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ABSTRACT

Microgrids can benefit from multi-objective optimization dispatch in several ways, including reduced operation costs and improved service dependability. While using 
the traditional power network optimization method to solve power network planning, the algorithm mostly falls into the local optimal solution, rendering the global 
optimal solution intractable. In this research, multi-objective power grid planning is applied to an eight-bus system using a multi-objective optimization technique, 
such as reducing distribution network building costs and losses, planning distribution network growth and fixed capacity, and distributed generation (DG) addressing 
planning. Improvements are made to the quantum particle swarm optimization algorithm so that it can be applied to solving discrete problems. This report also 
employs a binary-coded quantum particle swarm optimization technique to design the distribution network without DG and runs the debugged program in MATLAB 
to compare the final optimization results. Finally, MATLAB software is used to simulate the example, and the corresponding planning results are obtained. From the 
model verification results, it can be observed that the quantum particle swarm optimization algorithm applied in this research can complete the task of power grid 
planning well under the premise of ensuring the calculation speed in the multi-objective design of a smart grid.
Index Terms—Multi-objective optimization, smart grid, quantum particle swarm optimization
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I. INTRODUCTION

The power grid is the basic concept and public utility related to the lifeline of the national 
economy. The development of the modern power grid has reached a critical period, and global 
resources and the environment are facing enormous pressure, forcing society to pay recognition 
to environmental protection, energy conservation, emission reduction, and sustainable devel-
opment. At the same time, users’ requirements for power quality and reliability are constantly 
improving. In the future, the power grid must provide users with safer, more reliable, cleaner, and 
better power [1]. Commercial and industrial buildings, which consume roughly one-third of all 
energy in cities, play an important role in the expanding electricity network by offering energy 
flexibility [2, 3]. It can be seen from Fig. 1 that the development of new energy sources provides 
possibilities for the realization of power generation forms from various energy sources. Under the 
influence of this series, the coordination and information exchange between power companies 
and users become more frequent. The traditional power system has been difficult to adapt to the 
new situation [4]. There is, however, a lack of functional interplay between the smart grid and the 
energy management system (SG-EMS) to completely elicit flexibility from the built environment 
to satisfy energy savings and environmental policy [5, 6]. In order to upgrade the conventional 
electrical system, people proposed the notion of creating a “Smart Grid.”

Mirrors are used for concentrating solar-thermal power systems to reflect and focus daylight onto 
receptors, which then collect the solar energy and convert it to heat that may either be utilized 
immediately or saved for later use. It is typically employed in very big power plants. Electricity 
production by photovoltaics (PV) or Concentrated Solar Power (CSP) systems is only the beginning 
of solar energy technology. These solar energy systems must be used in conjunction with various 
ratios of traditional and alternative renewable energy sources in residential and commercial struc-
tures as well as with the current electrical grid. When combined with storage, solar energy may 
supply backup power during nights and outages, lower electricity costs, help build a more robust 
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electrical grid, promote economic growth, create employment, and 
operate at equivalent performance on both small and big sizes.

II. LITERATURE REVIEW

Buildings with an adequate energy management system (EMS) 
can improve energy efficiency, reduce capital expenditure, and 
improve grid operation by incorporating alternative energy sources 
through appropriate information programs without jeopardizing 
demand-side operations [7, 8]. Meng et al. explained that the parti-
cle optimization technique’s capacity to search globally is improved 
by sub-population hybridization operations, and the modified 
approach can be used to address a variety of multi-objective issues 
[9]. Li et al. applied genetic algorithm (GA) to solve the power grid 
planning problem and achieved good results [10]. Gabbar et al. used 
a parthenogenetic algorithm to obtain the optimal grid structure. 
However, in the process of GA optimization, there were some short-
comings [11], such as slow optimization speed and convergence to 
local optimum in some optimization problems. Shen and Ge made 
some improvements to the algorithm and achieved a better optimi-
zation effect [12]. Several attempts have been made to enable these 
extremely complex systems to interact with each other. Buildings, 
on the other hand, have been thought of as independent and dif-
ferent controls, each acting on its data and overblowing connection 

with the other [13, 14]. According to Indragandhi et al., the multi-
objective particle swarm optimization (MOPSO) method produces 
positive results, and the suggested system is recommended as the 
best solution to increase electric energy usage in distant places 
[15]. Soares proposed that the genetic algorithm was applied to 
expand the distribution network with distributed generation and 
to determine the location and capacity of distributed genera-
tion in the distribution network. Compared with GA, evolutionary 
programming (EP) was more suitable for continuous optimization 
problems because it did not need to encode and decode deci-
sion variables [16]. Li et al. studied the relationship and differences 
between EP and GA and used the P algorithm for power grid plan-
ning. The effectiveness of this algorithm in power grid planning 
was verified [17]. Li et  al. derived that to achieve multi-objective 
optimization, the total economic and environmental benefits of 
operation included in the benefit–cost analysis can be minimized 
using an upgraded particle swarm method. The outcomes show 
how well the suggested strategy can meet the load while cutting 
down on operating expenses and emissions [18]. The metropolis 
acceptability criterion, which Swarm Algorithm (SA) uses to avoid 
the best solution from falling into local optimum, was then utilized 
to resolve the issue and each cooling step of SA was very time-con-
suming and belonged to single-point optimization, and the optimi-
zation speed was inherently slow. Hu et al. used a hybrid algorithm 
based on chain genetic-simulated annealing for a power grid plan 
to suppress the instability and local convergence of the genitive 
algorithm [19]. Lu et al. applied the combination of Prufer number 
and algorithm for fuzzy discrete particle swarm optimization in the 
distribution network optimization planning (as shown in Fig. 2) so 
that the optimal solution finally obtained was feasible [20]. Qi et al. 
introduced the crossover operation between dynamic neighbor-
hoods into the basic PSO algorithm and posed an improved hybrid 
particle swarm optimization algorithm (IHPSO) [21]. Khan thought 

Fig. 1. New energy power generation process.

Fig. 2. Microgrid capacity optimization based on improved hybrid particle swarm optimization algorithm.
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that equal SA algorithm with PSO algorithm increased the global 
searching ability and convergence speed of the algorithm and put 
forward the Btheoid model to simulate the movement behavior and 
law of birds [22]. The artificial fish swarm algorithm proposed by Liu 
had a strong global searching ability, and the well has the advan-
tages of universality, simplicity, par, allele, sm, and stability [23, 24].

To deal with the complexity of these interface specifications, a 
change from centralized smart metering to a decentralized manner is 
noticeable with the development of computational and distributed 
intelligence [25, 26]. This work suggests an enhanced quantum PSO 
algorithm based on the fundamental principles of PSO and quantum 
theory and applies it to the grid planning of transmission networks 
and multi-objective optimization planning of smart grids with a dis-
tributed generation [27, 28]. The research shows that the algorithm 
is effective for multi-objective optimization planning for smart grids.

III. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization can simulate the foraging process of 
birds to solve the optimization problem. Imagine a picture where a 
flock of birds is looking for food in a limited area, but there is only 
one piece of food in this area, and all the birds do not know the 
exact location of the food. The only thing they know is the distance 
between their position and food, so these birds will fly to the area 
around the nearest bird to find food [29, 30]. After a long time of joint 
efforts, one bird will eventually find food. Particle swarm optimiza-
tion algorithm is inspired by this. If the wellness value is higher and 
the optimization problem is a minimization problem, the objective 
function value should be lower. Individual best position Pi(t) of par-
ticle 1 is determined by (1):

P t
X t f X t f P t

P t f X t f P t
i

i i i

i i i

� � �
� � � ��� �� � �� ��� ��

�� � � ��� �� � �

1

1 1�� ��� ��

�
�
�

��

�
�
�

��
 (1)

The global best position Pg(t) of the population is determined by the 
following formula:

P t f P tg i� � � � ��� ��� �argmin  (2)

Then, the speed and position evolution process of the basic PSO 
algorithm can be described by the following formula:
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Where is the inertia weight factor? c1 and c2 are learning the F factor 
which is a constant greater than 0. r1 and r2 is a random number, and 
its value range is between 0 and 1. Vmax is the maximum limit velocity 
of particles.

It can be seen from (3) that the particle velocity consists of three 
parts. The position of particles is updated in steps of speed. It can 
be seen from (4) that the velocity Vij of particles is given in a specific 
area, and if the searching accuracy of a particle by the PSO algorithm 
is determined to some extent as too high, particles may fly over the 

optimal solution. If too small, particles are easily trapped in the local 
search space and cannot be searched globally.

The performance of the PSO algorithm is determined by param-
eters such as current population, learned variables, weight of inertia, 
maximal speed, and population topology. The final result will be very 
different with different parameters. Therefore, the improvement of 
the PSO algorithm is mainly realized by improving these parameters.

A. Particle Swarm Optimization Algorithm
The optimization steps of PSO and the algorithm are as follows:

1) Initialization design of parameters. Design the initial parameters 
of the algorithm, including the number of particles, iteration 
times, termination conditions, etc., and randomly generate the 
initial positions of each particle in the target space to form the 
initial population [31, 32];

2) Determining every molecule’s current fitness value in the popu-
lation fitness evaluation function;

3) Collecting all the particle’s function values and comparing these 
values with individual optimal values. If the current position 
value is better than the individual optimal value, set the indi-
vidual optimal value as the current position;

4) Comparing the particle solo optimal position with the popula-
tion optimal position. The population’s worldwide optimal loca-
tion is set as the position of the current particle if the current 
value is superior to it, and the adapted value of the current par-
ticle is given to the global optimal particle [33, 34];

5) Updating the position and velocity of the particles in the par-
ticle swarm;

6)  Judging whether the ending condition is met and if so, ending 
the optimization process. If not, return to (2) to cycle until the 
end. The optimization methodology of Fig. 3 displays the PSO 
method.

Fig. 3. Flow chart of particle swarm optimization algorithm.
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B. Multi-Objective Optimization of Smart Grid
The mathematical model of multi-objective planning of the power 
grid can be expressed by the optimization model, and its simple 
form is shown in the following formula:
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where f is the objective function after multi-objective processing, x 
is the decision vector of the model, and gi(x) = 0, hk(x) = 0 are equality 
constraint and inequality constraint.

The hierarchical multi-objective optimization model can be 
expressed by the following mathematical model:
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where Bs(s = 1,⋯A). The second pair is the label of the priority level, 
indicating the corresponding objective function. fs(x)(s = 1,2⋯A) 
belongs to s Priority, and for each Bs, there is a relationship 
between them.

Hierarchical optimization method can be applied to multi-objective 
optimization planning of power grid because although other objec-
tives are transformed in multi-objective planning to make them have 
the same dimensions as another optimization objective, it does not 
mean that their values can fully reflect their importance in this plan-
ning. In actual power grid planning, some planning objectives are 
often the most important constraints, the degree of which is greater 
than that of other objective function constraints [35, 36]. The idea of 
stratification here already implies that the priority layer is paid more 
attention to, which is also in line with reality, and it avoids the diffi-
culty of weighing the weights of the two layers from a practical point 
of view. This process is shown in Fig. 4.

In Fig. 4, a hierarchical optimization framework is used to solve 
the developed multi-objective model, which redesigns the multi-
objective model into a multi-layer optimization model by rebuild-
ing additional constraints. The linearization approach is used to 
linearize the nonlinear element of the optimization model. Finally, 
the branch and bound approach is used to solve the optimization 
model. The optimization of power generation for sustainable growth 
has gained significance in light of developing countries’ urgent need 
to combat climate change. The reality of emerging countries is not 
fully represented by current models. The application of dynamic 

programming’s optimality concept is made easier by this design. The 
best policy portfolios are produced through synchronized optimiza-
tion of strategies with regard to the shared objectives at each level.

IV. DESIGN AND RESULT ANALYSIS OF GRID PLANNING FOR 
18-BUS TRANSMISSION NETWORK

A. Raw Data of 18-Node System
The eight-bus system is one of the common examples in power grid 
planning. With this system, the final planning results can assess the 
benefits and drawbacks of the algorithms, and the results were con-
trasted to those of other algorithms [37]. There are ten nodes and 
nine lines in the 18-node system, and the system will increase to 
18 nodes and 27 lines at a certain level in the future. Detailed param-
eters of this system are shown in Tables I and II.

From the above data, we can see that 18 new lines need to be built, 
and the number of lines that can be built is 22. Choose 18 lines from 
22 lines. Different choices of these lines constitute different planning 
schemes. According to the objective function, choose the best plan-
ning scheme to complete the planning.

When the distribution system with DG is optimized using the 
binary-coded quantum PSO technique, let one particle in the par-
ticle swarm be 11001 10010 01100 11000 00010 10, which indicates 
that the number of lines to be built is five, the number of lines to 
be rebuilt is four, and the number of load nodes is five, then the first 
five binary codes indicate the code of newly built lines and lines 1, 
2, and 5. The last four binary codes indicate that the line codes need 
to be upgraded, and lines 1 and 4 are selected. The last five codes 
indicate the type of DG connected to the load node, 0 indicates wind 
power, and 1  indicates photovoltaic. Finally, the binary code indi-
cates the number of DG connected to the load node and converts 
it to decimal. Then the number of DG connected to the load node 
represented by the above particles is 3, 0, 0, and 1. This completes 
the binary coding of distribution network planning particles with 
DG, and the coding of other particles is the same. It was discovered 
that introducing various limitations improves the performance of 
hierarchical PSO (HPSO). The suggested PSO method’s results are 
compared and confirmed with the outcomes of other approaches 
that have recently been used. The comparison analysis shows that 
the suggested technique outperforms the old method in terms of 
running costs and emissions [38]. 

Fig. 4. Hierarchical analysis structure diagram of multi-objective 
decision-making.

TABLE I. 18 NODE SYSTEM DATA

Node 
Number

Power 
Generation 
(10 000 KW)

Load  
(10 000 KW)

Node 
Number

Power 
Generation 
(10 000 KW)

Load  
(10 000 KW)

1 0 55 10 750 94

2 360 84 11 540 700

3 0 154 12 0 190

4 0 38 13 0 110

5 760 639 14 600 32

6 0 199 15 0 200

7 0 213 16 495 132

8 0 88 17 0 400
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B. Optimization Results and Analysis
The suggested technique is used in this study to plan the trans-
mission network for an 18-bus system, with the multi-objective 
optimization goal of minimizing construction and maintenance 
costs while minimizing power shortfall. To obtain the final plan-
ning outcome, run the debugged program in MATLAB. The 
mathematical formulation of power grid planning is created in 
accordance with multi-objective power grid planning by choos-
ing appropriate objectives. It is now possible to use the quantum 
element swarm optimization (QPSO) technique to resolve dis-
crete issues. The Pareto border as determined by binary-coded 
quantum PSO (BQPSO) is shown in Fig. 5.

The eight-bus network is used to evaluate the technique in this 
study, with the objective of multi-objective optimization, such as 
minimizing the construction cost and the loss of the distribution 
network, to plan the expansion of the distribution network and the 
fixed capacity, and addressing planning of DG. To compare the final 
optimization results, this study also uses a binary-coded quantum 
PSO algorithm to plan the distribution network without DG and runs 
the debugged program in MATLAB.

Figure 6 shows the Pareto frontier of multi-objective optimization 
planning of distribution networks with and without DG.

The graphic shows that, regardless of that scenario, there is no solu-
tion distribution in the areas of low line loss and low expenditure, 
because there are no solutions that meet the conditions in these 
areas. For the number and distribution of solutions in both cases, 
the planning scheme with DG is better than that without DG. The 
increase in DG will increase the complexity of the algorithm, which 

means that there will be more alternatives, and so there will be bet-
ter quantity and distribution. At the same construction cost, the line 
loss of the planning scheme with DG is much less than that without 
DG, which is the reason for introducing DG and is consistent with 
reality. Therefore, the BQPSO algorithm can find Pareto’s optimal 
solution. In a case study, Zhang et al. designed an integrated distrib-
uted energy system with combined heat and power (CHP), PV, and 
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Fig. 5. Pareto frontier obtained by BQPSO algorithm.

TABLE II. LINE DATA OF 18-NODE SYSTEM

Branch 
Number Two-End Node Line Reactance (PU)

Line Capacity  
(10 000 KW)

Original Number  
of Lines

Number of 
Expandable Lines Length (KM)

1 1–2 0.0176 230 1 1 70

2 1–11 0.0102 230 0 2 40

3 2–3 0.0348 230 1 0 138

4 3–4 0.0404 230 1 0 155

5 4–7 0.0325 230 1 0 129

6 4–16 0.0501 230 0 1 200

7 5–6 0.0501 230 0 1 106

8 5–11 0.0267 230 1 3 60

9 5–12 0.0513 230 0 0 40

10 6–7 0.0121 230 0 2 50

11 6–5 0.0126 230 1 1 40

12 6–13 0.0126 230 0 3 50

13 6–14 0.0554 230 0 1 50

14 7–8 0.0141 230 0 2 220

15 7–9 0.0318 230 1 1 60

16 7–13 0.0126 230 0 0 126
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electric and/or thermal energy storage for a hospital and large hotel 
buildings. The findings demonstrate that the recommended optimal 
solution may be utilized to find the best distribution of energy sys-
tem design that strikes a balance between the economic and envi-
ronmental outcomes of diverse structures. Electricity peak shaving 
of 800 kW and 600 kW might be obtained during the summer and 
transition seasons, respectively [39].

The distributed generation is optimized according to the results 
in Table III, and the objective function value under this planning 
scheme is calculated and compared with the optimization result of 
the improved genetic algorithm. The table shows that different algo-
rithms produced varied results for each particular investment com-
ponent. The table shows that different algorithms produced varied 
results for each particular investment component. But, in the final 
optimization result, the results obtained by the BQPSO algorithm are 
better. This proves that the BQPSO algorithm can solve optimization 
problems and has better optimization ability.

According to the data in the table, it is found that although there 
is no DG cost in the planning scheme without DG, the line loss 
increases, which makes the final planning cost still higher, while 
the planning scheme with DG has a lower planning cost. DG has 
advantages in cost, especially in reliability. With the qualitative 
improvements, we should consider introducing DG into distribu-
tion network planning.

V. DISCUSSION

In this study, according to the multi-objective power grid planning, 
the mathematical model of power grid planning is established by 
selecting suitable objectives so that it can be applied to solving dis-
crete problems. First of all, taking 18-bus transmission network sys-
tem expansion planning and 8-bus distribution network expansion 
planning with distributed generation as examples, the effectiveness 
and efficiency of the algorithm for solving multi-objective program-
ming are verified. Then, for the multi-objective Pareto optimal solu-
tion set, the crowded distance sorting method is used to construct 
it. Finally, MATLAB software is used to simulate the example and the 
corresponding planning results are obtained. From the model veri-
fication results, it can be observed that the quantum PSO algorithm 
applied in this research can complete the task of power grid plan-
ning well under the premise of ensuring the calculation speed in the 
multi-objective design of a smart grid.

VI. CONCLUSION

Lightning protection of the power system and substation is very 
important for the whole power supply system. It is the primary mea-
sure to ensure that the power system operates normally, and it can 
greatly reduce the damage of lightning to weak current equipment 
in substations. In the actual engineering operation process, different 
measures and methods should be taken according to different situ-
ations to reduce the impact of lightning on weak current equipment 
in substations and ensure the safe operation of the power system. 
According to the basic characteristics of quantum PSO, combined 
with the characteristics of power system planning, the economic 
and reliability of smart grid planning are taken as the optimization 
goal, and the planning of transmission grid is studied. For the smart 
distribution network with DG, the improved quantum swarm algo-
rithm is also used to optimize the DG capacity and location and the 
distribution network expansion planning. The final optimization 
results are compared with those obtained by other intelligent algo-
rithms by programming language, which verifies the effectiveness 
and practicability of the algorithm used in this study in smart grid 
planning. Power grid planning is the key content for the planning of 
a power system, and it is also the guarantee for the security, stability, 
and economy of the power system. In smart grid optimization, multi-
objective will become more and more common. For multi-objective 
selection, formulating corresponding standards may be more con-
ducive to the unification of future smart grid planning.
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