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ABSTRACT

This research evaluates the viability of the artificial eco-system optimization (AEO), a novel metaheuristic algorithm, for optimal power system stabilizers (PSSs) tuning 
in single-machine infinite bus (SMIB) and western system coordinating council (WSCC) multi-machine power systems. The PSS design problem was converted to 
an optimization problem to achieve optimal tuning, and an eigenvalue-based objective function was employed. The eigenvalue objective function was defined 
to optimally obtain the PSSs parameters and enhance the power system dynamic performance by improving the damping of electromechanical modes (EMs). The 
proposed AEO-based PSS performance was validated by comparing the results obtained with genetic algorithm (GA)-based PSS, particle swarm optimization (PSO)-
based PSS design, and similar published work. AEO-based PSS method of tuning has been shown to damp electromechanical modes (EMs), control low-frequency 
oscillations (LFO), and provide better transient performance and convergence rate.
Index Terms—Artificial eco-system optimization, oscillation damping, power system dynamic stability, power system stabilizer.
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I. INTRODUCTION

Low-frequency oscillations (LFO) is a significant issue in the operation of power grid system 
because they threaten the stability and integrity of the grid if not adequately controlled. This 
control is essential, particularly in current power grid systems, as the interconnection of power 
systems keeps increasing to meet the energy demand [1]. Controlling LFOs in the power grid sys-
tem also helps to improve the power transfer capability and achieve stabilization in the system. 
Stabilization requires taking care of small-signal stability, which involves LFOs. Damping control-
lers such as power system stabilizers (PSSs) are used to improve the damping of electromechani-
cal modes (EMs), thereby controlling LFOs in single-machine and multi-machine systems. Power 
system stabilizers compensate for the lag error between the generator excitation input and elec-
trical torque and generate an additional torque on the rotor [2].

Though the power system is nonlinear, the PSS design is based on the linear control theory via a 
linearized model of the power system. PSS parameters are tuned about a defined operating point 
in the linearized model. Nonlinearity in power system means spontaneous continuous fluctua-
tions over a wide operating range. More so, power system configuration changes with time due 
to these fluctuations and thus requires the adjustment of PSS parameters to maintain a stable 
working condition. This makes conventional PSS with fixed parameters unreliable in providing 
optimal performance over the entire operating condition.

Different control techniques for PSS design include pole placement and shifting, feedback con-
trol loop, and self-tuning regulators. These techniques have limitations of low intensive compu-
tation efficiency and extended information processing time.

In PSS design for single-machine and multi-machine power systems, several meta-heuristic tech-
niques have been proposed as viable ways for offline tuning of PSS. These proposals were done 
by considering a wide operating condition region. Some of the techniques include farmland 
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fertility algorithm [3–5], Henry gas solubility optimization [2], kid-
ney-inspired algorithm [6], general relativity search algorithm [7], 
sine cosine algorithm [8], modified arithmetic optimization [9], artifi-
cial gorilla troops optimization [10], cuckoo search optimization [11], 
and Harris hawk optimization [12]. Improved grey wolf and differen-
tial evolution algorithm was used in proportional integral derivative 
(PID) and fractional PSS in [13]. A modified differential evolutionary 
particle swarm optimization algorithm was used to design PSS in 
hydro system in [14] and a modified differential evolutionary algo-
rithm was also used to design PSS in [15] considering solar pene-
tration. Metaheuristic algorithms have also been adopted in other 
damping controller designs like flexible alternating current transmis-
sion systems (FACTS). A new hybrid differential evolution with whale 
optimization algorithm was used for fractional static synchronous 
series compensator and governor design in solar photovoltaic, wind, 
and hydro systems in [16], and grey wolf optimization was adopted 
in interline power flow controller (IPFC) design in study [17]. The 
significant advantage of deploying metaheuristic techniques is the 
ability to escape local minima and explore a global solution to the 
optimization problem.

Artificial eco-system optimization (AEO) is a novel meta-heuristic 
algorithm developed to solve complex optimization [18]. AEO 
 optimization has been applied in various applications, such as 
parameter estimation of solar photovoltaic models [19] in PID con-
troller design for buck converter [20] and economic emission dis-
patch [21]. However, there are still emerging engineering problems 
that AEO can be adopted to solve and further evaluate its efficiency. 
Thus, this research evaluates the viability of the new algorithm for a 
recent engineering problem by assessing AEO viability for optimal 
tuning of PSS in a single- and multi-machine power system for the 
first time.

This research was carried out by defining the PSS damping controller 
problem as an optimization problem and AEO was applied for PSS 
tuning. An eigenvalue objective function was formulated to improve 
the stability of single-machine infinite bus (SMIB) and Western 
System Coordinating Council (WSCC) by improving the damping 
of electromechanical modes and also obtain the gains and param-
eters of the stabilizers. Nonlinear time-domain simulation results 
and transient performance analysis indicate the efficiency of the 
proposed AEO–PSS damping controller as validated via comparison 
with genetic algorithm, particle swarm optimization-based PSS, and 
similar published work.

II. ARTIFICIAL ECO-SYSTEM OPTIMIZATION (AEO)

Artificial eco-system is a nature-inspired novel metaheuristic algo-
rithm developed by [18]. The algorithm imitates the flow of energy 
between the three unique components in an eco-system and their 
behavioral processes, which are the producer (production), the con-
sumer (consumption), and the decomposer (decomposition). The 
interaction between these three components makes up an ecosys-
tem food chain, which describes the feeding process in an eco-system 
and shows the flow of energy in an eco-system. Only one producer 
and one decomposer exist as an individual in the eco-systems popu-
lation. The rest of the population, representing the search space, are 
consumers chosen as carnivores, herbivores, or omnivores with the 
same probability. Fig. 1 depicts the energy flow in an eco-system.

A. Production Process
The production process allows AEO to randomly produce a new 
search entity. The produced new search entity displaces the for-
mer one known as the best entity (solution) ( )xn . This displacement 
is between the best entity and a new search entity randomly pro-
duced in the search space xrand� �.  An operator known as production 
operator is used to mathematically describe the equations (1)–(3) as 
follows:

x t a x t ax tn rand1 1 1�� � � �� � � � � � �  (1)

a
t

maxit
r� ��

�
�

�
�
�1 1  (2)

x r V V Vrand PSS
max

PSS
min

PSS
min� �� � �.  (3)

where the population size is represented by n , the maximum num-
ber of iterations performed or the stop criteria is given as maxit , 
VPSSmax  and VPSSmin  are the upper PSS and lower PSS limits, respectively, 
and r1 is value randomly generated in the range of [0,1]. r  is a vector 
produced randomly within the range of [0,1], linear weighting coef-
ficient is given as a , and xrand  is an individual position produced 
randomly in search space.

B. Consumption Process
After the production process, consumption takes place by the con-
sumers. Each consumer in order to obtain food energy, may either 
feed on a consumer randomly chosen with lower energy level, a pro-
ducer or both. A consumption factor with levy flight characteristics 

Fig. 1. Diagram representing energy flow in an eco-system.
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is proposed and defined in equations (4) and (5) as a simple param-
eter-free random walk.

C
v
v

=
1
2

1

2
 (4)

v N v N1 20 1 0 1� � � � � �, , ,  (5)

where normal distribution is given as N 0 1,� �  with standard devia-
tion as 1 and mean = 0.

Consumption factor is crucial because it assists each consumer in 
hunting for food. The three consumers, carnivores, herbivores, and 
omnivores, adopt unique consumption strategies.

If a herbivore is randomly selected as a consumer, it can only eat the 
producer. Its behavior is represented in a mathematical model as 
shown in equation (6):

x t x t C x t x t i ni i i�� � � � � � � � � � �� � � ��� ��1 21. , , ,  (6)

However, if a consumer randomly chosen is an carnivore, it can feed 
only on a random consumer with a higher energy level and can be 
mathematically modeled in equation (7) as follows:

x t x t C x t x t i ni i i j�� � � � � � � � � � �� � � ��� ��1 3. , , , , (7)

j randi i� ��� ��� �2 1  (8)

Also, if an omnivore is randomly selected as a consumer, the omni-
vore can feed on a random consumer with a higher energy level and 
a producer as well. It is mathematically modeled in equations (9) and 
(10) as follows:

x t x t C r x t x t r x t x t ii i i i j�� � � � � � � � � � �� � � �� � � � � � �� � �1 1 32 1 2. .( , ,��,n  (9)

j randi i� ��� ��� �2 1  (10)

where r2  is a number generated randomly in range of [0, 1].

C. Decomposition Process
The decomposition process is essential because it provides the 
producer with the required nutrients for growth. The decomposer 
chemically breaks down the remains of each individual in the popu-
lation after death. Its behavior is mathematically modeled using a 
decomposition factor D  with weighting coefficients e  and h  in 
(11)–14 as follows:

x t x t D e x t h x t i ni n n i�� � � � � � � � � � �� � � �1 1. . . , ,  (11)

D u u N� � � �3 0 1, ,  (12)

e r randi� �3 12 1. ([ ])  (13)

h r� �2 13.  (14)

Fig. 1 shows the flow of energy in an eco-system.

The steps of the AEO algorithm for optimal PSS tuning are as follows:

1. Initialize a search space randomly in an eco-system. Each 
obtained solution is defined by a vector, x , x = [ , , , , ]K T T T TP 1 2 3 4  
in the PSS controller.

2. Calculate each eco-system energy level via the objective func-
tion equation (26) and update the best solution.

3. Production process: using equation (1), update the position for 
individual x1 .

4. Consumption process: each consumer has the same prob-
ability of selection; hence, for individuals x xn2… , its position 
is updated using equation (6) if the selected individuals are 
herbivores, if the selected individual are carnivores, individual 
position is updated using equation (7) and using if they are 
omnivores Equation (9) is deployed. 

5. Calculate each eco-system energy level via equation (26) and 
update the result as best solution.

6. Decomposition process: each position is updated using equa-
tion (11).

7. Calculate each eco-system energy level via the objective func-
tion equation (26) and update the best solution.

8. Repeat steps 3–7 until the stop criteria is reached which is the 
maximum number of iterations.

9. Population with a higher flow of energy is chosen as the best or 
optimal solution.

Fig. 2 shows the AEO flow chart for the described procedure above 
in PSS parameter tuning.

III. PROBLEM FORMULATION

A. Power System Model
The power system dynamic model is described using differential 
algebraic equations (DAEs) [22] and are used to represent a power 
system with m number of synchronous machine and the voltage 
regulator called automatic voltage regulator (AVR). The DAEs are as 
described in equations (15–20) [3]:

T
dE
dt

E X X I Ed i
qi

qi di di di fdi0
’

’
’ ’� � � �� � �  (15)

T
dE
dt

E X Xq i
di

di qi qi0
’

’
’ ’� � � �� �  (16)

d
dt

i
i s

�
� �� �  (17)

2H d
dt

T E I E I X X I Ii

s

i
Mi di di qi qi di di di qi i s

�
�

� �� � � � �� � � �� �� � � Di  (18)

T
dE

dt
K E K V VAi

fdi
Ai fdi Ai refi i� � � �( )  (19)

where in equations (15–19) subscript i denotes ith synchronous 
generator, Td0’  and Tq0’  are the d-axis and q-axis open-circuit time 
constants, Ed’  and Eq’  are the transient Electromagnetic Field (EMF) 
of the d-axis and q-axis due to flux linkage in the damper coils, Efd  
is the excitation field voltage, Xd  and Xq  are the synchronous tran-
sient and sub-transient of d-axis and q-axis reactances, respectively, 
δ  is the rotor angle of the generator, ω  is the generator rotor speed, 
ωs  is the generator synchronous speed, H  is the generator inertia 
constant, D  is the damping coefficient, TM  is the mechanical torque 
or power output, Id  and Iq  are stator current d-axis and q-axis 
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Start

Initialize population positions , each population is 
specified by x = [Kp, T1, T2, T3, T4]

Calculate each ecosystem energy level and 
update best solution

Iteration = 1

If iteration < max it

Production process: using equation 
(1) update position fox X1

Consumption process: using equation 
(4) update consumption factor

Check 
consumer 
selected

OminvoreHerbivore

Carnivore Using equation (9) 
update position

Using equation (7) 
update position

Using equation (6) 
update position

Calculate each ecosystem energy 
level and update best solution

Decomposition process: using equation 
(11) update position for each individual

Calculate each ecosystem energy 
level and update best solution

Is maximum iteration 
reached?

Display best solution

End

YES

Iteration = iteration + 1

NO

Fig. 2. Flowchart of an artificial eco-system optimization algorithm.
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components, respectively, Vref  is the reference excitation voltage, V  
is the terminal voltage of generator, KA  is excitation static gain, TA  
is the regulator time constant, TE  is the electrical torque, Vd  and Vq  
are generator terminal voltage of the d-axis and q-axis components, 
and Rs  is the armature resistance.

TMi , the input mechanical torque, is kept constant while design-
ing the excitation controller, i.e., to not significantly affect machine 
dynamics, the generator action is assumed to be slow. Electrical 
torque is described and substituted in equation (18) as follows:

T E I E I X X I IEi di di di di qi di di qi� � � �� �’ ’ ’ ’  (20)

A power grid system with n number of buses and m number of gen-
erators, load buses m–n are described using algebraic equations as 
follows from equations (21–23):

0 2� � �� � �� � � � �
��

�
�

�
�
�

V e R jX I jI e E X Xi
j i

si di di qi

j i

di qi di
�

�
�

’ ’ ’ ’�� � ��
�

�
�

��
�
�

�
�
�

I jE eqi qi

j i
’

�
�
2

i m� �1, ,  (21)

V e I jI P V jQ V V V Y ei
j i

di qi Li i Li i

k

n

i k ik
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�

� ���
1

�� � �, , ,i m1  (22)

P V jQ V V V Y e i m nLi i Li i

k

n

i k ik
j i k ik� � � � � � � � �

�

� �� ��
1

1� � � , , ,  (23)

The load active power and reactive power are represented by PL  
and QL , respectively. Yej–.  denotes the power system admittance 
matrix and θ  is the bus voltage V  angle. The admittance matrix load 
element in power lines is reduced by the order reduction method, as 
in equation (24).

� x Ax Bu� �
�

,  (24)

The power system linear model is described using equation (24), 
where x  is the system state vector variables, A  is the state space 
matrix of the system, B  is the system input matrix, and u  is the sys-
tem control input vector.

B. PSS Design Procedure
This research makes use of the conventional lead–lag PSS connected 
to the excitation system IEEE-ST1 type for analysis [23], as shown in 
Fig. 3; the figure also connects an SMIB test system. The ith system 
transfer function in equation (25) describes the PSS connection with 
IEEE-ST1 excitation system as follows [24]:

G s
V

w s
K

T s
sT

sT
sT

sT
i

PSSi s

i
Gi

w

w

i

i

i� � � � �
�

�� �
�� �
�� �

�� �� �

� 1
1
1

11

2

3

11 4�� �sT i
 (25)

Fig. 3. Connection between a conventional power system stabilizer (PSS) and IEEE--ST1-type excitation system [4].

TABLE I. PARAMETER SETTING FOR THE GA, PSO, AND AEO ALGORITHMS

Parameters GA PSO AEO

Maximum iterations 100 100 100

Population size 100 100 100

Simulation time =10 s mutation rate
Beta

gamma

=
=
=

0 02
1
0 1

. ,
,
.

inertia weight w
weight damping ratio wdamp

C C

� � �
� � �
�

1
0 99

1 51

,
. ,

. , 22 2 0� .

Damping factor D u where u N
weight coefficients h e h

� � � � �
� � �

3 0 1~ , ,
, 22

1
2

1

2

,

Consumption factor C
v
v

�

Simulations = 20

Lower limits K T T T Tpss , , , , . , . , . , . , .1 2 3 4 0 0010 0010 02 0 0010 02=

Upper limits K Tpss T T T, , ,, , , , ,1 2 3 4 50 1111=

AEO, artificial eco-system optimization; GA, genetic algorithm; PSO, particle swarm optimization.PSS gain (KPSS) and parameters (T1, T2, T3, and T4) constraints
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where the output signal of the PSS at the ith machine is VPSSi , Tw  
is the washout time constant equal to 10 in this study, and the ith 
machine synchronous speed deviation signal is ∆wi . Optimal 
parameters of stabilizer gain KGi  and parameters T i1 ,  T i2 ,  T i3 ,  and 
T i4  are to be determined.

C. PSS Design Results

1) Objective Function Formulation and Performance Indices for 
Error Minimization
In [25, 26], the authors explained the single- and multiple-objective 
function. This research adopted a single-objective function. Rotor 
speed deviation error results in electromechanical modes of oscil-
lation; therefore, to improve the damping of these electromechani-
cal modes, which minimizes the rotor speed deviation error, the 
damping ratio is maximized for faster oscillation attenuation. The 
eigenvalue single-objective function was employed to enhance 
the damping characteristics of electromechanical modes in the sys-
tem and shift the eigenvalues of the power system to the left region 
of complex s-plane. Stabilizer gain and parameters of the PSS are 
determined through the defined eigenvalue objective function as 
shown in equation (26):

J real EMs P realeig i i C j j� � �� �� � � � �� ��max | |� � � � 0

EMs
im

k
k� �

� �
�

�
�
�

��

�
�
�

��
�

�
�

|0
2

5  (26)

Eigenvalues of the power system state space matrix are denoted by 
λ i , and PC  is a penalty constant applied for producing the positive 
eigenvalues and enhancing slow eigenvalues [23]. In this study the 
single objective function which accesses the error performance. Jeig ,  
which is the objective function, is minimized subject to PSS gain 
(KGi ) and parameters ( T i1 ,  T i2 ,  T i3 ,  and T i4 ) with constraints 

0 001 50. ≤ ≤KGi  and 0 001 11. ≤ ≤T i , 0 02 12. ≤ ≤T i , 0 001 13. ≤ ≤T i , and 
0 02 14. ≤ ≤T i  [7]. The AEO algorithm proposed for PSS design com-
putes the defined optimization problem using the objective func-
tion and constraints to obtain optimal values. Table III also shows 
the unstable damping ratios for no-PSS and the optimized damping 
ratio for AEO-PSS, PSO-PSS, and GA-PSS with their corresponding 
frequencies.

2) Single-Machine Infinite Bus
Here, an SMIB test power system is considered [22]. Fig. 5 shows the 
single-line diagram of the SMIB, whose result was evaluated using 
GA-based PSS and PSO-based PSS [5]. The optimization process was 
terminated after 100 iterations for all three algorithms in a popu-
lation search space of 100. All three methods were performed 20 
times before optimal PSS parameters were chosen. Table I shows the 
parameter settings for all three optimization algorithms performed 
on the SMIB system.

The SMIB model is described using DAEs in equations (15–20). The 
dynamic parameters of the SMIB power system are given in Table  II 
[22]. This research used the MATPOWER toolbox to compute the power 
flow of the system and its initial conditions. The DAEs in the power 
 system model are solved via an ODE solver in MATLAB/SIMULINK. 
Table II also shows the machine database values of the SMIB model.

3) SMIB Test Power system Time-Domain Simulation without PSS 
Damping Controller 
The test system with no system loading change is simulated under a 
disturbance. Eigenvalues and nonlinear time-domain analysis simu-
lation were conducted under a 100 ms symmetrical three-phase 
fault observed at t =1s. The fault was cleared after t = 0.2s and the 
system’s stable condition was restored, Table III shows the unstable 
damping ratios for No-PSS and the optimized damping ratio for AEO-
PSS, PSO-PSS and GA-PSS with their corresponding frequencies, this 
the single objective function which accesses the error performance 

TABLE II. MACHINE DATABASE VALUES OF THE SMIB MODEL

Transmission line X pu X puT L= =0 0625 0 2. , .

Machine H s D T s T s X X Xd q q d q� � � � � �6 4 0 0 6 0 0 535 0 8645 0 89580 0. , . , . , . , . , . ,� � � �� �0 1969 0 1198. , .s X sd
�

Exciter K T sA A= =50 0 0 05. , .

Operating point information P pu V pu V puG = = =1 63 1 026 1 0251 2. , . , .

Td0′  and Tq0′  are the d-axis and q-axis open-circuit time constants, Xd  and Xq  are the synchronous transient and sub-transient of d-axis and q-axis reactances, 
respectively, H  is the generator inertia constant, D  is the damping coefficient, PG  is the power output, V1  is the terminal voltage of generator, KA  is the 
excitation static gain, TA  is the regulator time constant, XT  is the transmission line reactance, and XL  is the inductance of the transmission line.
SMIB, single-machine infinite bus.

TABLE III. DAMPING RATIO PERFORMANCE INDEX WITH CORRESPONDING FREQUENCY

No-PSS AEO-PSS PSO-PSS GA-PSS

Damping Ratio Frequency Damping Ratio Frequency Damping Ratio Frequency Damping Ratio Frequency

–0.0070 1.3306 0.6583 2.0068 0.4285 1.5859 0.3771 1.8146

–0.0070 1.3306 0.8367 1.1487 0.6128 0.9703 0.6668 0.8259

AEO, artificial eco-system optimization; GA, genetic algorithm; PSO, particle swarm optimization; PSS, power system stabilizer.
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indices in the design. The nonlinear time domain results are shown 
in Table V. Table V indicates eigenvalue results and corresponding 
damping ratio and frequency for the case without PSS installed on 
the power system and with AEO, GA,and PSO- based PSS installed 
on the power system. A weak damping ratio at Mode 1 with no PSS 
and corresponding eigenvalues of 0.0588 ± j8.3601 is observed from 
Table V. Also, -0.0070 is noted as the worst electromechanical mode 
damping ratio. 

4) SMIB Test Power System Time-Domain Simulation with AEO-PSS, 
GA-PSS, and PSO-PSS Damping Controller
In PSS design, the operating conditions used without PSS case were 
still adopted where a 100 ms symmetrical three-phase fault was 

Fig. 4. Schematic diagram of SMIB with AVR and excitation in power system. AEO, artificial eco-system optimization; AVR, automatic voltage 
regulator; GA, genetic algorithm; PSO, particle swarm optimization; PSS, power system stabilizer; SMIB, single-machine infinite bus.

TABLE IV. PSS OPTIMAL PARAMETERS USING GA, PSO, AND AEO SEARCH 
ALGORITHMS

Algorithm KG T1 T2 T3 T4

GA 8.9429 0.5499 0.6597 0.5293 0.0200

PSO 4.6824 0.7697 0.5810 0.5366 0.0201

AEO 39.6109 0.0984 0.0200 0.0949 0.0200

PSS gain (KG) and time constants (T1, T2, T3, and T4) constraints.
AEO, artificial eco-system optimization; GA, genetic algorithm; PSO, particle 
swarm optimization; PSS, power system stabilizer.

TABLE V. THE SMIB POWER SYSTEM EIGENVALUE RESULTS AND ITS CORRESPONDING ELECTROMECHANICAL MODE DAMPING RATIO FOR GA, PSO, AND 
AEO-PSS

Mode No-PSS GA-PSS PSO-PSS AEO-PSS

Eigenvalue, damping ratio

1 0 0588 8 3601 0 0070. . , .� �j � �4 6415 11 4012 0 3771. . , .j � �4 7259 9 9642 0 4285. . , .j � �11 0256 12 6091 0 6583. . , .j

2 � �13 2994 0 0000 1 0000. . , .j � �4 6435 5 1892 0 6668. . , .j � �4 7280 6 0965 0 6128. . , .j � �11 0256 7 2176 0 8367. . , .j

3 � �8 8414 0 0000 1 0000. . , .j � �0 1005 0 0000 1 0000. . , .j � �0 1003 0 0000 1 0000. . , .j � �0 1025 0 0000 1 0000. . , .j

4 � �3 0673 0 0000 1 0000. . , .j � �1 5078 0 0000 1 0000. . , .j � �3 2732 0 0000 1 0000. . , .j � �2 1881 0 0000 1 0000. . , .j

5 � �3 2179 0 0000 1 0000. . , .j � �1 7255 0 0000 1 0000. . , .j � �8 1633 0 0000 1 0000. . , .j

δ  is the rotor angle of the generator, ω  is the generator rotor speed, Efd  is the excitation field voltage, and Eq’  is the transient EMF q-axis due to flux linkage in the 
damper coils.
AEO, artificial eco-system optimization; GA, genetic algorithm; PSO, particle swarm optimization; PSS, power system stabilizer; SMIB, single-machine infinite bus.
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observed at t = 1s to show the importance of PSS. A nonlinear time-
domain simulation was also performed using the AEO algorithm for 
PSS design, and the AEO performance was validated by comparing 
it with GA-based PSS and PSO-based PSS, and a similar work car-
ried out by [9]. An eigenvalue objective function was employed as 
described in equation (26) to increase the electromechanical modes 
damping properties of PSS, where control parameters of the PSS are 
determined by computing the system state space matrix A  from 
equation (24). PSS parameters obtained are also shown in Table IV.

PSS parameters obtained in Table IV were used for time-domain 
simulations. The results of eigenvalues and their corresponding 
damping ratio for the SMIB test power system with AEO-, GA-, and 
PSO-based applied to the power system, respectively, is shown 
also in Table V. From Table V, mode 1 produced a weak damping 
ratio for electromechanical mode in no-PSS. Following an opti-
mal PSS-based design, mode 1 was impressively enhanced from 
0 0588 8 3601. .± j  to stable mode of -11.0256 + j12.6091  for AEO-
PSS, -4.6415– j11.4012  for GA-PSS, and -4.7259 – j9.9642  for 
PSO-PSS, respectively. Relatively, the EM worst damping ratio 

-0.0070  was enhanced to 0.6583  for AEO-PSS, 0.3771  for GA-PSS, 
and 0.4285  for PSO-PSS, respectively.

Furthermore, a nonlinear time-domain simulation was carried out. 
Figure 6 shows the Eigenvalue comparison between NO-PSS and 
AEO based PSS while Figures 7, 8 and 9 shows the rotor speed, rotor 
angle and output power response of for the SMIB  test system with 
NO-PSS, GA-based PSS, PSO-based PSS, and AEO-based PSS.

5) Quantitative Performance Evaluation by Comparing with 
Published Similar Work
To validate the efficiency of the proposed design in comparison 
with similar works, quantitative results are compared to the refer-
ence model in study [9]. Comparing the results of the proposed 
AEO-design in damping electromechanical oscillations in the SMIB 

TABLE VIII. CONDITIONS ADOPTED IN MULTI-MACHINE SIMULATION

Base Condition Condition 1 Condition 2

P Q P Q P Q

Generator

 G1 0.72 0.27 2.21 1.09 0.36 0.16

 G2 1.63 0.07 1.92 0.56 0.80 –0.11

 G3 0.85 –0.11 1.28 0.36 0.45 –0.20

Load

 A 1.25 0.50 2.00 0.80 0.65 0.55

 B 0.90 0.30 1.80 0.60 0.45 0.35

 C 1.00 0.35 1.50 0.60 0.50 0.25

Fig. 5. Single-machine infinite bus (SMIB) line diagram [20]. 
Convergence curves of AEO, PSO, and GA in obtaining optimal PSS 
design. AEO, artificial eco-system optimization; GA, genetic 
algorithm; PSO, particle swarm optimization; PSS, power system 
stabilizer.

TABLE VI. SMIB SYSTEM PSS-OPTIMIZED PARAMETER COMPARISON WITH 
STUDY [9]

Parameters

Proposed Model Reference Model [9]

AEO-PSS mAOA-PSS

KG
39.6109 42.9745

T1 0.0984 0.08039

T2 0.0200 0.01023

T3 0.0949 0.07818

T4 0.0200 0.01015

No-PSS AEO-PSS mAOA-PSS

0 0588 8 36010 7. . , . %± j � �11 0256 12 6091 65 83. . , . %j � �2 6040 4 021154 36. . , . %j

AEO, artificial eco-system optimization; PSS, power system stabilizer; 
SMIB, single-machine infinite bus; mAOA, modified arithmetic optimization 
algorithm.

TABLE VII. MACHINE DATABASE VALUES OF THE WSCC MODEL

Transmission 
lines

X pu X pu X pu X pu

X

T T T T

T

14 27 39 45

4

0 0576 0 0625 0 0586 0 085= = = =. , . , . , . ,

66 57 69 78

89

0 092 0 161 0 17 0 072

0 10

= = = =

=

. , . , . , . ,

.

pu X pu X pu X pu

X

T T T

T 008 0 0 0 0 176

0 158

14 27 39 45

46

pu X pu X pu X pu X pu

X pu

L L L L

L

, , , , . ,

.

= = = =

= ,, . , . , . ,

. ,

X pu X pu X pu

X pu

L L L

L

57 69 78

89

0 306 0 358 0 149

0 209

= = =

=

Machines H s H s H s D T s T s

T

d d

d

1 2 3 01 0223 63 6 4 3 01 0 0 8 96 6 0� � � � � �. , . , . , . , . , . ,� �

003 01 02 03 15 89 0 31 0 535 0 6 0 0969� � � �� � � � �. , . , . , . , . ,s T s T s T s Xq q q q

XX X X X X

X

q q d d d2 3 1 2 30 8645 1 2578 0 146 0 8958 1 3125, . , , . , . , . , . ,� � � � �

qq q q d

d

s X s X s X s

X

1 2 3 1

2

0 0969 0 8645 1 2578 0 0608

0

� � � �

�

� � � �

�

. , . , . , . ,

.. , .1198 0 18133s X sd
� �

Exciters K T s K T s K T sA A A A A A1 1 2 2 3 320 0 0 2 20 0 0 2 20 0 0 2= = = = = =. , . , . , . , . , .

Operating 
point 
information

P pu P pu V pu V pu V puG G2 3 1 2 31 63 0 85 1 04 1 025 1 025= = = = =. , . , . , . , .

WSCC, Western System Coordinating Council.
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test system. Table VI shows the obtained PSS parameters and that 
obtained in study [9]. Also, the dominant eigenvalue and the damp-
ing ratio in percentage for no-PSS, AEO-PSS, and the reference study 
are shown.

From Table VI, it can be seen that the damping ratio of the dominant 
eigenvalue was improved from 54.36% to 65.83% compared to the 

reference study; this is an 11.47% efficiency increase in the damping 
of electromechanical oscillation.

D. Multi-machine Power System
1) Western System Coordinating Council (WSCC)
Here, a WSCC multi-machine test power system is considered. Whose 
result was evaluated using GA-based PSS and PSO-based PSS. The 
optimization process was terminated after 100 iterations for all three 
algorithms in a population search space of 100 just like in the single 
machine. Table VII shows the machine database values of the WSCC 
model, while Table VIII shows the conditions adopted during the 
simulation process.

Figures 10-16 shows the rotor speed response of generators 2 and 3 
with reference to generator 1 for no-PSS, GA-based PSS, PSO-based 
PSS, and AEO-based PSS as regards the operating conditions in 
Table VIII.

IV. CONCLUSION

This research considered the optimal design of a PSS for LFO damp-
ing in an SMIB and multi-machine power test systems. The differen-
tial algebraic equations (DAEs) were used to model the test systems, 
dynamic and small signal stability analyses were carried out in the 

Fig. 6. Eigenvalue plot comparison between AEO-PSS and no-PSS 
on the system. AEO, artificial eco-system optimization; PSS, power 
system stabilizer.

Fig. 7. Rotor angle response of the generator. AEO, artificial eco-
system optimization; GA, genetic algorithm; PSO, particle swarm 
optimization; PSS, power system stabilizer.

Fig. 8. Rotor speed response of the generator. AEO, artificial eco-
system optimization; GA, genetic algorithm; PSO, particle swarm 
optimization; PSS, power system stabilizer.

Fig. 9. Active power response of the generator. AEO, artificial eco-
system optimization; GA, genetic algorithm; PSO, particle swarm 
optimization; PSS, power system stabilizer.

Fig. 10a. Rotor speed response of generator 2 with reference to 
generator 1 for base condition in Table VIII.
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design of PSSs. A novel metaheuristic algorithm AEO was adopted 
in the PSS design, and its performance was evaluated with GA-based 
PSS, PSO-based PSS, and similar published works to access the pro-
posed AEO-based PSS robustness. Eigenvalue objective function 
was defined in PSSs design, which shifted the eigenvalues to the left 

region of the complex s-plane. Three case studies were performed in 
each test system considering different operating conditions to fur-
ther validate the AEO-based PSS. Conclusively, the obtained results 
validate the proposed AEO-based PSS for LFO damping.
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