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ABSTRACT

Many worldwide changing events, including meteorology, weather forecasting, disaster response, and environmental monitoring, are tracked by states or companies 
via satellite imagery. Early response to disasters is critical for human life. In these cases, artificial intelligence applications are also used to make rapid determinations 
about large geographical region. In this study, satellite images of flooded and undamaged structures in Hurricane Harvey were used. An autoencoder process has 
been applied to this dataset to reduce the noise in satellite imagery. AlexNet and VGG16 deep learning (DL) models are used to extract features from both datasets. 
The most effective features selected by the Boruta feature selection algorithm were classified with the support vector machine, and the highest classification accuracy 
of 99.35% was obtained. Since disasters involve the evaluation of very big datasets from large geographic areas, presenting the data with the smallest possible feature 
will facilitate the process. For this reason, by applying dimensionality reduction to the selected attributes, a 98.29% success was achieved in the classification with only 
90 attributes. The proposed approach shows that DL and feature engineering are very effective methods to quickly respond to disaster areas using satellite imagery.
Index Terms—Autoencoder, Boruta, dimensionality reduction, transfer learning.
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I. INTRODUCTION

Natural disasters have negative consequences such as property damage, loss of life, and injuries. 
In these cases, satellite imagery is frequently used to assess the conditions in disaster areas and 
provide rapid aid support. Deep learning (DL) is a software technology that can perform beyond 
what the human eye can detect and can be automated [1]. Convolutional DL models, which were 
particularly successful in the competitions held, reduced image classification error rates to less 
than 4% [2, 3]. Thanks to the use of artificial intelligence and DL methods, successful results have 
been achieved in many areas such as health care [4-8], self-driving cars [9], encryption [10], robot-
ics [11], determining agricultural areas, cloud types, and population density from satellite images 
in recent years. The studies on the classification of satellite imagery using the DL approach are 
summarized as follows.

Unnikrishnan et al. [12] proposed the modified AlexNet model to classify wastelands, trees, large 
swaths, and other satellite imagery. The proposed approach reduced the number of parameters 
in the modified AlexNet by six times while maintaining an overall accuracy of 99.66%, which was 
nearly as high as that of the AlexNet. Yang et al. [13] used very high-resolution (VHR) WorldView-3 
satellite images to determine the size and location of agricultural areas and achieved 99% accu-
racy in their classification process with fuzzy-based convolutional neural networks (CNN) models. 
Robinson et al. [14] used Landsat imagery with a 1-year resolution of 0.01° to estimate the U.S. 
population. They improved results by 4% using their proposed VGG16 approach to addressing defi-
ciencies in survey-based censuses. Khan et al. [15] achieved a recall of 91% by using edge boxes and 
a CNN structure consisting of two convolutional layers, two polling layers, and 5 × 5 and 2 × 2 filters 
to detect military-use aircraft images from satellite imagery. Xingrui Yu et al. [16] proposed a four-
layer CNN structure with shift and rotation data augmentation techniques for scene detection. They 
used the Sat-4 and Sat-6 datasets published by National Aeronautics and Space Administration 
and achieved an overall accuracy of 99.29% with their proposed approach. Patel et al. [17] used 
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different types of Yolo to detect ships using satellite imagery from 
the Airbus Ship Challenge and Shipsnet datasets. The highest over-
all accuracy was achieved with YOLOV5 at 85%. Bai et al. [18] used a 
combination of machine learning and feature fusion methods in their 
proposal. They used satellite imagery from the China National Disaster 
Reduction Center to compare feature differences between clouds and 
backgrounds and achieved an overall accuracy of 95%.

In this study, damaged and non-damaged structures were classified 
to detect flood-damaged structures using original satellite images 
and noise-free images processed in the autoencoder process. For 
this purpose, satellite images of flood-damaged and undamaged 
structures in Hurricane Harvey were used. In the proposed study, 
AlexNet [19] and VGG16 [20] models, which were successful in 
ImageNet Large Scale Visual Recognition Challenge (ILSRV) competi-
tions, were used to extract the features of the imagery images. Since 
DL applications need powerful hardware, it is important to present 
the image with optimal attributes, especially for Big Data studies. 
Therefore, dimensionality reduction is applied to the subset of fea-
tures selected by the Boruta algorithm. Afterward, the classification 
process was carried out with support vector machines (SVM), which 
gave successful results in many studies. As a result, the approach 
proposed in this study is aimed at successfully detecting flood-dam-
aged structures with low-dimensional data.

The parts of the paper are as follows. Information about the dataset, 
machine learning, DL models, and the proposed approach can be 
found in Section II. The experimental results are described in Section 
III. The discussion and conclusions are described in the last section.

II. METHOD

A. Satellite Imagery Dataset
The satellite image dataset of Hurricane Harvey used in this study 
was obtained from open-access sources [21] and consists of two 
classes: damaged areas and undamaged areas. A total of 2000 
images in the dataset are satellite images of 1000 damaged and 
1000 undamaged structures. The size of the images of damaged and 
undamaged structures is 224 × 224 pixels, and the file type for all 
classes is jpg. The second dataset consists of reconstructed images 
obtained by improving the usefulness of the features by processing 
the dataset with the autoencoder. Sample images for the classes in 
the dataset are provided in Fig. 1.

B. Convolutional Neural Networks
Convolution is the process of extracting features by multiplying the 
input image with matrices called kernels on an element-by-element 
basis and summing them based on location, thus obtaining the fea-
ture maps. After obtaining feature maps, then the convolved results 
can be also applied with an element-wise nonlinear activation func-
tion [22] as in (1).
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where I  is the input patch, w  is convolutional kernel for the feature 
value at location (i, j) for the lth layer, b  is the bias, f  is the activation 
function, and Ii

l  is the feature map obtained by applying the activa-
tion function to reduce the complexity of the model and detect non-
linear features. Rectified linear unit is the most common activation 
function and is defined in (2).

f x x� � � � �max ,0  (2)

The pooling layer is typically placed between two convolutional lay-
ers. It reduces the dimensions of the activation map by preserving 
important features and reduces spatial invariance [22]. The pooling 
layer operations are defined in (3).
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The pooling operation is applied to each feature map ( I k
l
.,., )  for 

�� �m n,  in the local neighborhood around location (i, j), and where gp
 

denotes the pooling operation. The pooled feature map of lth layer 
for kth feature map is represented by Zk

l  [23]. The features obtained 
from the pooling layer are transformed into a one-dimensional vec-
tor before getting passed on to the neurons. It is called a fully con-
nected layer because each neuron is connected to the next neuron 
and the layer is realized. The SoftMax function is commonly used in 
the final layer of CNNs to normalize the output of the fully connected 
layer to target class probabilities for classification tasks.

In this study, input image features are extracted from the fully 
connected (fc-8) layers using VGG16 and AlexNet DL models. 
Furthermore, the input images of the AlexNet and VGG16 models 
should be 227 × 227 pixels and 224 × 224 pixels, respectively. The 

Fig. 1. Damaged structures after flood disaster. Undamaged structures.



Muzoğlu et al. Detection of Damaged Structures From Satellite Imagery

399

Electrica 2023; 23(2): 397-405

architecture of VGG6 and AlexNet is shown in Fig. 2. The dataset was 
trained with fivefold cross-validation due to overfitting and lack of 
generalizability of a pattern.

C. Support Vector Machine
The SVM is a classification method developed to find the hyper-
plane that can be drawn with the largest margin between classes 
[24]. Support vectors are the points closest to the plane of the classes 
that support the plane/decision boundary as a column. The margin 
is the maximum width between the support vectors and the plane 

defined with 2
w

. The larger the margin between the classes, the 

better the separation. The hyperplane is defined by wx + b = 0, where 
w is the weight vector, x is a point on the hyperplane, and b is the 
bias of the hyperplane from the origin. In Fig. 3, the binary classifica-
tion of classes A and B with SVM is represented. In multiclass classi-
fication problems, nonlinear surfaces are linearized with the help of 
kernel functions, and then classification is made with support vector 
machines.

D. Feature Selection Method
Datasets are a set of features. After identifying and removing use-
less features from the dataset, the selected features achieve better 
classification success. Kursa et  al. [25] proposed Boruta, which is 
first expanded by adding random shadow features to the original 
dataset and then trained by random decision forests, to distinguish 
important and unimportant attributes from each other. The Z-score 
is a measure of significance that is calculated by dividing the mean 
loss by its standard deviation. For each attribute, by calculating the 
Z-score with the highest shadow attribute, those that are too high 
or too low are eliminated. Variables with higher significance than 
random variables were considered important. Features that are of 
far worse importance than shadow ones are eliminated. This process 
continues until a specified number of iterations or until the rejec-
tion and acceptance of the features are completed [26]. In this study, 
Boruta feature selection algorithm based on random decision forests 
is used to obtain the most valuable features.

E. Autoencoder
The noise acquisition in the process of digital images with remote 
sensing not only degrades the visual quality but also prevents the 
classification and detection of the image. An autoencoder is a type 
of unsupervised neural network that is used to compress multidi-
mensional data and then employs a decoder to meaningfully recon-
struct data similar to that on which it has been trained in its output. 
In this study, autoencoders are used to reduce noise signals in sat-
ellite images. The generated noise-reduced dataset will be used to 
obtain useful features for feature selection [27]. The autoencoder 
was trained for 300 epochs and Rmsprop [28] was chosen as the 
optimizer. It is processed with the Keras framework using Python. Its 
structure and parameters are shown in Fig. 4 and Table I, respectively.

F. Principal Component Analysis
Principal component analysis (PCA) is a statistical technique used 
in classification and image compression to represent multidimen-
sional data with fewer variables while preserving the high vari-
ance features [29]. For better feature engineering in datasets, it is 
necessary to retain features with useful information and high vari-
ance and eliminate features with highly correlated information. 

Fig. 2. The architecture of the deep convolutional neural network models. VGG16 and AlexNet.

Fig. 3. Binary classification with support vector machine.

Fig. 4. The principle of the autoencoder structure.
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Therefore, using the PCA method, variables with highly correlated 
features are transformed into a set of uncorrelated data in the PCA 
space; thus, another set of features called “principal components” 
is obtained. Consequently, the features in this subset should have 
as high a variance as possible and as low a covariance as possible. 
For this purpose, in the first step of PCA, the covariance matrix 
should be calculated to identify those features that contain redun-
dant information. Then, the eigenvectors and eigenvalues of the 
covariance matrix are calculated to obtain the principal compo-
nents. In Fig. 5, the features containing information in dimensions 
X1 and X2 are shown in the X2 axis after dimensionality reduction 
using PCA.

G. Proposed Method
In this study, a DL model is proposed to quickly detect flood-
damaged structures using satellite imagery. In the first step, the 
satellite images are processed with an autoencoder, and the 

noise-reduced second feature set is obtained. Subsequently, both 
the 1000 features obtained from each model for each dataset and 
the 2000 features obtained by combining the features were classi-
fied using SVM. In the third step, a total of 4000 features extracted 
from the fully connected layer of the models were combined, and 
the most valuable subset of 200 and 400 features was determined 
by the Boruta feature algorithm elimination method, resulting in 
overall accuracy. In the next step, classification was performed 
using SVM by applying the PCA algorithm to reduce the dimen-
sionality of the most valuable features. The overall block diagram 
of the detection model of flood-damaged structures is given in 
Fig. 6.

III. EXPERIMENTAL RESULTS

The metrics used for the evaluation of this study are sensitivity (Se), 
specificity (Sp), F-score (F-Scr), and accuracy (Acc). These metrics are 
determined by calculating the values for true positive (TP), false pos-
itive (FP), true negative (TN), and false negative (FN) from the confu-
sion matrix using (4)–(7) below.

Se �
�
TP

TP FN
 (4)

Sp �
�

TN
TN FP

 (5)

F-Scr �
� �

2
2

xTP
xTP FP FN

 (6)

Acc �
�

� � �
TP TN

TP TN FP FN
 (7)

In this study, the feature selection and autoencoder training were 
performed using the Keras framework, while the other applications 
were performed using Matlab 2022a. Moreover, the computer used 
for this study has an Nvidia GeForce RTX 3070 graphics processing 
unit.

In the first two steps of the study, both the 1000 features of each 
image extracted from the fc-8 layers of AlexNet and VGG16 and the 
2000 features obtained by combining these features were classified 
using SVM. In detecting damaged structures using original satel-
lite imagery, the overall accuracy values for AlexNet and VGG16 
are 93% and 94.1%, respectively. Subsequently, the combined 
2000 features were classified using SVM, and an overall accuracy 
of 94.35% was obtained. In the detection of damaged structures 
using autoencoder-processed satellite imagery, the overall accuracy 
of AlexNet and VGG16 is 94.05% and 96.05%, respectively. On the 
other hand, 2000 combined features from autoencoder-processed 
satellite images were classified using SVM, with an overall accuracy 
of 97.16%. The experimental results obtained in the second step are 
given in Fig. 7 and Table II.

In the third step, the Boruta feature selection algorithm uses a ran-
dom forest to identify features in order of importance. Our expe-
rience has shown that the best success is in the range of the first 
200–400 features selected in order of importance out of a total of 
4000 features. The first 200 selected most valuable features were 
classified using SVM, and a 98.9% success was achieved, while the 

TABLE I. AUTOENCODER MODEL SUMMARY

Layer (Type) Output Shape Parameters

Conv2d 128, 128, 64 1792

MaxPooling2D 64, 64, 64 0

Conv2D 64, 64, 65 18464

MaxPooling2D 32, 32, 32 0

Conv2D 32, 32, 32 4624

MaxPooling2D 16, 16, 16 0

Conv2D 16, 16, 17 2320

UpSampling2D 32, 32, 16 0

Conv2D 32, 32, 17 4640

UpSampling2D 64, 64, 32 0

Conv2D 64, 64, 64 18496

UpSampling2D 128, 128, 64 0

Conv2D 128, 128, 3 1731

Fig. 5. The principle of the principal component analysis structure.
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Fig. 6. The design of the proposed approach.

Fig. 7. Confusion matrix for original dataset and the autoencoder-processed dataset. AlexNet without autoencoder, VGG16 without autoencoder, 
AlexNet and VGG16 concatenated without autoencoder, AlexNet with autoencoder, VGG16 with autoencoder, AlexNet and VGG16 concatenated 
with autoencoder.

TABLE II. PERFORMANCE METRICS OBTAINED FROM THE ORIGINAL DATASET AND THE AUTOENCODER-PROCESSED DATASET

CNN Models Feature Number Autoencoder Model Sensitivity (%) Specificity (%) F-Score (%) Accuracy (%)

AlexNet 1000 No 92.74 93.26 93.02 93

VGG16 1000 No 95.24 92.56 93.99 94.1

AlexNet 1000 Yes 92.15 96.12 94.18 94.05

VGG16 1000 Yes 94.57 97.62 96.11 96.05

AlexNet andVGG16 2000 No 94.73 93.95 94.32 94.35

AlexNet andVGG16 2000 Yes 95.64 98.77 97.19 97.16
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overall accuracy for the 400 most valuable features was 99.35%. After 
that, each image represented by 200 and 400 features in the previ-
ous step was further classified by SVM after PCA processing to be 
represented with the least number of features possible. After dimen-
sionality reduction, each image with 200 attributes was represented 
with only 61 attributes and each image with 400 attributes was rep-
resented with only 90 attributes, resulting in an overall accuracy of 
97.75% and 98.29%, respectively.

The confusion matrices obtained regarding the feature selection 
process are given in Fig. 8. The performance metrics obtained from 
these matrices are given in Table III.

IV. DISCUSSION AND CONCLUSION

In this study, a DL-based flood-damaged detection system that can 
be used as an application in satellite systems is proposed. For this 

purpose, the noise encountered in satellite images was reduced by 
the automatic encoder process, contributing to 9.7% to the accu-
racy. While the original images were best classified with VGG16 
with 96.05% accuracy, this value was increased by 10.3% with 2000 
extracted and combined features. The highest accuracy of 99.35% 
was achieved using the 400 most dominant features selected by the 
Boruta feature selection algorithm. Since it is desired to represent 
the detected image with a minimum number of features, using 90 
features with the applied size reduction method, classification suc-
cess was achieved with 98.29% accuracy. Comparisons of the studies 
conducted for the flood disaster were made with the approach were 
recommend in Table IV.

Dotel et al. [30] used pre-disaster and post-disaster images to detect 
flood-damaged roads in Hurricane Harvey and preprocessed them 
with semantic segmentation neural networks with a differential sub-
traction method. The flood-damaged roads were then detected with 

Fig. 8. Feature selection with Boruta and dimensionality reduction with principal component analysis (PCA) for concatenated features. Two 
hundred features selected by Boruta, 200 selected features after PCA, 400 features selected by Boruta, and 400 selected features after PCA.

TABLE III. PERFORMANCE METRICS FROM FEATURE SELECTION PROCESSES WITH BORUTA

CNN Models
Selected Feature 

Number Model
Feature Number 

After Autoencoder Sensitivity (%) Specificity (%) F-Score (%) Accuracy (%)

AlexNet and VGG16 
(concatenated 4000 
features)

200 Boruta – 98.60 99.19 98.90 98.9

Boruta and PCA 61 97.60 97.89 97.75 97.75

400 Boruta – 98.81 99.89 99.35 99.35

Boruta and PCA 90 97.82 98.78 98.30 98.29

CNN, convolutional neural network; PCA, principal component analysis.
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84.5% accuracy in their models using the U-net and Resnet models 
as hybrids using the semantic segmentation method. Cao et al. [31] 
determined the structures damaged by flooding from Hurricane 
Harvey using the CNN model they developed. The model they devel-
oped has 3.5 million parameters and is smaller than the models 
used in the transfer learning method and detected damaged struc-
tures with 97% success. Kaur et al. [32] used the satellite imagery of 
Hurricane Harvey to detect structures damaged by the flood caused 
by the hurricane and proposed a new structure for conventional 
neural networks. Rmsprop achieved 97% success after 30 epochs in 
the study, which evaluated the results of four different optimizers.

In this study, the structures damaged by flooding in Hurricane 
Harvey were detected with a higher accuracy of 99.35% than in simi-
lar studies. However, the fact that the proposed approach is not an 
end-to-end model may have some drawbacks in its application. It is 
also recommended that future studies verify classification success by 
expanding the dataset to include various flood-damaged structures.
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