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ABSTRACT

Among the recent network infrastructure proliferations, distributed denial of service (DDoS) attack continues to be one of the most severe security threats. It becomes 
difficult to detect and demarcate the high volume of data and a huge number of users in any conventional network. The network randomness, physical attacks, and 
DDoS attacks leave their imprint through bandwidth profile (throughput), latency (time duration), and network traffic information (metadata). These three parameters 
form the crux of any detection setup. In this paper, we propose a fast, cost-efficient, open-source, and effective real-time entropy-based DDoS detector that uses 
entropy variations of Transmission Control Protocol-Synchronize packets as a base for attack detection. The attack traffic is self-generated through a compromised 
Bot-System controlled by a Command and Control Server. This way, we analyze the actual representative characteristics of the attack pattern. Our DDoS detector not 
only detects the attack but also sends the contextual information to a registered email ID. The attack information provides required network traffic characterization for 
the threshold-entropy calculations and its mathematical modelling, all that in real time. We code the whole architecture in python. It provides an optimal detection 
sensitivity and enhances predicting an attack with less resource utilization.
Index Terms—Botnet, distributed denial of service, email alert, entropy, intrusion detection system, python
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I. INTRODUCTION

With most of the data and information on the internet, the world is now more prone to global 
data thefts, intrusions, and bandwidth bankruptcy. In the first half of 2020 itself, there was a 15% 
increase in the network traffic with 4.83 million distributed denial of service (DDoS) attacks glob-
ally [1]. The methodology of the DDoS attack and its area of impact got changed due to covid 
outbreak and the consequent lockdown. Attackers are now targeting healthcare, e-commerce, 
and education. More than 930 000 attacks took place in May 2020, making it the hardest-hit 
month of the year [2]. Distributed Denial of Service attack coefficient [3] has increased as attack-
ers do not pay for the bandwidth, leading to its most significant theft globally. As of 2021 [4], 
DDoS topped the list of most frequent cybersecurity incidents.

These attacks have affected internet services and telephony, and emergency services like 911 
[5]. The global botnet breaches in 2021 have even reached 4G-5G spectrum inculcating short 
message service (SMS) flooding, fake signal calls, and cell phone jamming [6]. The DDoS attack 
launched by a Bot-Network [7] makes the internet a more vulnerable place. Spam emails with 
links to various threats and security breaches are alarming.

To detect such attacks, we need an intelligent detection system. Every detection setup uses 
machine learning, artificial intelligence (AI), soft computing, or mathematical and statistical 
knowledge. The recent research has also contributed more to studying correlation functions, 
fuzzy estimators, regression functions, or linear predicting models [8,9]. There has been an 
advancement in machine learning and AI techniques in early anomaly detection [10,11]. The traf-
fic parameters used in most of the detectors include packet length, inter-packet intervals, protocol 
used, IP address, and number of packets. In recent techniques, the other parameters for identi-
fying malicious data [12] include distance functions (Euclidean, City-Block, and Mahalanobish), 
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correlation functions (Person, Spearman, and Kendall), or entropy 
functions (Shannon or Kolmogorov).

A lot of research work is now done on DDoS detection using 
Software Defined Networking (SDN). OpenFlow technology used in 
SDN enable multiple interfaces to use one single protocol [13,14].

These techniques, though robust, give a pre-defined environment 
with no means of further modifications. Moreover, most intrusion 
detection systems (IDSs) work for varied forms of attacks and not 
specifically for DDoS only. BRO (Zeek) requires a UNIX platform, 
Snort is difficult to deploy with attacks causing information over-
load, OSSEC have default rules, Tripwire cannot generate a real-time 
alert, and Suricata is slower in detection. Most of the IDS-IPS aim at 
reducing the spread of attack by blocking outgoing malicious traf-
fic from the compromised system. But it gets undetected due to 
non-continuous updating. Also, many IDS-IPS systems have complex 
training setups, non-contextual alert systems, and high attack false 
positive rate (FPR) [15].

II. RELATED WORK
A lot of research is carried out to enable the security of legacy or 
traditional networks [16]. The DDoS attack continues to grow sig-
nificantly in the time-space paradigm both in size and frequency, 
depriving users of computing services [17]. The need is to detect and 
mitigate the attack with low computational cost, complexity, and 
latency [18]. While traditional networks have security implementa-
tions with limited features, modern networks like OpenFlow enabled 
SDN infrastructure try to be quite effective.

Software defined networking is a modern and robust platform, but 
the control plane faces many security flaws. The centralized archi-
tecture also makes it prone to various threats and attacks. Recently, 
massive DDoS attacks have been targeted on the control plane [19], 
making it more vulnerable than any other computing architecture. 
To use it for DDoS attack detection does not seem to be a good 
option. Even if we work with distributed architecture with each 
router monitoring the anomaly and alarming the next, it increases 
the network complexity and burdens the individual routers [20]. 
Some of the individual routers and IoT devices further aid in con-
ducting DDoS attacks.

In SDN architecture, intrinsic approaches are not considered feasible. 
They have the requirement of extrinsic solutions. Recently, SDN utiliz-
ing the machine learning approach has made advancements against 
these volumetric attacks [21]. Artificial Neural Network and eXtreme 
Gradient Boosting with hybrid machine learning-based algorithm 
based on Self Organizing Map and k-Nearest Neighbour increased 
detection accuracy [22]. Other machine learning techniques used 
for attack detection include association-based approaches (fuzzy 
association, multivariate correlation, apriori, sequence analysis), 
classification-based approaches (Naïve Bayes, C4.5, support vec-
tor machine, entropy), clustering-based approaches (outlier detec-
tion, fuzzy C-means clustering, k-mean), hybrid-based approaches 
(Wavelet & Singular Value Decomposition and genetic algorithm-
based approaches.

The high detection accuracy and low FPR of these algorithms may 
seem appealing, but the training phase, threshold selection, and 
prediction analysis increase the complexity. The further challenge 
of these algorithms is selecting optimal features and their multiple 
combinations as inputs for traffic processing.

Mathematical modelling with probability distribution functions 
is further used to enhance the detection of DDoS attacks [23]. 
Inter-packet interval follows the power law and is modelled using 
pareto distribution [24]. On the other hand, lognormal distribution 
models the network traffic information better. The Kolmogorov-
Smirnov gives an idea of distribution curves, and so does Pearson’s 
chi-square test. ANOVA gives the analysis of variance. Such statisti-
cal approaches aid in detecting layer 3 and 4 DDoS (internet con-
trol message protocol, user datagram protocol, SYN, TCP) [25]. The 
general analysis has assumed attack packets to arrive in pareto 
distribution and benign traffic in Gaussian distribution [26]. Such 
demarcations in traffic patterns using mathematical modelling may 
seem appealing, but they have lower detection accuracy and high 
computational complexity.

The detailed literature review of various DDoS detection methods 
proposed and used in the past along with their constraints is given 
in Table I [27-40].

A. Motivation
From the literature survey, we find that there is the use of various 
traffic features, attributes, and variations for the classification of nor-
mal and attack traffic. Most of the implementations involves the use 
of machine learning approaches and the use of software-defined 
networking. Though they are efficient in accuracy scores,the process 
of feature extraction and training of the machine learning models, 
with multiple algorithms for attack detection in AI and the intricacy 
of control plane and data plane in SDNs, adds to the computational 
complexity in these setups. The other issues are high traffic over-
head, detection delay, low accuracy, and no inbuilt alert system with 
high FPR and false negative rate (FNR).

Among all these mathematical and statistical approaches, entropy 
is the most extensively used approach for traffic classification in 
most DDoS detection frameworks [41-43]. We know that any kind 
of change or anomaly causes change in the traffic characteristics. 
The entropy variation in a DDoS attack was extensively discussed by 
Lakhina et al. [44].

Some features vary considerably, while some have no change at all. 
It was source IPs that showed considerable variations than destina-
tion IPs [45]. This became valuable information and was used as a 
standard to demarcate the attacks [46].

Using entropy as the main feature for attack detection is also more 
practical and accurate with a low FPR and FNR [47]. It is also extend-
ible in checking various traffic attributes, that is, source/destination 
IP addresses, source/destination port, and even protocol [37]. The 
feature extraction and distribution also showed improved perfor-
mance with respect to decreased processing overhead, redundancy, 
and less response time [48,49].

To use entropy for DDoS detection on a simple setup is the main 
focus of our work. We thus propose a lightweight DDoS detector 
based on entropy variations in a Bot-Network with an inbuilt alert 
system. We code the whole architecture in python with the use of 
minimum resources, keeping the robustness and accuracy intact.

1) Contributions
We summarise our contributions as follows:
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1) A lightweight real-time entropy-based DDoS Detection mecha-
nism is proposed, with better efficiency, low computational 
cost, and overhead.

2) Proximate real-time traffic pattern from a Bot-Network is used. 
The self-generated DDoS traffic data set improves detection 
capability.

3) It has an inbuilt email alert system. The alert with the detailed 
contextual information is sent to a registered email ID.

4) It uses both signature as well as anomaly detection techniques. 
For signature detection, collaborative threshold is used, and for 
anomaly detection, entropy variations determine the attack.

5) The resource utilization (CPU-RAM) is optimized without com-
promising the detection capability. It is highly accurate with low 
FPR, FNR, and low response time.

Rest of paper is organized as follows. The proposed detection meth-
odology for DDoS attack is presented as Section III. The experimental 
setup and entropy calculation and its proposed implementation are 
discussed in Sections IV and V, respectively, with results and per-
formance evaluation discussed in Sections VI and VII, respectively. 
The paper is concluded along with future scope in Section VIII. The 
References and Appendix A (python-coding) are added at the end.

TABLE I. THE EXISTING DDOS DETECTION TECHNIQUES LITERATURE SURVEY

Author & Year Technique/Approach Findings Constraints

1. Stavros N. Shiaeles 
et al. 2012 [27]

Fuzzy estimator DDoS detection based on mean packet 
arrival (3 sec detection window).

Near real time detection, computational overhead, no alert 
system, data import delay, not feasible for flash crowd attacks.

2. Singh et al. 2015 
[28]

Captcha-based DDoS 
detection

Robust IP blacklisting. Not a full proof remedy against bots, time consuming, not 
compatible.

3. Tamer F. Ghanem 
et al. 2015 [29]

Machine learning, AI, genetic 
algorithm

High detection accuracy (96.1%). Large scale data set requirement, high online processing time, 
cannot detect normal DDoS attacks, non-real time system with 
no alert generation.

4. Sufian Hameed 
et al. 2016 [30]

Hadoop, HADEC, Big Data Live DDoS detection framework. Detection delay while transferring log file from capturing to 
detection server does not provide parallelism.

5. N. Hoque et al. 
2017 [31]

FPGA-based detection 
through correlation 
measures

High detection accuracy (99.95%), low 
FPR (0%), low FNR (0.008%).

Dedicated hardware module requirement, works only on two 
class problems, correlation measures not sensitive enough to 
detect DDoS attacks.

6. Yonghao Gu et al. 
2017 [32]

Machine learning, semi-
supervised clustering

Increased detection convergence speed 
(14–20 ms) and accuracy (NA).

No real-time attack traffic used, each of the algorithm uses 
different subset of features, is complex, no alert system.

7. JieCui et al. 
2019 [33]

SVM, SDN, cognitive 
computing

High detection rate (97.65%), low FPR 
(NA)

Mininet does not support real environment, control plane 
vulnerability to attacks, complex hash listing, SVM not suitable 
for large data sets.

8. D. Erhan et al. 
2020 [34]

Matching pursuit and 
wavelet techniques

High detection efficiency (95.3–95.7%) 
with TPR (80–81%) using multiple 
characteristics of network traffic.

Suboptimal approximation, hybrid detection framework 
increases complexity, high number of attributes, training 
requires a high-end computational setup.

9. Raja Majid Ali 
Ujjan et al. 2020 
[35] 

Machine learning, SDN, 
S-flow technology with 
stacked auto encoders

High detection accuracy (95%), low FPR 
(less than 4%).

High computational complexity, centralized deployment 
makes it more vulnerable to attacks (single point failure).

10. Zengguang Liu 
et al. 2020 [36]

Reinforcement learning, 
DCNN, SVM

Low-rate DDoS detection in Edge 
environment.

Feature extraction complexity, dependence of Mirai botnet, 
low accuracy on sparse data, no alert system.

11. Raja Majid Ali 
Ujjan et al. 2021 
[37]

SDN, entropy variation High accuracy (94%), Llow overhead and 
redundancy, low FPR and FNR (6%).

High computational complexity with two classifiers, centralized 
deployment makes it more vulnerable to attacks (single point 
failure).

12. Hassan Mahmood 
et al. [38]

SDN, smart grids, entropy 
variation

Tsallis entropy-based defence 
mechanisms in SDN architecture to 
improve performance.

High response time, increase in CPU utilization due to 
controller, single controller vulnerability to bandwidth 
bottlenecks.

13. Khundrakpam 
Johnson Singh 
et al. [39]

MLP model, entropy 
variation

High accuracy (98.31%), high sensitivity 
(0.99) and specificity (0.056). EPA-HTTP 
Data set with (MLP) classification and 
genetic algorithm (GA).

Complex structural framework, High response time, limited to 
only application layer attack.

14. Frederico Augusto 
Fernandes Silveira 
et al. [40]

Machine learning, SDN, IOT High detection rate (96%) and Low false 
alarm rate (0.8 -1.8).

High CPU utilization, only few attacks information present in 
the training database, complex framework (Wireless & IOT).

DDoS, distributed denial of service; FPGA, field programmable gate array; SVM, support vector machine; SDN, software defined networking; FPR, false positive rate; FNR, 
false negative rate; HTTP, hypertext transfer protocol; MLP, multi-layer perceptron.
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III. PROPOSED DETECTION METHODOLOGY

Based on information source (host/network), analysis strategy (sign 
ature /anom aly/h ybrid ), time aspect (real -tTim e/pos t-tim e), architec-
ture (cent raliz ed/de centr alize d), response (active/passive), we must 
set IDS features to match our requirements. This section presents the 
proposed DDoS attack detection architecture.

We code our DDoS attacker which is a combination of Command 
and Control (C&C) Server and a Bot-Network, the bots being con-
trolled by a C&C server. For generating the attack, the victim system 
is targeted with Transmission Control Protocol-Synchronize (TCP-
SYN) packets. This TCP packet header causes the victim server to 
respond the SYN packet with the acknowledgment packet. Due to 
large number of bots and open connection, the victim is saturated 
of its resources and crash eventually.

For the identification and detection of attack, we use collaborative 
threshold value and packet header information. To further enhance 
our attack detection, we use generalized entropy (GE) calculation 
with Shannon Kolmogorov’s complexity and extract other math-
ematical attributes of our network traffic data. The alert and the 
detailed information are sent to our registered email ID (with real-
time traffic monitoring in the background). We code the compro-
mised Bot-Network and C&C server, creating our own DDoS traffic 
pattern. This improves the detection efficiency and helps resolve 
issues of old data sets.

Our detection methodology is comprised of the following four mod-
ules (Fig. 1):

Module 1: DDoS attacker (C&C server and compromised 
Bot-Network)
Module 2: Network traffic collector—threshold and entropy 
calculation with DDoS detector
Module 3: Real-time traffic monitor—network performance 
monitor
Module 4: Email alert system

A. DDoS Attacker (C&C Server and Compromised Bot-Network)
To set up our DDoS attacker, we create a Bot-Network headed by 
a C&C Server (Fig. 2). A single compromised system is sufficient to 
cause the DDoS attack. With C&C server, which acts as a Botmaster:

1) It can recruit thousands of bots (infected systems) through a 
system vulnerability, a payload with an executable file sent or 
uploaded on a uniform resource locator (URL), through SMS ser-
vice or even with email attachments.

2) It can carry the attack on a large scale in a very co-ordinated 
manner.

3) It can also establish multi-threading and multiprocessing 
executions with a set of connections and multiple command 
executions.

The IP address of the C&C server is kept hidden. In centralized 
approach, we control multiple bots in a single session.

Fig. 1. Architectural framework—Proposed DDoS detector with real-time traffic monitoring and an inbuilt alert system.
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The bots are connected via the internet or even through an SMS 
gateway and can communicate via a secure protocol (Hypertext 
Transfer Protocol /Hypertext Transfer Protocol Secure, TCP/
Telnet Internet Relay Chat) or short messages. The Bot-Network 
can be  in a single network domain or widespread over different 
networks.

B. Network Traffic Collector—Threshold and Entropy Calculation 
with Distributed Denial of Service Detector
We use Python-Scapy framework to design our network sniffer. The 
simple network traffic is collected for general threshold calcula-
tion. We collect the traffic packets with packet header information 
(SYN =1 and ACK = 0) and classify them as attack packets. A counter 

Fig. 2. Control of C&C Server on Bot-Network.

Fig. 3. Source IP count.
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counts the packets, and for the number of packets exceeding the 
threshold, the detector verifies it as attack traffic. This forms a basic 
threshold detector based on the number of SYN packets.

To further enhance our detection efficiency, we use entropy as 
another traffic attribute for attack detection. We code the entropy 
calculator based on Source IP-Port to extract the network random-
ness. We can also use other traffic attributes like srcIP, dstIP, src Port, 
dst Port, src Bytes, dst Bytes, and protocol [6].

To make our detector lightweight, we select the source IP address. 
It is the most efficient attribute to detect the attack and also easy to 
extract. In some real-time setup, feature extraction becomes compli-
cated with varied data rates, high packet diversity, and irregular data 
patterns. Setting up a proper entropy-based threshold becomes 
difficult.

To overcome this issue, we use collaborative threshold, that is, both 
general threshold and Shannon-Entropy threshold and check the 
individual performance. Both traffic attributes are easy to calculate 
and require minimum usage of resources.

C. Real-Time Traffic Monitor—Network Performance Monitor
A real-time monitoring system feature is added to our detector to 
analyze the traffic effectively in a continuous time frame and gen-
erate the alert if the threshold gets exceeded. We set the interface 
(ens33 of Virtual Machine (VM1)) and sniff the live traffic in an inter-
active mode. It is similar to plotting in MATLAB. While Plotly is used 
to generate offline graphs, Matplotlib gives the real-time traffic 
analysis.

Figure 3 shows the total network data in a particular time frame 
(bandwidth) and Fig. 4 is our traffic visualizer and plots the total 
count of packets sent by a particular IP. For our real-time traffic analy-
sis, we have network performance monitor, which plots the incom-
ing and outgoing network traffic in a continuous time frame.

Figure 3 gives us the insight of individual IP list and their individual 
packet count in particular time duration. Fig. 4 gives us the total 
amount of packets send in a continuous time frame.

D. Email Alert System
We add an alert feature to our IDS. While third-party internet secu-
rity providers charge a lot for the same, we used an email service to 
make it cost free. Most of the IDSs generate alerts, which gets stored 
in their log directory. These alerts need to be constantly checked. 
To avoid this complexity, we set a registered Gmail account and get 
alert (Fig. 5) along with the details (Figs. 3 and 4) whenever a DDoS 
attack takes place. The email sent is encoded using a base64 encoder.

IV. EXPERIMENTAL SETUP

The experimental implementation involves two virtual machines 
on an Intel(R) Core (TM) i5-8265U CPU @ 1.60GHz 1.80 GHz 16 Gb 
processor, a straightforward configuration with base hypervisor 
VMware Workstation 15.5 Pro. The structural framework is illus-
trated in Fig. 1. We need a C&C server, compromised bots, a real-time 
detector, an entropy-threshold calculator, and an inbuilt email alert 

Fig. 4. DdoS—bandwidth utilization.

Fig. 5. Emailalert.
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system to design our DDoS detector .VM1 is an Ubuntu (16-04-64 
bit) operating system, and Virtual Machine 2 (VM2) is Kali-Linux OS 
with IP addresses 192.168.1.104 and 192.120.225.114, respectively. 
Virtual Machine 2, which is our attacking front, involves a C&C server 
and a compromised Bot-Network. The experimental requirements 
are given in Table II. The integrated development environment (IDE) 
platform and some library functions used are also detailed later.

Our C&C server comprises a host and multiple compromised bots 
with multiple connections. The details of the parameters required to 
code one are given in Table III.

The bots are compromised using a gaming payload with the shell 
access given to our C&C server. The payload is a simple python-coded 
snake game. It is an essential tool to set connections and execute 
an attack (Fig. 6). The gaming payload is uploaded with its URL on a 
website. While it is alluring to download the game and play, it creates 
a persistent connection (a connection that is established even after 
we stop the game) in the background. Crontab module is used to 
have a continuous-time schedule. This creates our Bot-Network, and 
the number of downloads sets the number of compromised bots. 

The C&C server, which is our Bot-master, controls these bots. The vital 
thing to consider here is that a single vulne rabil ity(s ecuri ty-br each)  
can establish a connection and disrupt the victim of its services by 
just a single download.

The shell access to the bots through C&C server sets a way to initiate 
the DDoS attack on our target IP (Fig. 7).

To collectively set the connections, execute commands (i.e., multi-
threading), and launch the attack, we use parallel programming 
or multi-threading. This ensures that connections are established 
even after the game (payload) is closed. We set our sub-processes as 
shown in Fig. 8. This is our VM2.

A. Data Set
To code a DDoS generator, we use Python-Scapy framework. A ran-
dom IP generator with source IP/Port and destination IP/Port is set in 
a continuous time frame (Fig. 9).

The other parameters as detailed in Table IV. Here we use TCP-SYN 
packets and the IP addresses are random which are sent over a con-
tinuous time-frame. The parameters (packet count/volume, time-
duration, range of spoofed IPs, source IP/Port, destination IP/Port, 
victim IP) can be altered as per our own requirements.

This determines our legitimate real-time data set. We can also use 
emulated DDoS data sets (MIT Darpa/TUIDS/ CIC-DDoS2019/hping3/ 
Hyenae 0.36), but coding a real-time data set gives us the flexibility 
of modifying the parameters as per our requirement.

V. ENTROPY CALCULATION

Our work involves entropy-based DDoS attack detection methods 
and its implementation in a simple coded Bot-Network. Entropy is 
the statistical measure of randomness of data. For DDoS attack, the 
Bot-Network sends a huge number of similar packets to the victim, 
which in turn decreases the randomness parameter of the network 
traffic. For flood attack, where spoofed source-IP based packets are 
used for attack, the randomness increases. These fluctuations that 
cause change in entropy pattern is a clear indication of an attack. 
This randomness can also be calculated using different packet fields. 
We consider the most affected packet field, that is, source IP address 

TABLE II. LIST OF EXPERIMENTAL PARAMETERS

Features Description

IDE platform PyCharm Professional

Python version 2.7 with updated PIP packages

Memory information pcap (register database)

Python libraries Socket, Queue, Threading and SYS, Scapy, Plotly, 
Datetime, Pandas, smtplib, SSL, Email, Matplotlib. 
Animation, PSUTIL, Multiprocessing, Collections/
counter {JSON format}, email-encoder, web-browser.

Packet capture standard Libpcap

Packet encoding base-64

Internet protocols IPv4 - IPv6

Protocols (Layer 3/4, 7) TCP, MIME

Supported alert format Skype, short-messaging service, multimedia, live 
streaming

TABLE III. THE DESCRIPTION AND VALUES OF VARIOUS PARAMETERS OF A 
C&C SERVER

Parameters Description Value (if any)

Socket S Determine the host and port 
number (TCP/IPv4)

Host =’’ for dDynamic IP 
Port =12345 {Random}

Commands cmd Set command line arguments List, select, quit

Connections C Accept IP addresses and bind 
them with host and port number

Heartbeat connection
Hi and Hello

Threads & Jobs 
{t, j}

Connection and command 
execution

{1,2}

Queue {q} FIFO-based counter to set a task Put, get and join

C&C, command and control; TCP, transmission control protocol.

Fig. 6. Snake game.
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for our attack determination, although multiple packet fields could 
be checked at the same time without affecting the performance 
of our detector (Fig. 10). Here the advantage of using this simple 
method of attack determination is that there is no increase of any 
network traffic, memory and CPU overhead is also very less, almost 
negligible.

The source and destination IPs both form a probability distribution 
function [25].

p x x x n�� �1 2, .....  (1)

with x x i 1,2.....ni
i

� � � �� �
�� 1 1 0

1
, ,

�
 (2)

To calculate information entropy value, we use:

H p
i

n

i�
�

��� � � � ��1
1 1

log2  (3)

Fig. 7. Shell access to the Bots.

Fig. 8. Multi-processing in a Bot-Network.
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Assertion 1: When ϒ = 0, i.e., with equal probabilities.

H P0 2� � � log �  (4)

Assertion 2: When ϒ = 1

H P p x xi i
i

n

1 2
1

( ) ( )log ( )� �
��  (5)

To model it for DDoS detection, we calculate the source IP address-
based probability distribution function for different network traffic 
patterns and their average entropy values for different timeframes, 
respectively.

A. Proposed Implementation
For our detector we need to determine various attributes and fea-
tures. We have VM1, where we code the attack detection using gen-
eral threshold and entropy variation with inbuilt email alert system 
and real-time traffic monitoring,

1) Incoming packets: We use T-shark to extract the source-IP list 
from packet capture (PCAP) file and store in a csv format to 
count the individual IPs. This sets as our packet inspection.

2) Window size: Window size determines the time frame and thus 
is proportional to packet volume and number of packets. The 
window size can be modified as per our requirement.

3) Threshold set-up: We set up the threshold reference value 
ourselves to decide the possibility of an attack. For some 

Fig. 9. Random IP generator.

TABLE IV. THE DESCRIPTION AND VALUES OF VARIOUS PARAMETERS IN A 
CODED DDOS ATTACK

Parameters Description Value (if any)

ip_list Determine the list of random IPs 
generated

Any IP address

target_ip Victim where attack is to be 
launched

Victim IP

src,dst {ip1} Source and destination IP Source_ip, target_ip

sport,dport{tcp1} Source and destination Port s_port,80

Pkt ip1/tcp1 -

Fig. 10. Entropy classifier.



Electrica 2023; 23(2): 160-176
Habib and Khursheed. DDoS Detection Framework

169

setups, it is pre-defined and for some it is determined during 
run-time. Both have their individual importance and usage. We 
calculate the parameters during a normal network traffic and 
set that as our threshold value. Any deviation from the nor-
mal pattern, gives us the indication of an attack. For the basic 
threshold calculation, based on number of TCP-SYN packets 
we select number of packets generated during normal inter-
net streaming (in our case, data pattern of more than 25 SYN 
packets/s determines the attack). This sets our detection rule. 
The frequency of each IP address is used for the probability cal-
culation. We get the average entropy after normalization to be 
used in Shannon code.

4) Real-time monitoring: To have the real-time monitoring, we 
code a traffic monitoring visualizer which uses the date-time 
module (inbuilt in python) to give the insight of both incoming 
and outgoing traffic pattern.

5) Other traffic parameter characterizations: We also find 
change in packet size, inter-packet interval, mean and variance 
with respect to entropy variations. These parameters are also 
analyzed for the attack determination.

We calculate the values of parameters for the network traffic. For 
the network traffic with number of packets exceeding the general 
threshold and with entropy threshold value ϑnA < ϑnT || ϑnA < ϑn₀, 

we predict the traffic as attack traffic. Here ϑnT is an entropy thresh-
old value for benign network traffic, and ϑn₀ is an entropy threshold 
value for no-network traffic (Fig. 11).

We specify our time slot (3–7 minutes) and, specific to that, check 
sudden rise or drop in number of packets and entropy values, 
respectively, compared to the predefined threshold value. The pack-
ets are captured, and details are stored in a PCAP file. The PCAP file 
is graphed and sent to a registered email ID alerting us of a possible 
DDoS attack.

VI. RESULTS

The main aim of our proposed work is to detect the DDoS attack 
with improved accuracy and low computational usage. We mainly 
rely on threshold entropy calculations of TCP-SYN Packets. Python 
is our scripting tool and various library functions (Table V) are used 
to design and code a real-time DDoS detector with an email alert 
system. This approach increases the efficiency as well as detection 
accuracy rate. We tried to decrease the resource utilization as much 
as possible, keeping intact the detection accuracy.

For a particular window size, we use the number of packets received. 
The entropy values are calculated depending on the number of 
packet occurrences within the same window size. If the number of 

Fig. 11. Processing flowchart of the collaborative entropy-based detection algorithm in DDoS attack detection system.
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frequencies for each IP is equal, then maximum entropy is estab-
lished. If there is a sudden deviation (during an attack), then the 
entropy value is minimum as a single IP sends the attack traffic, thus 
decreasing the deviation or randomness (Fig. 12). For flood attack, 
the entropy value increases suddenly. Any deviation as such deter-
mines the possibility of an attack.

We use threshold values as our base for demarcation (Table VI). The 
distributed features are processed with the three base time slots, and 
entropy deviation beyond the average threshold entropy of benign 
or no-network traffic determines our attack. The details are sent to a 
registered email-ID in case it has exceeded the threshold limit. The 
PCAP file generated gives the flexibility to analyze network traffic at 
our convenience.

We calculate the most common attributes from the flows like packet 
count, source IP, destination IP, packet size, time, and date. For our 
network performance monitor, we use these details for both incom-
ing and outgoing network traffic (Fig. 13).

While we analyzed the normal and attack data, we found that other 
parameters also show significant variations during an attack. They are 
packet size, inter-packet interval, mean, and variance with respect to 
entropy variations. These data-information metrics and their devia-
tions can further aid in detecting DDoS attacks to improve the detec-
tion performance and decrease the processing time, though we 
have only used entropy variations as base of attack determination to 
keep our detector lightweight.

A. Packet Size
The packet size distribution varies significantly in different proto-
cols and different traffic patterns. In a DDoS attack, the packet size 
of some may even cross over to 1600 bytes or even more, but the 
majority are in less packet size range (Fig. 14).

B. Inter-packet Interval
Another feature to check is inter-packet interval. A vast majority of 
DDoS attack traffic have close to zero inter-packet intervals (ΔT) and 
high first and second derivatives of inter-packet intervals. Using ΔT, 
∂ΔT/dt and ∂2ΔT/dt2 as features allows a classifier to capitalize on 
this difference between normal and DDoS traffic (Fig. 15).

C. Mean and Variance
From mean–variance variation data in attack and normal traf-
fic [50] for  different source IPs, we infer that the mean is low and 

TABLE V. THE DESCRIPTION OF VARIOUS SYMBOLS AND PARAMETERS 
USED IN MATHEMATICAL MODELLING 

Notation Description

ϒ Order of the system
ϒ ≥ 0, ϒ ≠ 1

p probability distribution function

Log2η maximum probability function 

Hϒ(χ) Entropy value of probability distribution function formed by source/
destination IPs with order (ϒ)

χ Random variable representing Source/Destination IPs

η Total number of possible IP values

Fig. 12. Shannon—Entropy variation (a) attack traffic and (b) normal traffic

TABLE VI. AVERAGE ENTROPY VALUES FOR VARIOUS TRAFFIC PATTERNS IN 
DIFFERENT TIME FRAMES

Time Slot 
(TW)

Average-Entropy 
No-Network Traffic

Average-Entropy 
Benign traffic

Average- Entropy 
Attack Traffic

3 minutes 0.7901 0.6478 0.3810

5 minutes 0.7806 0.6518 0.3426

7 minutes 0.7899 0.6437 0.0310
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variance is high for an attack traffic. Also, the normal data pattern 
shows low variance approximating 0, while the variance is slightly 
high for attack data (Tables VII and VIII). The calculations are taken 
with respect to entropy variations. The entropy variation is high in 
IP (192.120.225.114) and thus has high variance than the rest. The 
same results are obtained in [39], but the limitation of the proposed 
method is that it is limited to application layer attack. The method 
also has a high response time and complexity in training the neural 
network.

To generalize, these parameters vary when a system is under a DDoS 
attack, and any deviation from the normal values predicts its occur-
rence. Table IX gives us the idea of these variations in normal traffic 
and DDoS traffic.

VII. PERFORMANCE ANALYSIS

For the performance analysis of our DDoS detector, we use well-
known metrics and parameters such as accuracy, FPR, sensitiv-
ity,  specificity, precision, recall, F1 score, CPU-RAM utilization, and 
response time.

We use confusion matrix and AUC curve to calculate these param-
eters (Fig. 16). We have 779 true positives, 193 true negatives, 6 false 
positives, and 14 false negatives. The accuracy score and other per-
formance metric scores are given in Table X.

We also performed the CPU utilization analysis to check the effi-
ciency of our DDoS detection system.

Fig. 14. Cumulative distribution function vs. packet size variation (a) attack traffic and (b) normal traffic.

Fig. 13. Network performance monitor.
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Figure 17 gives us the details of CPU utilization of our virtual machine 
(with VMware workstation as our hypervisor) set up with 4 Gb allotted 
RAM. We used a simple system setup with an ubuntu operating system 
and PyCharm installed as our IDE. During an attack, the average CPU 
utilization was 34.46% (range 30–45%), which is a considerable low 

resource utilization for a detection setup. When the incoming packets 
reached a rate of 7–12 Mbits/s (during an attack), the CPU utilization 
reached a high of 65–85%. Following the detection and entropy calcu-
lation, the CPU utilization remained the same and got lower to 22.4% 
after 1 minute. The outgoing traffic remained almost constant during 

Fig. 15. A, B. Cumulative distribution function vs. inter-packet interval (A) attack traffic and (B) normal traffic.

TABLE VII. MEAN AND VARIANCE WITH RESPECT TO ENTROPY VARIATIONS IN DIFFERENT TIME FRAMES FOR ATTACK TRAFFIC

Source IP-Address

Entropy Calculations

Mean VarianceTime Frame I Time Frame II Time Frame III Time Frame IV Time Frame V

192.168.1.104 0.97 2.078 2.031 1.89 1.21 1.6358 0.260234

192.120.225.114 0.829 0.930 2.432 0.111 0.201 0.9006 0.866021

104.18.21.226 1.625 1.654 1.88 1.765 1.454 1.6756 0.025476

49.44.138.104 1.351 1.4207 1.507 1.660 1.002 1.38814 0.059895

34.107.221.82 1.351 2.479 1.432 1.234 0.998 1.4988 0.327005

172.217.167.35 1.351 1.838 1.99 1.897 1.543 1.7238 0.071393

192.0.73.21 1.625 1.943 1.67 1.406 1.444 1.6176 0.045899

18.205.100.99 1.625 1.789 1.709 1.777 1.201 1.6202 0.059179

TABLE VIII. MEAN AND VARIANCE WITH RESPECT TO ENTROPY VARIATIONS IN DIFFERENT TIME FRAMES FOR NORMAL TRAFFIC

Source IP-Address

Entropy Calculations

Mean VarianceTime Frame I Time Frame II Time Frame III Time Frame IV Time Frame V

192.168.1.104 0.8010 0.801 0.788 0.796 0.843 0.8058 0.000461

192.120.225.114 0.944 0.823 0.852 1.065 1.146 0.966 0.019032

104.18.21.226 1.16 1.2 1.216 1.065 1.146 1.1574 0.003481

49.44.138.104 1.420 1.2 1.477 1.31 1.4 1.3614 0.011745

34.107.221.82 1.420 1.46 1.477 1.31 1.146 1.3626 0.018888

104.22.0.175 1.16 1.2 1.216 1.31 1.4 1.2572 0.009399

104.22.1.1 1.16 1.46 1.477 1.065 0.8 1.1924 0.080966
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the entire session ranging from 0.02 to 1.75 Mbits/s. The minimum 
CPU utilization during the attack was 45% which lowered to 17.9% 
after the DDoS attack was stopped. Our base system configuration 
(Windows 10 Operating/Intel(R) Core (TM) i5-8265U CPU @ 1.60GHz 
1.80 GHz 16 Gb) had CPU utilization of 12% with no attack to a high of 
77% with an attack. The memory use was 79% (8.5 MB). The average 
CPU utilization remained 28.6% which is significantly less.

Moreover, our system has very less data memory requirement with 
our python code and PCAP file taking 8 Kb and 560 Kb of space, 

TABLE IX. TRAFFIC PATTERN VARIATIONS IN NORMAL AND ATTACK TRAFFIC

Parameters Normal (Benign Traffic) Attack Traffic

Average packet size 0–600 bytes 0–1800 bytes

Average inter-packet interval 0–0.2 ms 0–1 ms

Average mean (entropy) 1.16 1.507

Average variance (entropy) 0.019 0.21438

Fig. 16. Confusion matrix and AUC curve.

TABLE X. PERFORMANCE METRIC SCORES

Accuracy (%) FPR (%) Sensitivity (%) Specificity (%) Precision Recall F1

97.9 0.03 0.9823455 0.96984924 0.992356 0.0075662 0.9873257

Fig. 17. CPU utilization of our DDoS detector virtual machine (Ubuntu) with incoming and outgoing traffic progressing from No Traffic to Attack 
Traffic.
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respectively. The response of our detector to the attack is fast. Our 
proposed method can detect the attack within 0.1–3.0 seconds even 
if the number of packets is comparatively low.

A. Comparison with Existing Methods
We use specific parameters to compare our DDoS detection method 
with existing methods and techniques based on entropy variations. 
The noteworthy being the accuracy, FPR, FNR, average CPU-RAM uti-
lization, and response time. These parameters are paramount in pre-
dicting the novelty and efficiency of an approach.

Comparing with the recent existing techniques (Table XI), one can 
infer that our proposed method of DDoS detection shows high accu-
racy with low FPR and FNR. It is also noteworthy that our proposed 
detector has a fast response time and CPU utilization during the 
whole process remained low.

VIII. CONCLUSION

Various security challenges are seen in different legacy and tradi-
tional networks with different IDSs working to detect the DDoS 
traffic. High computational complexity, high traffic overhead, low 
accuracy, and high FPR add to the issues already faced by users due 
to the attack. We used a simple setup and a cross-platform python 
scripting tool to make it lightweight and robust. The email alert 
feature is added to notify the attack detailing the attack sent in the 
email attachments. We used parallel programming to set the con-
nections, provide real-time traffic monitoring, and detect the attack 
based on entropy variations simultaneously to reduce the traffic-
overhead and latency.

We used accuracy, FPR, sensitivity, specificity, precision, recall, F1 
score, CPU-RAM utilization, and response time as our detection per-
formance metrics. Our implementation uses 1.2% CPU initially with 
29.8 MB memory usage. After the attack detection and alerting, the 
average CPU utilization remained 28.6% which is significantly less. 
Calculating the FPR, FNR, accuracy, and average response time, we 
have FPR and FNR as 0.03 and 0.001, respectively, and an accuracy 
of 97.9% with an average response time of 0.1–3 seconds. The pro-
posed detection method has improved performance and produces 
efficient results with low resource utilization compared to the other 
existing techniques.

As for future work, we can incorporate the DDoS mitigation frame-
work into it to have both detection and mitigation in a single setup.
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APPENDIX A

Algorithm A: C&C Server

1: procedure *Set Connection Parameters (Addresses of Hosts, Ports, Threading and Queue)

2: //Create Socket S

3: Set it for TCP/IPv4 protocol

4: Connect it to the IP and Port (Listen)

 If error Print (error)

 If Previous Connections Present {Delete addresses}

5:// main loop. Stops when Exit Command Executed

6: while (no keyboard interrupt)

7: // set Connection C (Heartbeat: “hi” and “hello” encoded and decoded in binary and human readable format utf-8)

8: Print (Connection has been established with the IP and Port)

9 Set value (Commands cmd)

10. while

 if cmd = input (‘Shell >‘) //list all the connections

   select >1 to select bot 1, >2 for bot 2 and for any exception print None

 if cmd=quit: break the connection and return back to Shell (9)

 if cmd = exit: exit connection and close the socket {delete all connections and addresses}

 if cmd (ln >0) {character string}

   encode (character string-Bytes)

   decode (Bytes-character string)

   print (character string)

11. end while

12: //

13: Set Threads t (Server Multiple Tread Connections, Jobs j {1,2})

14: 1 a. Set Connections {j==1}

b. Accept Connections

 2. Command Execution {j==2}

15: Return //main

Algorithm B: DDoS Attack

1: procedure *Import Scapy & random

2: //Set target_ip

3: Create random IP {ip=string in range {1,254} and i in range {4}}

4: Join (ip)



5: ip_list {random IPs and in range i= {specified number}}

6: Print (ip_list)

7:  //while (True)

8:  ip1 = IP with source and destination IP

   tcp1 = TCP with source and destination port (80)

9: Generate Packets {packet = ip1 / tcp1 with interval .10 seconds}

10: Increment (i) 11: end //

Algorithm C: Real Time DDoS Attack Detection and Email Alerting

1: Procedure * Import Scapy, Counter, Plotly, Web-browser, Pandas, smtplib, datetime, ssl, email, psutil, multiprocessing, time, email.mime and 
encoder-64.

2: while(true)

3: call pkt_chk(0) //check individual packets

4: check pkt_chk(i)

5: If {pkt_header flags Sij ,Ack}

6: calculate pkt_number Np

7: if Sij = ‘SYN’ || Ack = ‘0’

8: call pkt_number Np(i)

9: if Np(i) > ϑj { where ϑj = 25 } 

10: print (“DDoS in Progress”)

11: else {print (“Looks Good !!”)}

12: //end if

13: Store Input = data (“DDoS.pcap”)

14: start parallel processes

15: //Plot Offline Network Graphs for IP list and individual Packet Count (bytes received and bytes sent).

16: //Visualize Real -Time Incoming/Outgoing Traffic (Traf fic-V isual izer) .

17: //If alert (“DDoS Attack in Progress”)

18: // send email {server login to a registered email-id)

19: //email-alert = ‘‘‘Dear Admin,

Your IDS has detected DDoS Attack.

Please check attachment

DDoS Tool

  ‘‘‘ //

20: continue (Traffic-Visualizer)



Algorithm D: Entropy Calculation

1: Procedure *Import maths and NumPy

2: //Set entropy and counter =0

3: for loop to iterate through every IP in the list

4: item x in range(len(data))

5: counter +=1

6. Probability = float (coun ter)/ len(d ata)

7: Entro py+=- prob* maths .log{ prob, 2}

8: print (“Entropy: {}”.format(entropy))

9: end //

Algorithm E: Entropy based DDoS Detection

1: Procedure *Input: Traffic data , ϑnT ,  ϑn⁰ 

2. Output: Entropy value

3: //Set Time_Window {TW ← 3 min,5 min, 7 min}

4: for loop to iterate through every IP in the list

5: Probability = float (coun ter)/ len(d ata)

6: Entro py+=- prob* maths .log{ prob, 2}

7: Calculate average entropy ϑnA₁

8: ϑnA ← ϑnA₁ /logη (Normalization)

9: if ϑnA < ϑnT ||  ϑnA < ϑn⁰

   Set traffic ← Attack

   Else ← Benign /Normal Traffic

10: end //


