detection using
Software Defined Networking (SDN). OpenFlow technology used in
SDN enable multiple interfaces to use one single protocol [13,14].

These techniques, though robust, give a pre-defined environment
with no means of further modifications. Moreover, most intrusion
detection systems (IDSs) work for varied forms of attacks and not
specifically for DDoS only. BRO (Zeek) requires a UNIX platform,
Snort is difficult to deploy with attacks causing information over-
load, OSSEC have default rules, Tripwire cannot generate a real-time
alert, and Suricata is slower in detection. Most of the IDS-IPS aim at
reducing the spread of attack by blocking outgoing malicious traf-
fic from the compromised system. But it gets undetected due to
non-continuous updating. Also, many IDS-IPS systems have complex
training setups, non-contextual alert systems, and high attack false
positive rate (FPR) [15].

II. RELATED WORK
A lot of research is carried out to enable the security of legacy or
traditional networks [16]. The DDoS attack continues to grow sig-
nificantly in the time-space paradigm both in size and frequency,
depriving users of computing services [17]. The need is to detect and
mitigate the attack with low computational cost, complexity, and
latency [18]. While traditional networks have security implementa-
tions with limited features, modern networks like OpenFlow enabled
SDN infrastructure try to be quite effective.

Software defined networking is a modern and robust platform, but
the control plane faces many security flaws. The centralized archi-
tecture also makes it prone to various threats and attacks. Recently,
massive DDoS attacks have been targeted on the control plane [19],
making it more vulnerable than any other computing architecture.
To use it for DDoS attack detection does not seem to be a good
option. Even if we work with distributed architecture with each
router monitoring the anomaly and alarming the next, it increases
the network complexity and burdens the individual routers [20].
Some of the individual routers and IoT devices further aid in con-
ducting DDoS attacks.

In SDN architecture, intrinsic approaches are not considered feasible.
They have the requirement of extrinsic solutions. Recently, SDN utiliz-
ing the machine learning approach has made advancements against
these volumetric attacks [21]. Artificial Neural Network and eXtreme
Gradient Boosting with hybrid machine learning-based algorithm
based on Self Organizing Map and k-Nearest Neighbour increased
detection accuracy [22]. Other machine learning techniques used
for attack detection include association-based approaches (fuzzy
association, multivariate correlation, apriori, sequence analysis),
classification-based approaches (Naïve Bayes, C4.5, support vec-
tor machine, entropy), clustering-based approaches (outlier detec-
tion, fuzzy C-means clustering, k-mean), hybrid-based approaches
(Wavelet & Singular Value Decomposition and genetic algorithm-
based approaches.

The high detection accuracy and low FPR of these algorithms may
seem appealing, but the training phase, threshold selection, and
prediction analysis increase the complexity. The further challenge
of these algorithms is selecting optimal features and their multiple
combinations as inputs for traffic processing.

Mathematical modelling with probability distribution functions
is further used to enhance the detection of DDoS attacks [23].
Inter-packet interval follows the power law and is modelled using
pareto distribution [24]. On the other hand, lognormal distribution
models the network traffic information better. The Kolmogorov-
Smirnov gives an idea of distribution curves, and so does Pearson’s
chi-square test. ANOVA gives the analysis of variance. Such statisti-
cal approaches aid in detecting layer 3 and 4 DDoS (internet con-
trol message protocol, user datagram protocol, SYN, TCP) [25]. The
general analysis has assumed attack packets to arrive in pareto
distribution and benign traffic in Gaussian distribution [26]. Such
demarcations in traffic patterns using mathematical modelling may
seem appealing, but they have lower detection accuracy and high
computational complexity.

The detailed literature review of various DDoS detection methods
proposed and used in the past along with their constraints is given
in Table I [27-40].

A. Motivation
From the literature survey, we find that there is the use of various
traffic features, attributes, and variations for the classification of nor-
mal and attack traffic. Most of the implementations involves the use
of machine learning approaches and the use of software-defined
networking. Though they are efficient in accuracy scores,the process
of feature extraction and training of the machine learning models,
with multiple algorithms for attack detection in AI and the intricacy
of control plane and data plane in SDNs, adds to the computational
complexity in these setups. The other issues are high traffic over-
head, detection delay, low accuracy, and no inbuilt alert system with
high FPR and false negative rate (FNR).

Among all these mathematical and statistical approaches, entropy
is the most extensively used approach for traffic classification in
most DDoS detection frameworks [41-43]. We know that any kind
of change or anomaly causes change in the traffic characteristics.
The entropy variation in a DDoS attack was extensively discussed by
Lakhina et al. [44].

Some features vary considerably, while some have no change at all.
It was source IPs that showed considerable variations than destina-
tion IPs [45]. This became valuable information and was used as a
standard to demarcate the attacks [46].

Using entropy as the main feature for attack detection is also more
practical and accurate with a low FPR and FNR [47]. It is also extend-
ible in checking various traffic attributes, that is, source/destination
IP addresses, source/destination port, and even protocol [37]. The
feature extraction and distribution also showed improved perfor-
mance with respect to decreased processing overhead, redundancy,
and less response time [48,49].

To use entropy for DDoS detection on a simple setup is the main
focus of our work. We thus propose a lightweight DDoS detector
based on entropy variations in a Bot-Network with an inbuilt alert
system. We code the whole architecture in python with the use of
minimum resources, keeping the robustness and accuracy intact.

1) Contributions
We summarise our contributions as follows:

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

162

1) A lightweight real-time entropy-based DDoS Detection mecha-
nism is proposed, with better efficiency, low computational
cost, and overhead.

2) Proximate real-time traffic pattern from a Bot-Network is used.
The self-generated DDoS traffic data set improves detection
capability.

3) It has an inbuilt email alert system. The alert with the detailed
contextual information is sent to a registered email ID.

4) It uses both signature as well as anomaly detection techniques.
For signature detection, collaborative threshold is used, and for
anomaly detection, entropy variations determine the attack.

5) The resource utilization (CPU-RAM) is optimized without com-
promising the detection capability. It is highly accurate with low
FPR, FNR, and low response time.

Rest of paper is organized as follows. The proposed detection meth-
odology for DDoS attack is presented as Section III. The experimental
setup and entropy calculation and its proposed implementation are
discussed in Sections IV and V, respectively, with results and per-
formance evaluation discussed in Sections VI and VII, respectively.
The paper is concluded along with future scope in Section VIII. The
References and Appendix A (python-coding) are added at the end.

TABLE I. THE EXISTING DDOS DETECTION TECHNIQUES LITERATURE SURVEY

Author & Year Technique/Approach Findings Constraints

1. Stavros N. Shiaeles
et al. 2012 [27]

Fuzzy estimator DDoS detection based on mean packet
arrival (3 sec detection window).

Near real time detection, computational overhead, no alert
system, data import delay, not feasible for flash crowd attacks.

2. Singh et al. 2015
[28]

Captcha-based DDoS
detection

Robust IP blacklisting. Not a full proof remedy against bots, time consuming, not
compatible.

3. Tamer F. Ghanem
et al. 2015 [29]

Machine learning, AI, genetic
algorithm

High detection accuracy (96.1%). Large scale data set requirement, high online processing time,
cannot detect normal DDoS attacks, non-real time system with
no alert generation.

4. Sufian Hameed
et al. 2016 [30]

Hadoop, HADEC, Big Data Live DDoS detection framework. Detection delay while transferring log file from capturing to
detection server does not provide parallelism.

5. N. Hoque et al.
2017 [31]

FPGA-based detection
through correlation
measures

High detection accuracy (99.95%), low
FPR (0%), low FNR (0.008%).

Dedicated hardware module requirement, works only on two
class problems, correlation measures not sensitive enough to
detect DDoS attacks.

6. Yonghao Gu et al.
2017 [32]

Machine learning, semi-
supervised clustering

Increased detection convergence speed
(14–20 ms) and accuracy (NA).

No real-time attack traffic used, each of the algorithm uses
different subset of features, is complex, no alert system.

7. JieCui et al.
2019 [33]

SVM, SDN, cognitive
computing

High detection rate (97.65%), low FPR
(NA)

Mininet does not support real environment, control plane
vulnerability to attacks, complex hash listing, SVM not suitable
for large data sets.

8. D. Erhan et al.
2020 [34]

Matching pursuit and
wavelet techniques

High detection efficiency (95.3–95.7%)
with TPR (80–81%) using multiple
characteristics of network traffic.

Suboptimal approximation, hybrid detection framework
increases complexity, high number of attributes, training
requires a high-end computational setup.

9. Raja Majid Ali
Ujjan et al. 2020
[35]

Machine learning, SDN,
S-flow technology with
stacked auto encoders

High detection accuracy (95%), low FPR
(less than 4%).

High computational complexity, centralized deployment
makes it more vulnerable to attacks (single point failure).

10. Zengguang Liu
et al. 2020 [36]

Reinforcement learning,
DCNN, SVM

Low-rate DDoS detection in Edge
environment.

Feature extraction complexity, dependence of Mirai botnet,
low accuracy on sparse data, no alert system.

11. Raja Majid Ali
Ujjan et al. 2021
[37]

SDN, entropy variation High accuracy (94%), Llow overhead and
redundancy, low FPR and FNR (6%).

High computational complexity with two classifiers, centralized
deployment makes it more vulnerable to attacks (single point
failure).

12. Hassan Mahmood
et al. [38]

SDN, smart grids, entropy
variation

Tsallis entropy-based defence
mechanisms in SDN architecture to
improve performance.

High response time, increase in CPU utilization due to
controller, single controller vulnerability to bandwidth
bottlenecks.

13. Khundrakpam
Johnson Singh
et al. [39]

MLP model, entropy
variation

High accuracy (98.31%), high sensitivity
(0.99) and specificity (0.056). EPA-HTTP
Data set with (MLP) classification and
genetic algorithm (GA).

Complex structural framework, High response time, limited to
only application layer attack.

14. Frederico Augusto
Fernandes Silveira
et al. [40]

Machine learning, SDN, IOT High detection rate (96%) and Low false
alarm rate (0.8 -1.8).

High CPU utilization, only few attacks information present in
the training database, complex framework (Wireless & IOT).

DDoS, distributed denial of service; FPGA, field programmable gate array; SVM, support vector machine; SDN, software defined networking; FPR, false positive rate; FNR,
false negative rate; HTTP, hypertext transfer protocol; MLP, multi-layer perceptron.

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

163

III. PROPOSED DETECTION METHODOLOGY

Based on information source (host/network), analysis strategy (sign
ature /anom aly/h ybrid), time aspect (real -tTim e/pos t-tim e), architec-
ture (cent raliz ed/de centr alize d), response (active/passive), we must
set IDS features to match our requirements. This section presents the
proposed DDoS attack detection architecture.

We code our DDoS attacker which is a combination of Command
and Control (C&C) Server and a Bot-Network, the bots being con-
trolled by a C&C server. For generating the attack, the victim system
is targeted with Transmission Control Protocol-Synchronize (TCP-
SYN) packets. This TCP packet header causes the victim server to
respond the SYN packet with the acknowledgment packet. Due to
large number of bots and open connection, the victim is saturated
of its resources and crash eventually.

For the identification and detection of attack, we use collaborative
threshold value and packet header information. To further enhance
our attack detection, we use generalized entropy (GE) calculation
with Shannon Kolmogorov’s complexity and extract other math-
ematical attributes of our network traffic data. The alert and the
detailed information are sent to our registered email ID (with real-
time traffic monitoring in the background). We code the compro-
mised Bot-Network and C&C server, creating our own DDoS traffic
pattern. This improves the detection efficiency and helps resolve
issues of old data sets.

Our detection methodology is comprised of the following four mod-
ules (Fig. 1):

Module 1: DDoS attacker (C&C server and compromised
Bot-Network)
Module 2: Network traffic collector—threshold and entropy
calculation with DDoS detector
Module 3: Real-time traffic monitor—network performance
monitor
Module 4: Email alert system

A. DDoS Attacker (C&C Server and Compromised Bot-Network)
To set up our DDoS attacker, we create a Bot-Network headed by
a C&C Server (Fig. 2). A single compromised system is sufficient to
cause the DDoS attack. With C&C server, which acts as a Botmaster:

1) It can recruit thousands of bots (infected systems) through a
system vulnerability, a payload with an executable file sent or
uploaded on a uniform resource locator (URL), through SMS ser-
vice or even with email attachments.

2) It can carry the attack on a large scale in a very co-ordinated
manner.

3) It can also establish multi-threading and multiprocessing
executions with a set of connections and multiple command
executions.

The IP address of the C&C server is kept hidden. In centralized
approach, we control multiple bots in a single session.

Fig. 1. Architectural framework—Proposed DDoS detector with real-time traffic monitoring and an inbuilt alert system.

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

164

The bots are connected via the internet or even through an SMS
gateway and can communicate via a secure protocol (Hypertext
Transfer Protocol /Hypertext Transfer Protocol Secure, TCP/
Telnet Internet Relay Chat) or short messages. The Bot-Network
can be in a single network domain or widespread over different
networks.

B. Network Traffic Collector—Threshold and Entropy Calculation
with Distributed Denial of Service Detector
We use Python-Scapy framework to design our network sniffer. The
simple network traffic is collected for general threshold calcula-
tion. We collect the traffic packets with packet header information
(SYN =1 and ACK = 0) and classify them as attack packets. A counter

Fig. 2. Control of C&C Server on Bot-Network.

Fig. 3. Source IP count.

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

165

counts the packets, and for the number of packets exceeding the
threshold, the detector verifies it as attack traffic. This forms a basic
threshold detector based on the number of SYN packets.

To further enhance our detection efficiency, we use entropy as
another traffic attribute for attack detection. We code the entropy
calculator based on Source IP-Port to extract the network random-
ness. We can also use other traffic attributes like srcIP, dstIP, src Port,
dst Port, src Bytes, dst Bytes, and protocol [6].

To make our detector lightweight, we select the source IP address.
It is the most efficient attribute to detect the attack and also easy to
extract. In some real-time setup, feature extraction becomes compli-
cated with varied data rates, high packet diversity, and irregular data
patterns. Setting up a proper entropy-based threshold becomes
difficult.

To overcome this issue, we use collaborative threshold, that is, both
general threshold and Shannon-Entropy threshold and check the
individual performance. Both traffic attributes are easy to calculate
and require minimum usage of resources.

C. Real-Time Traffic Monitor—Network Performance Monitor
A real-time monitoring system feature is added to our detector to
analyze the traffic effectively in a continuous time frame and gen-
erate the alert if the threshold gets exceeded. We set the interface
(ens33 of Virtual Machine (VM1)) and sniff the live traffic in an inter-
active mode. It is similar to plotting in MATLAB. While Plotly is used
to generate offline graphs, Matplotlib gives the real-time traffic
analysis.

Figure 3 shows the total network data in a particular time frame
(bandwidth) and Fig. 4 is our traffic visualizer and plots the total
count of packets sent by a particular IP. For our real-time traffic analy-
sis, we have network performance monitor, which plots the incom-
ing and outgoing network traffic in a continuous time frame.

Figure 3 gives us the insight of individual IP list and their individual
packet count in particular time duration. Fig. 4 gives us the total
amount of packets send in a continuous time frame.

D. Email Alert System
We add an alert feature to our IDS. While third-party internet secu-
rity providers charge a lot for the same, we used an email service to
make it cost free. Most of the IDSs generate alerts, which gets stored
in their log directory. These alerts need to be constantly checked.
To avoid this complexity, we set a registered Gmail account and get
alert (Fig. 5) along with the details (Figs. 3 and 4) whenever a DDoS
attack takes place. The email sent is encoded using a base64 encoder.

IV. EXPERIMENTAL SETUP

The experimental implementation involves two virtual machines
on an Intel(R) Core (TM) i5-8265U CPU @ 1.60GHz 1.80 GHz 16 Gb
processor, a straightforward configuration with base hypervisor
VMware Workstation 15.5 Pro. The structural framework is illus-
trated in Fig. 1. We need a C&C server, compromised bots, a real-time
detector, an entropy-threshold calculator, and an inbuilt email alert

Fig. 4. DdoS—bandwidth utilization.

Fig. 5. Emailalert.

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

166

system to design our DDoS detector .VM1 is an Ubuntu (16-04-64
bit) operating system, and Virtual Machine 2 (VM2) is Kali-Linux OS
with IP addresses 192.168.1.104 and 192.120.225.114, respectively.
Virtual Machine 2, which is our attacking front, involves a C&C server
and a compromised Bot-Network. The experimental requirements
are given in Table II. The integrated development environment (IDE)
platform and some library functions used are also detailed later.

Our C&C server comprises a host and multiple compromised bots
with multiple connections. The details of the parameters required to
code one are given in Table III.

The bots are compromised using a gaming payload with the shell
access given to our C&C server. The payload is a simple python-coded
snake game. It is an essential tool to set connections and execute
an attack (Fig. 6). The gaming payload is uploaded with its URL on a
website. While it is alluring to download the game and play, it creates
a persistent connection (a connection that is established even after
we stop the game) in the background. Crontab module is used to
have a continuous-time schedule. This creates our Bot-Network, and
the number of downloads sets the number of compromised bots.

The C&C server, which is our Bot-master, controls these bots. The vital
thing to consider here is that a single vulne rabil ity(s ecuri ty-br each)
can establish a connection and disrupt the victim of its services by
just a single download.

The shell access to the bots through C&C server sets a way to initiate
the DDoS attack on our target IP (Fig. 7).

To collectively set the connections, execute commands (i.e., multi-
threading), and launch the attack, we use parallel programming
or multi-threading. This ensures that connections are established
even after the game (payload) is closed. We set our sub-processes as
shown in Fig. 8. This is our VM2.

A. Data Set
To code a DDoS generator, we use Python-Scapy framework. A ran-
dom IP generator with source IP/Port and destination IP/Port is set in
a continuous time frame (Fig. 9).

The other parameters as detailed in Table IV. Here we use TCP-SYN
packets and the IP addresses are random which are sent over a con-
tinuous time-frame. The parameters (packet count/volume, time-
duration, range of spoofed IPs, source IP/Port, destination IP/Port,
victim IP) can be altered as per our own requirements.

This determines our legitimate real-time data set. We can also use
emulated DDoS data sets (MIT Darpa/TUIDS/ CIC-DDoS2019/hping3/
Hyenae 0.36), but coding a real-time data set gives us the flexibility
of modifying the parameters as per our requirement.

V. ENTROPY CALCULATION

Our work involves entropy-based DDoS attack detection methods
and its implementation in a simple coded Bot-Network. Entropy is
the statistical measure of randomness of data. For DDoS attack, the
Bot-Network sends a huge number of similar packets to the victim,
which in turn decreases the randomness parameter of the network
traffic. For flood attack, where spoofed source-IP based packets are
used for attack, the randomness increases. These fluctuations that
cause change in entropy pattern is a clear indication of an attack.
This randomness can also be calculated using different packet fields.
We consider the most affected packet field, that is, source IP address

TABLE II. LIST OF EXPERIMENTAL PARAMETERS

Features Description

IDE platform PyCharm Professional

Python version 2.7 with updated PIP packages

Memory information pcap (register database)

Python libraries Socket, Queue, Threading and SYS, Scapy, Plotly,
Datetime, Pandas, smtplib, SSL, Email, Matplotlib.
Animation, PSUTIL, Multiprocessing, Collections/
counter {JSON format}, email-encoder, web-browser.

Packet capture standard Libpcap

Packet encoding base-64

Internet protocols IPv4 - IPv6

Protocols (Layer 3/4, 7) TCP, MIME

Supported alert format Skype, short-messaging service, multimedia, live
streaming

TABLE III. THE DESCRIPTION AND VALUES OF VARIOUS PARAMETERS OF A
C&C SERVER

Parameters Description Value (if any)

Socket S Determine the host and port
number (TCP/IPv4)

Host =’’ for dDynamic IP
Port =12345 {Random}

Commands cmd Set command line arguments List, select, quit

Connections C Accept IP addresses and bind
them with host and port number

Heartbeat connection
Hi and Hello

Threads & Jobs
{t, j}

Connection and command
execution

{1,2}

Queue {q} FIFO-based counter to set a task Put, get and join

C&C, command and control; TCP, transmission control protocol.

Fig. 6. Snake game.

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

167

for our attack determination, although multiple packet fields could
be checked at the same time without affecting the performance
of our detector (Fig. 10). Here the advantage of using this simple
method of attack determination is that there is no increase of any
network traffic, memory and CPU overhead is also very less, almost
negligible.

The source and destination IPs both form a probability distribution
function [25].

p x x x n�� �1 2, (1)

with x x i 1,2.....ni
i

� � � �� �
�� 1 1 0

1
, ,

�
 (2)

To calculate information entropy value, we use:

H p
i

n

i�
�

��� � � � ��1
1 1

log2 (3)

Fig. 7. Shell access to the Bots.

Fig. 8. Multi-processing in a Bot-Network.

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

168

Assertion 1: When ϒ = 0, i.e., with equal probabilities.

H P0 2� � � log � (4)

Assertion 2: When ϒ = 1

H P p x xi i
i

n

1 2
1

() ()log ()� �
�� (5)

To model it for DDoS detection, we calculate the source IP address-
based probability distribution function for different network traffic
patterns and their average entropy values for different timeframes,
respectively.

A. Proposed Implementation
For our detector we need to determine various attributes and fea-
tures. We have VM1, where we code the attack detection using gen-
eral threshold and entropy variation with inbuilt email alert system
and real-time traffic monitoring,

1) Incoming packets: We use T-shark to extract the source-IP list
from packet capture (PCAP) file and store in a csv format to
count the individual IPs. This sets as our packet inspection.

2) Window size: Window size determines the time frame and thus
is proportional to packet volume and number of packets. The
window size can be modified as per our requirement.

3) Threshold set-up: We set up the threshold reference value
ourselves to decide the possibility of an attack. For some

Fig. 9. Random IP generator.

TABLE IV. THE DESCRIPTION AND VALUES OF VARIOUS PARAMETERS IN A
CODED DDOS ATTACK

Parameters Description Value (if any)

ip_list Determine the list of random IPs
generated

Any IP address

target_ip Victim where attack is to be
launched

Victim IP

src,dst {ip1} Source and destination IP Source_ip, target_ip

sport,dport{tcp1} Source and destination Port s_port,80

Pkt ip1/tcp1 -

Fig. 10. Entropy classifier.

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

169

setups, it is pre-defined and for some it is determined during
run-time. Both have their individual importance and usage. We
calculate the parameters during a normal network traffic and
set that as our threshold value. Any deviation from the nor-
mal pattern, gives us the indication of an attack. For the basic
threshold calculation, based on number of TCP-SYN packets
we select number of packets generated during normal inter-
net streaming (in our case, data pattern of more than 25 SYN
packets/s determines the attack). This sets our detection rule.
The frequency of each IP address is used for the probability cal-
culation. We get the average entropy after normalization to be
used in Shannon code.

4) Real-time monitoring: To have the real-time monitoring, we
code a traffic monitoring visualizer which uses the date-time
module (inbuilt in python) to give the insight of both incoming
and outgoing traffic pattern.

5) Other traffic parameter characterizations: We also find
change in packet size, inter-packet interval, mean and variance
with respect to entropy variations. These parameters are also
analyzed for the attack determination.

We calculate the values of parameters for the network traffic. For
the network traffic with number of packets exceeding the general
threshold and with entropy threshold value ϑnA < ϑnT || ϑnA < ϑn₀,

we predict the traffic as attack traffic. Here ϑnT is an entropy thresh-
old value for benign network traffic, and ϑn₀ is an entropy threshold
value for no-network traffic (Fig. 11).

We specify our time slot (3–7 minutes) and, specific to that, check
sudden rise or drop in number of packets and entropy values,
respectively, compared to the predefined threshold value. The pack-
ets are captured, and details are stored in a PCAP file. The PCAP file
is graphed and sent to a registered email ID alerting us of a possible
DDoS attack.

VI. RESULTS

The main aim of our proposed work is to detect the DDoS attack
with improved accuracy and low computational usage. We mainly
rely on threshold entropy calculations of TCP-SYN Packets. Python
is our scripting tool and various library functions (Table V) are used
to design and code a real-time DDoS detector with an email alert
system. This approach increases the efficiency as well as detection
accuracy rate. We tried to decrease the resource utilization as much
as possible, keeping intact the detection accuracy.

For a particular window size, we use the number of packets received.
The entropy values are calculated depending on the number of
packet occurrences within the same window size. If the number of

Fig. 11. Processing flowchart of the collaborative entropy-based detection algorithm in DDoS attack detection system.

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

170

frequencies for each IP is equal, then maximum entropy is estab-
lished. If there is a sudden deviation (during an attack), then the
entropy value is minimum as a single IP sends the attack traffic, thus
decreasing the deviation or randomness (Fig. 12). For flood attack,
the entropy value increases suddenly. Any deviation as such deter-
mines the possibility of an attack.

We use threshold values as our base for demarcation (Table VI). The
distributed features are processed with the three base time slots, and
entropy deviation beyond the average threshold entropy of benign
or no-network traffic determines our attack. The details are sent to a
registered email-ID in case it has exceeded the threshold limit. The
PCAP file generated gives the flexibility to analyze network traffic at
our convenience.

We calculate the most common attributes from the flows like packet
count, source IP, destination IP, packet size, time, and date. For our
network performance monitor, we use these details for both incom-
ing and outgoing network traffic (Fig. 13).

While we analyzed the normal and attack data, we found that other
parameters also show significant variations during an attack. They are
packet size, inter-packet interval, mean, and variance with respect to
entropy variations. These data-information metrics and their devia-
tions can further aid in detecting DDoS attacks to improve the detec-
tion performance and decrease the processing time, though we
have only used entropy variations as base of attack determination to
keep our detector lightweight.

A. Packet Size
The packet size distribution varies significantly in different proto-
cols and different traffic patterns. In a DDoS attack, the packet size
of some may even cross over to 1600 bytes or even more, but the
majority are in less packet size range (Fig. 14).

B. Inter-packet Interval
Another feature to check is inter-packet interval. A vast majority of
DDoS attack traffic have close to zero inter-packet intervals (ΔT) and
high first and second derivatives of inter-packet intervals. Using ΔT,
∂ΔT/dt and ∂2ΔT/dt2 as features allows a classifier to capitalize on
this difference between normal and DDoS traffic (Fig. 15).

C. Mean and Variance
From mean–variance variation data in attack and normal traf-
fic [50] for different source IPs, we infer that the mean is low and

TABLE V. THE DESCRIPTION OF VARIOUS SYMBOLS AND PARAMETERS
USED IN MATHEMATICAL MODELLING

Notation Description

ϒ Order of the system
ϒ ≥ 0, ϒ ≠ 1

p probability distribution function

Log2η maximum probability function

Hϒ(χ) Entropy value of probability distribution function formed by source/
destination IPs with order (ϒ)

χ Random variable representing Source/Destination IPs

η Total number of possible IP values

Fig. 12. Shannon—Entropy variation (a) attack traffic and (b) normal traffic

TABLE VI. AVERAGE ENTROPY VALUES FOR VARIOUS TRAFFIC PATTERNS IN
DIFFERENT TIME FRAMES

Time Slot
(TW)

Average-Entropy
No-Network Traffic

Average-Entropy
Benign traffic

Average- Entropy
Attack Traffic

3 minutes 0.7901 0.6478 0.3810

5 minutes 0.7806 0.6518 0.3426

7 minutes 0.7899 0.6437 0.0310

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

171

variance is high for an attack traffic. Also, the normal data pattern
shows low variance approximating 0, while the variance is slightly
high for attack data (Tables VII and VIII). The calculations are taken
with respect to entropy variations. The entropy variation is high in
IP (192.120.225.114) and thus has high variance than the rest. The
same results are obtained in [39], but the limitation of the proposed
method is that it is limited to application layer attack. The method
also has a high response time and complexity in training the neural
network.

To generalize, these parameters vary when a system is under a DDoS
attack, and any deviation from the normal values predicts its occur-
rence. Table IX gives us the idea of these variations in normal traffic
and DDoS traffic.

VII. PERFORMANCE ANALYSIS

For the performance analysis of our DDoS detector, we use well-
known metrics and parameters such as accuracy, FPR, sensitiv-
ity, specificity, precision, recall, F1 score, CPU-RAM utilization, and
response time.

We use confusion matrix and AUC curve to calculate these param-
eters (Fig. 16). We have 779 true positives, 193 true negatives, 6 false
positives, and 14 false negatives. The accuracy score and other per-
formance metric scores are given in Table X.

We also performed the CPU utilization analysis to check the effi-
ciency of our DDoS detection system.

Fig. 14. Cumulative distribution function vs. packet size variation (a) attack traffic and (b) normal traffic.

Fig. 13. Network performance monitor.

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

172

Figure 17 gives us the details of CPU utilization of our virtual machine
(with VMware workstation as our hypervisor) set up with 4 Gb allotted
RAM. We used a simple system setup with an ubuntu operating system
and PyCharm installed as our IDE. During an attack, the average CPU
utilization was 34.46% (range 30–45%), which is a considerable low

resource utilization for a detection setup. When the incoming packets
reached a rate of 7–12 Mbits/s (during an attack), the CPU utilization
reached a high of 65–85%. Following the detection and entropy calcu-
lation, the CPU utilization remained the same and got lower to 22.4%
after 1 minute. The outgoing traffic remained almost constant during

Fig. 15. A, B. Cumulative distribution function vs. inter-packet interval (A) attack traffic and (B) normal traffic.

TABLE VII. MEAN AND VARIANCE WITH RESPECT TO ENTROPY VARIATIONS IN DIFFERENT TIME FRAMES FOR ATTACK TRAFFIC

Source IP-Address

Entropy Calculations

Mean VarianceTime Frame I Time Frame II Time Frame III Time Frame IV Time Frame V

192.168.1.104 0.97 2.078 2.031 1.89 1.21 1.6358 0.260234

192.120.225.114 0.829 0.930 2.432 0.111 0.201 0.9006 0.866021

104.18.21.226 1.625 1.654 1.88 1.765 1.454 1.6756 0.025476

49.44.138.104 1.351 1.4207 1.507 1.660 1.002 1.38814 0.059895

34.107.221.82 1.351 2.479 1.432 1.234 0.998 1.4988 0.327005

172.217.167.35 1.351 1.838 1.99 1.897 1.543 1.7238 0.071393

192.0.73.21 1.625 1.943 1.67 1.406 1.444 1.6176 0.045899

18.205.100.99 1.625 1.789 1.709 1.777 1.201 1.6202 0.059179

TABLE VIII. MEAN AND VARIANCE WITH RESPECT TO ENTROPY VARIATIONS IN DIFFERENT TIME FRAMES FOR NORMAL TRAFFIC

Source IP-Address

Entropy Calculations

Mean VarianceTime Frame I Time Frame II Time Frame III Time Frame IV Time Frame V

192.168.1.104 0.8010 0.801 0.788 0.796 0.843 0.8058 0.000461

192.120.225.114 0.944 0.823 0.852 1.065 1.146 0.966 0.019032

104.18.21.226 1.16 1.2 1.216 1.065 1.146 1.1574 0.003481

49.44.138.104 1.420 1.2 1.477 1.31 1.4 1.3614 0.011745

34.107.221.82 1.420 1.46 1.477 1.31 1.146 1.3626 0.018888

104.22.0.175 1.16 1.2 1.216 1.31 1.4 1.2572 0.009399

104.22.1.1 1.16 1.46 1.477 1.065 0.8 1.1924 0.080966

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

173

the entire session ranging from 0.02 to 1.75 Mbits/s. The minimum
CPU utilization during the attack was 45% which lowered to 17.9%
after the DDoS attack was stopped. Our base system configuration
(Windows 10 Operating/Intel(R) Core (TM) i5-8265U CPU @ 1.60GHz
1.80 GHz 16 Gb) had CPU utilization of 12% with no attack to a high of
77% with an attack. The memory use was 79% (8.5 MB). The average
CPU utilization remained 28.6% which is significantly less.

Moreover, our system has very less data memory requirement with
our python code and PCAP file taking 8 Kb and 560 Kb of space,

TABLE IX. TRAFFIC PATTERN VARIATIONS IN NORMAL AND ATTACK TRAFFIC

Parameters Normal (Benign Traffic) Attack Traffic

Average packet size 0–600 bytes 0–1800 bytes

Average inter-packet interval 0–0.2 ms 0–1 ms

Average mean (entropy) 1.16 1.507

Average variance (entropy) 0.019 0.21438

Fig. 16. Confusion matrix and AUC curve.

TABLE X. PERFORMANCE METRIC SCORES

Accuracy (%) FPR (%) Sensitivity (%) Specificity (%) Precision Recall F1

97.9 0.03 0.9823455 0.96984924 0.992356 0.0075662 0.9873257

Fig. 17. CPU utilization of our DDoS detector virtual machine (Ubuntu) with incoming and outgoing traffic progressing from No Traffic to Attack
Traffic.

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

174

respectively. The response of our detector to the attack is fast. Our
proposed method can detect the attack within 0.1–3.0 seconds even
if the number of packets is comparatively low.

A. Comparison with Existing Methods
We use specific parameters to compare our DDoS detection method
with existing methods and techniques based on entropy variations.
The noteworthy being the accuracy, FPR, FNR, average CPU-RAM uti-
lization, and response time. These parameters are paramount in pre-
dicting the novelty and efficiency of an approach.

Comparing with the recent existing techniques (Table XI), one can
infer that our proposed method of DDoS detection shows high accu-
racy with low FPR and FNR. It is also noteworthy that our proposed
detector has a fast response time and CPU utilization during the
whole process remained low.

VIII. CONCLUSION

Various security challenges are seen in different legacy and tradi-
tional networks with different IDSs working to detect the DDoS
traffic. High computational complexity, high traffic overhead, low
accuracy, and high FPR add to the issues already faced by users due
to the attack. We used a simple setup and a cross-platform python
scripting tool to make it lightweight and robust. The email alert
feature is added to notify the attack detailing the attack sent in the
email attachments. We used parallel programming to set the con-
nections, provide real-time traffic monitoring, and detect the attack
based on entropy variations simultaneously to reduce the traffic-
overhead and latency.

We used accuracy, FPR, sensitivity, specificity, precision, recall, F1
score, CPU-RAM utilization, and response time as our detection per-
formance metrics. Our implementation uses 1.2% CPU initially with
29.8 MB memory usage. After the attack detection and alerting, the
average CPU utilization remained 28.6% which is significantly less.
Calculating the FPR, FNR, accuracy, and average response time, we
have FPR and FNR as 0.03 and 0.001, respectively, and an accuracy
of 97.9% with an average response time of 0.1–3 seconds. The pro-
posed detection method has improved performance and produces
efficient results with low resource utilization compared to the other
existing techniques.

As for future work, we can incorporate the DDoS mitigation frame-
work into it to have both detection and mitigation in a single setup.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – B.H.; Design – B.H.; Supervision – F.K.;
Materials – B.H.; Data Collection and /or Processing – B.H.; Analysis and/or
Interpretation – B.H., F.K.; Literature Review – B.H., F.K.; Writing – B.H., F.K.;
Critical Review – B.H., F.K.

Declaration of Interests: The authors have no conflicts of interest to declare.

Funding: The authors declared that this study has received no financial support.

REFERENCES

1. 2021 Akamai Report. Available: https ://ww w.aka mai.c om/us /en/r esour
ces/o ur-th inkin g/sta te-of -the- inter net-r eport /glob al-st ate-o f-the -inte
rnet- secur ity-d dos-a ttack -repo rts.j sp.

2. Available: https ://se curel ist.c om/dd os-at tacks -in-q 3-202 0/991 71/.
3. Available: https ://ww w.bus iness wire. com/n ews/h ome/2 02009 29005

235/e n/NET SCOUT -Thre at-In telli gence -Repo rt-Sh ows-D ramat ic-In creas
e-in- Multi vecto r-DDo S-Att acks- in-Fi rst-H alf-2 020.

4. Available: https ://ww w.net scout .com/ blog/ what- watch -2021 .
5. Y. Mirsky, and M. Guri, “DDoS attacks on 9-1-1 emergency services,” IEEE

Trans. Depend. Sec. Comput., 1–1, 2020. [CrossRef]
6. B. Hussain, Q. Du, B. Sun, and Z. Han, “Deep learning-based DDoS-attack

detection for cyber–physical system over 5G network,” IEEE Trans. Ind.
Inform., vol. 17, no. 2, pp. 860–870, 2020. [CrossRef]

7. Madiha H. Syed, E. B. Fernandez, and J. Moreno, “A misuse Pattern for
DDoS in the IoT,” Proceedings of the 23rd European Conference on Pattern
Languages of Programs, 2018.

8. N. Umamaheswari, and R. Renugadevi, “A subset feature selection based
DDoS detection using cascade correlation optimal neural network for
improving network resources in virtualized cloud environment,” IOP
Conf. S. Mater. Sci. Eng. vol. 993, no. 1, 2020. [CrossRef]

9. J. Cheng, C. Zhang, X. Tang, V. S. Sheng, Z. Dong, and J. Li, “Adaptive
DDoS attack detection method based on multiple-kernel learning,” Sec.
Commun. Netw., vol. 2018, 1–19, 2018. [CrossRef]

10. R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos detec-
tion for consumer internet of things devices,” 2018, IEEE Security and
Privacy Workshops (SPW). IEEE Publications.

11. S. Behal, K. Kumar, and M. Sachdeva, “D-FACE: An anomaly based dis-
tributed approach for early detection of DDoS attacks and flash events,”
J. Netw. Comput. Appl., vol. 111, pp. 49–63, 2018. [CrossRef]

12. R. Vishwakarma, and A. K. Jain, “A honeypot with machine learning
based detection framework for defending IoT based botnet DDoS
attacks.” 3rd International Conference on Trends in Electronics and Infor-
matics (ICOEI), IEEE Publications, 2019.

13. B. Kriti, and B. B. Gupta. “Distributed denial of service (DDoS) attack
mitigation in software defined network (SDN)-based cloud computing
environment.” J. Amb. Intell. Human. Comp. Vol. 10, no. 5, 2019,
pp. 1985–1997.

14. C. Li et al., “Detection and defense of DDoS attack–based on deep learn-
ing in OpenFlow‐based SDN,” Int. J. Commun. Syst., vol. 31, no. 5,
p. e3497, 2018. [CrossRef]

TABLE XI. COMPARATIVE ANALYSIS OF VARIOUS ENTROPY BASED DETECTION SETUPS

Method
Detection

Accuracy (%) FPR FNR
Average CPU

Utilization (%) RAM MB
Average Response

Time (Seconds)

1. Entropy-based anti DDoS model in SDN [46] 93–94 0.06 0.06 40-50 NA NA

2. S-DPS SDN based DDoS protection for
smart grids [38]

100 0 0 55 205 25

3. Entropy-based application layer DdoS
detection using ANN [39]

98 NA NA 50-88 NA 20

4. Smart detection [40] 93-96 0.2 0.04 60-80 NA NA

5. Proposed method 97.9 0.03 0.001 28.6 8.5 0.1-3

FPR, false positive rate; FNR, false negative rate; RAM, random access memory.

https://www.akamai.com/us/en/resources/our-thinking/state-of-the-internet-report/global-state-of-the-internet-security-ddos-attack-reports.jsp
https://www.akamai.com/us/en/resources/our-thinking/state-of-the-internet-report/global-state-of-the-internet-security-ddos-attack-reports.jsp
https://www.akamai.com/us/en/resources/our-thinking/state-of-the-internet-report/global-state-of-the-internet-security-ddos-attack-reports.jsp
https://securelist.com/ddos-attacks-in-q3-2020/99171/
https://www.businesswire.com/news/home/20200929005235/en/NETSCOUT-Threat-Intelligence-Report-Shows-Dramatic-Increase-in-Multivector-DDoS-Attacks-in-First-Half-2020
https://www.businesswire.com/news/home/20200929005235/en/NETSCOUT-Threat-Intelligence-Report-Shows-Dramatic-Increase-in-Multivector-DDoS-Attacks-in-First-Half-2020
https://www.businesswire.com/news/home/20200929005235/en/NETSCOUT-Threat-Intelligence-Report-Shows-Dramatic-Increase-in-Multivector-DDoS-Attacks-in-First-Half-2020
https://www.netscout.com/blog/what-watch-2021
https://doi.org/10.1109/TDSC.2019.2963856
https://doi.org/10.1109/TII.2020.2974520
https://doi.org/10.1088/1757-899X/993/1/012055
https://doi.org/10.1155/2018/5198685
https://doi.org/10.1016/j.jnca.2018.03.024
https://doi.org/10.1002/dac.3497

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

175

15. M. Idhammad, K. Afdel, and M. Belouch, “Semi-supervised machine
learning approach for DDoS detection,” Appl. Intell., vol. 48, no. 10,
pp. 3193–3208, 2018. [CrossRef]

16. N. Dayal, P. Maity, S. Srivastava, and R. Khondoker, “Research trends in
security and DDoS in SDN,” Sec. Commun. Netw., vol. 9, no. 18,
pp. 6386–6411, 2016. [CrossRef]

17. N. Ravi, and S. M. Shalinie, “Learning-driven detection and mitigation of
DDoS attack in IoT via SDN-cloud architecture,” IEEE Internet Things J.,
vol. 7, no. 4, pp. 3559–3570, 2020. [CrossRef]

18. K. Bhardwaj, J. C. Miranda, and A. Gavrilovska, “Towards IoT-DDoS pre-
vention using edge computing,” {USENIX} Workshop on Hot Topics in
Edge Computing (HotEdge 18), 2018.

19. M. P. Singh, and A. Bhandari, “New-flow based DDoS attacks in SDN:
Taxonomy, rationales, and research challenges” Comput. Commun.,
vol. 154, pp. 509–527, 2020. [CrossRef]

20. L. Tan, K. Huang, G. Peng, and G. Chen, “Stability of TCP/AQM networks
under DDoS attacks with design,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4,
3042–3056, 2020. [CrossRef]

21. G. Somani, M. S. Gaur, D. Sanghi, M. Conti, M. Rajarajan, and R. Buyya,
“Combating DDoS attacks in the cloud: Requirements, trends, and
future directions,” IEEE Cloud Comput., vol. 4, no. 1, pp. 22–32, 2017.
[CrossRef]

22. V. Deepa, K. Muthamil Sudar, and P. Deepalakshmi, “Design of ensemble
learning methods for DDoS detection in SDN environment.” Interna-
tional Conference on Vision Towards Emerging Trends in Communica-
tion and Networking (ViTECoN), IEEE Publications, 2019.

23. K. Li et al., “Effective DDoS attacks detection using generalized entropy
metric.” International Conference on Algorithms and Architectures for
Parallel Processing, Berlin, Heidelberg, Springer, 2009.

24. M. Roopak, G. Y. Tian, and J. Chambers, “Multi -obje ctive -base d feature
selection for DDoS attack detection in IoT networks,” IET Netw., vol. 9,
no. 3, pp. 120–127, 2020. [CrossRef]

25. J. Ye, X. Cheng, J. Zhu, L. Feng, and L. Song, “A DDoS attack detection
method based on SVM in software defined network,” Sec. Commun.
Netw., vol. 2018, 1–8, 2018. [CrossRef]

26. A. Fadil, I. Riadi, and Sukma Aji, “A novel ddos attack detection based on
gaussian naive bayes,” Bulletin EEI, vol. 6, no. 2, pp. 140–148, 2017.
[CrossRef]

27. S. N. Shiaeles, V. Katos, A. S. Karakos, and B. K. Papadopoulos, “Real time
DDoS detection using fuzzy estimators,” Comput. Sec., vol. 31, no. 6,
pp. 782–790, 2012. [CrossRef]

28. K. J. Singh, and T. De, “DDOS attack detection and mitigation tech-
nique based on Http count and verification using CAPTCHA.” Interna-
tional Conference on Computational Intelligence and Networks, IEEE
Publications, 2015.

29. T. F. Ghanem, W. S. Elkilani, and H. M. Abdul-Kader, “A hybrid approach
for efficient anomaly detection using metaheuristic methods,” J. Adv.
Res., vol. 6, no. 4, pp. 609–619, 2015. [CrossRef]

30. S. Hameed, and U. Ali, “Efficacy of live DDoS detection with Hadoop,”
NOMS 2016–2016 IEEE/IFIP Network Operations and Management
 Symposium, IEEE Publications, 2016.

31. H. Nazrul, H. Kashyap and D. K. Bhattacharyya. “Real-time DDoS attack
detection using FPGA,” Computer Communications, vol. 110, pp. 1–10, 2017.

32. Y. Gu, Y. Wang, Z. Yang, F. Xiong, and Y. Gao, “Multi ple-f eatur es-ba sed
semisupervised clustering DDoS detection method,” Math. Probl. Eng.,
vol. 2017, 1–10, 2017. [CrossRef]

33. J. Cui, M. Wang, Y. Luo, and H. Zhong, “DDoS detection and defense
mechanism based on cognitive-inspired computing in SDN,” Future
Gener. Comput. Syst., vol. 97, pp. 275–283, 2019. [CrossRef]

34. D. Erhan, and E. Anarim, “Hybrid DDoS detection framework using
matching pursuit algorithm,” IEEE Access, vol. 8, pp. 118912–118923,
2020. [CrossRef]

35. R. M. A. Ujjan, Z. Pervez, K. Dahal, A. K. Bashir, R. Mumtaz, and J. González,
“Towards sFlow and adaptive polling sampling for deep learning based
DDoS detection in SDN,” Future Gener. Comput. Syst., vol. 111,
pp. 763–779, 2020. [CrossRef]

36. Z. Liu, X. Yin, and Y. Hu, “CPSS LR-DDoS detection and defense in edge
computing utilizing DCNN Q-Learning,” IEEE Access, vol. 8,
pp. 42120–42130, 2020. [CrossRef]

37. R. M. A. Ujjan et al., “Entropy based features distribution for anti-DDoS
model in SDN,” Sustainability, vol. 13, no. 1522.” (2021), 2021. [CrossRef]

38. H. Mahmood, D. Mahmood, Q. Shaheen, R. Akhtar, and W. Changda, “S-
DPS: An SDN-based DDoS protection system for Smart grids,” Sec. Com-
mun. Netw., vol. 2021, 1–19, 2021. [CrossRef]

39. K. Johnson Singh, K. Thongam, and T. De, “Entropy-based application
layer DDoS attack detection using artificial neural networks,” Entropy,
vol. 18, no. 10, p. 350, 2016. [CrossRef]

40. F. A. F. Silveira et al., “Smart detection-IoT: A DDoS sensor system for
Internet of Things.” International Conference on Systems, Signals and
Image Processing (IWSSIP), IEEE Publications, 2020.

41. S. Behal, and K. Kumar, “Detection of DDoS attacks and flash events
using novel information theory metrics,” Comput. Netw., vol. 116,
pp. 96–110, 2017. [CrossRef]

42. M. Idhammad, K. Afdel, and M. Belouch, “Detection system of HTTP DDoS
attacks in a cloud environment based on information theoretic entropy
and random forest,” Sec. Commun. Netw., vol. 2018, 1–13, 2018. [CrossRef]

43. M. Nooribakhsh, and M. Mollamotalebi, “A review on statistical
approaches for anomaly detection in DDoS attacks,” Inf. Sec. J. Glob. Per-
spect., vol. 29, no. 3, pp. 118–133, 2020. [CrossRef]

44. A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic fea-
ture distributions,” ACM Sigcomm Comput. Commun. Rev., vol. 35, no. 4,
pp. 217–228, 2005. [CrossRef]

45. J. Galeano-Brajones, J. Carmona-Murillo, J. F. Valenzuela-Valdés, and F.
Luna-Valero, “Detection and mitigation of dos and ddos attacks in iot-
based stateful sdn: An experimental approach,” Sensors (Basel), vol. 20,
no. 3, p. 816, 2020. [CrossRef]

46. N. M. AbdelAzim, S. F. Fahmy, M. A. Sobh, and A. M. Bahaa Eldin, “A
hybrid entropy-based DoS attacks detection system for software
defined networks (SDN): A proposed trust mechanism,” Egypt. Inform. J.,
vol. 22, no. 1, 85–90, 2021. [CrossRef]

47. S. Behal, and K. Kumar, “Detection of DDoS attacks and flash events
using information theory metrics–an empirical investigation,” Comput.
Commun., vol. 103, pp. 18–28, 2017. [CrossRef]

48. A. Mishra, N. Gupta, and B. B. Gupta, “Defense mechanisms against
DDoS attack based on entropy in SDN-cloud using POX controller,” Tel-
ecommun. Syst., pp. 1–2, 2021.

49. N. Agrawal, and S. Tapaswi, “An SDN-assisted defense Mechduanism for
the shrew DDoS attack in a cloud computing environment,” J. Netw. Syst.
Manag., vol. 29, no. 2, pp. 1–28, 2021.

50. S. Sambangi, and L. Gondi, “A machine learning approach for DDoS (dis-
tributed denial of service) attack detection using multiple linear regres-
sion,” Multidisciplinary Digital Publishing Institute Proceedings, vol. 63,
no. 1, 2020.

https://doi.org/10.1007/s10489-018-1141-2
https://doi.org/10.1002/sec.1759
https://doi.org/10.1109/JIOT.2020.2973176
https://doi.org/10.1016/j.comcom.2020.02.085
https://doi.org/10.1109/TNSE.2020.3012002
https://doi.org/10.1109/MCC.2017.14
https://doi.org/10.1049/iet-net.2018.5206
https://doi.org/10.1155/2018/9804061
https://doi.org/10.11591/eei.v6i2.605
https://doi.org/10.1016/j.cose.2012.06.002
https://doi.org/10.1016/j.jare.2014.02.009
https://doi.org/10.1016/j.future.2019.02.037
https://doi.org/10.1109/ACCESS.2020.3005781
https://doi.org/10.1016/j.future.2019.10.015
https://doi.org/10.1109/ACCESS.2020.2976706
https://doi.org/10.3390/su13031522
https://doi.org/10.1155/2021/6629098
https://doi.org/10.3390/e18100350
https://doi.org/10.1016/j.comnet.2017.02.015
https://doi.org/10.1155/2018/1263123
https://doi.org/10.1080/19393555.2020.1717019
https://doi.org/10.1145/1090191.1080118
https://doi.org/10.3390/s20030816
https://doi.org/10.1016/j.eij.2020.04.005
https://doi.org/10.1016/j.comcom.2017.02.003

Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

176

Beenish Habib is a PhD candidate in the Department of Electronics and Communication Engineering in NIT Srinagar. Her
field of expertise is Cloud and Network Security and is mainly working on detecting and mitigating DDoS attacks. She has
done her Bachelors in Technology in ECE from IUST Awantipora and Masters in Technology in Communication and IT from
NIT Srinagar. She has 3 years of teaching experience and 4 years of research experience.

Dr. Farida Khurshid is currently providing services as Associate Professor in ECE department in NIT Srinagar. She has
authored and co-authored multiple peer-reviewed scientific papers and presented works at many national and interna-
tional conferences. Her research interests include Digital Image Processing, Security and Biometrics.

APPENDIX A

Algorithm A: C&C Server

1: procedure *Set Connection Parameters (Addresses of Hosts, Ports, Threading and Queue)

2: //Create Socket S

3: Set it for TCP/IPv4 protocol

4: Connect it to the IP and Port (Listen)

 If error Print (error)

 If Previous Connections Present {Delete addresses}

5:// main loop. Stops when Exit Command Executed

6: while (no keyboard interrupt)

7: // set Connection C (Heartbeat: “hi” and “hello” encoded and decoded in binary and human readable format utf-8)

8: Print (Connection has been established with the IP and Port)

9 Set value (Commands cmd)

10. while

 if cmd = input (‘Shell >‘) //list all the connections

 select >1 to select bot 1, >2 for bot 2 and for any exception print None

 if cmd=quit: break the connection and return back to Shell (9)

 if cmd = exit: exit connection and close the socket {delete all connections and addresses}

 if cmd (ln >0) {character string}

 encode (character string-Bytes)

 decode (Bytes-character string)

 print (character string)

11. end while

12: //

13: Set Threads t (Server Multiple Tread Connections, Jobs j {1,2})

14: 1 a. Set Connections {j==1}

b. Accept Connections

 2. Command Execution {j==2}

15: Return //main

Algorithm B: DDoS Attack

1: procedure *Import Scapy & random

2: //Set target_ip

3: Create random IP {ip=string in range {1,254} and i in range {4}}

4: Join (ip)

5: ip_list {random IPs and in range i= {specified number}}

6: Print (ip_list)

7: //while (True)

8: ip1 = IP with source and destination IP

 tcp1 = TCP with source and destination port (80)

9: Generate Packets {packet = ip1 / tcp1 with interval .10 seconds}

10: Increment (i) 11: end //

Algorithm C: Real Time DDoS Attack Detection and Email Alerting

1: Procedure * Import Scapy, Counter, Plotly, Web-browser, Pandas, smtplib, datetime, ssl, email, psutil, multiprocessing, time, email.mime and
encoder-64.

2: while(true)

3: call pkt_chk(0) //check individual packets

4: check pkt_chk(i)

5: If {pkt_header flags Sij ,Ack}

6: calculate pkt_number Np

7: if Sij = ‘SYN’ || Ack = ‘0’

8: call pkt_number Np(i)

9: if Np(i) > ϑj { where ϑj = 25 }

10: print (“DDoS in Progress”)

11: else {print (“Looks Good !!”)}

12: //end if

13: Store Input = data (“DDoS.pcap”)

14: start parallel processes

15: //Plot Offline Network Graphs for IP list and individual Packet Count (bytes received and bytes sent).

16: //Visualize Real -Time Incoming/Outgoing Traffic (Traf fic-V isual izer) .

17: //If alert (“DDoS Attack in Progress”)

18: // send email {server login to a registered email-id)

19: //email-alert = ‘‘‘Dear Admin,

Your IDS has detected DDoS Attack.

Please check attachment

DDoS Tool

 ‘‘‘ //

20: continue (Traffic-Visualizer)

Algorithm D: Entropy Calculation

1: Procedure *Import maths and NumPy

2: //Set entropy and counter =0

3: for loop to iterate through every IP in the list

4: item x in range(len(data))

5: counter +=1

6. Probability = float (coun ter)/ len(d ata)

7: Entro py+=- prob* maths .log{ prob, 2}

8: print (“Entropy: {}”.format(entropy))

9: end //

Algorithm E: Entropy based DDoS Detection

1: Procedure *Input: Traffic data , ϑnT , ϑn⁰

2. Output: Entropy value

3: //Set Time_Window {TW ← 3 min,5 min, 7 min}

4: for loop to iterate through every IP in the list

5: Probability = float (coun ter)/ len(d ata)

6: Entro py+=- prob* maths .log{ prob, 2}

7: Calculate average entropy ϑnA₁

8: ϑnA ← ϑnA₁ /logη (Normalization)

9: if ϑnA < ϑnT || ϑnA < ϑn⁰

 Set traffic ← Attack

 Else ← Benign /Normal Traffic

10: end //

