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ABSTRACT

Metaheuristic algorithms have become very common in the last two decades. The flexibility and ability to overcome obstacles in solving global problems have 
increased the use of metaheuristic algorithms. In the training of multilayer perceptron (MLP), metaheuristic algorithms have been preferred for many years due to their 
good classification capabilities and low error values. Therefore, this study evaluates the performance of the Prairie dog optimization (PDO) algorithm for MLP training. 
In this context, there are two main focuses in this study. The first one is to test the performance of the PDO algorithm through test functions and to compare it with 
different metaheuristic algorithms for demonstration of its superiority, and the second is to train MLP using the IRIS dataset with the PDO algorithm. As the PDO is one 
of the most recent metaheuristic algorithms, the lack of any study on this subject is the motivation for the article. PDO algorithm can be used in real-world problems 
as a powerful optimizer, as it reaches the minimum point in functions, and can also be used as a classification algorithm because it has successfully performed in MLP 
training.
Index Terms—Classification, metaheuristics, multilayer perceptron, prairie dog optimization
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I. INTRODUCTION

Optimization can be regarded as the effort to obtain the solution for a problem with the mini-
mum cost. Therefore, optimization algorithms have become quite popular and are being used 
in almost all real-world problems [1]. The simplicity of the solution and the effort to reach the 
optimum values in optimization algorithms have led to the development of new algorithms [2]. 
In terms of artificial neural network (ANN) training [3], the optimization algorithms can be classi-
fied under two main groups, namely gradient [4] and metaheuristics [5]. Although the gradient 
method is widely used, it has significant disadvantages such as early convergence, high depen-
dence on initial parameters, and stagnating in local optima. These disadvantages can prevent 
the gradient methods from reaching the global optimum [6]. On the other hand, metaheuristic 
algorithms perform the optimization process with a randomly generated initial set, which not 
only facilitates the solution but also provides solution diversity. The exploration and exploitation 
stages facilitate reaching the optimum values [7]. As stated by “no free lunch theorem,” differ-
ent metaheuristic algorithms are developed to solve different difficult problems more effectively 
[8]. Metaheuristic algorithms can avoid local optima regardless of the structure of the search 
space, get rid of excessive dependency at any point by using an initial set, and prevent prema-
ture convergence by combining local and global search features [9]. Considering the capability 
of the metaheuristic algorithms, this paper adopts the prairie dog optimization (PDO) algorithm 
as a new algorithm for MLP training. Firstly, the problem-solving ability of the PDO algorithm is 
demonstrated with experimental findings, and then it is used as a supervise in the classifier ANN 
training [10].

ANNs are one of the popular subjects that solve problems by simulating the neural system in 
the human brain [11]. Multilayer perceptron (MLP), among forward feedback architecture (FNN), 
is the most important ANN type due to its robust structure in the classification of nonlinear, 
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complex, and noisy data [12–14]. MLP usually consists of at least 
three layers, and a hidden layer is placed between the input and 
output layers [15]. The MLP training process is to find the correct val-
ues of the weights that produce the desired output to classify the 
features correctly. The mean squared error (MSE) value is obtained 
because of calculating the difference between the output obtained 
because of training the MLP architecture and the desired output of 
the dataset [16]
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In the equation, k  is the number of outputs, m  is the number of 
features of the trained data set, D mi � � is the desired output for each 
feature is the output O mi � � obtained. Because of its success, MLP 
has been utilized in many real-world problems [17]. Metaheuristic 
algorithms have gotten popularity in MLP training in recent years 
[18]. No previous attempts have been reported for PDO [19] algo-
rithm-based MLP training which makes this work unique in this 
regard. Therefore, in this paper, the advantages of the PDO algorithm 
in MLP training is revealed.

The paper structure is arranged as follows. In the second section, the 
properties of the PDO algorithm are given. In the third section, the 
MLP training process is explained. In the fourth section, the CEC 2019 
test suite, which is relatively more difficult, complex, and up-to-date, 
compared to CEC 2017 [20] test suite, was used to compare the PDO 
algorithm with other algorithms. The related test suite consists of 
ten functions [21], and details of all functions are given in Table I. 
Testing benchmark functions and updating the winning algorithms 
each year play an important role in making comparisons. Thus, the 
winners [22–24] of the CEC2017 unconstrained optimization compe-
tition, winners of CEC 2018 [25], Winners of CEC 2020 [26], and recent 
algorithm [27, 28] may be regardable.

The fifth section concludes the paper. 

II. PRAIRIE DOG OPTIMIZATION (PDO) ALGORITHM

The movements of a type of rodent called Prairie dogs (PDs) living 
in America are the main inspiration of the PDO algorithm [29]. The 
proposed algorithm mimics four behaviors of the Prairie dog for 
performing exploration and exploitation stages. The foraging and 
nest-building activities of the PDs are used to provide exploratory 
behavior for the PDO. PDs build their nests around an abundant food 
source. They seek a new food source and build new nests around 
it when the food source is depleted, which inspires the exploration 
phase of the PDO. On the other hand, their specific response to two 
unique communications or beeps is mimicked for the exploitation of 
the PDO. PD has signals or sounds for different scenarios, from pred-
atory threats to food availability. Their communication skills play an 
important role in meeting their nutritional needs and their ability 
to protect against predators. These two specific behaviors lead the 
PDs to get closer to a particular or promising place. PDO algorithm 
consists of initialization, fitness function evaluation, exploration, 
and exploitation phases. The details are provided in the following 
subsections.

A. Initialization
In a group of PDs, n  individuals are found and PD belongs to m  
groups. The position of the ith Prairie dog in a particular group can 
be determined by a vector. The following matrix refers to the posi-
tion of all groups in a colony [19]:
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where CTi j,  (n m≤ ) represents the jth size of the ith group in a col-
ony. The following definition expresses the position of all PDs in a 
group where PDi j,  (n m≤ ) represents the size of jth PD in the ith 
group.
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Each group and PDs are represented by a single distribution as 
shown in (4) and (5).

CT U UB LB LBi j j j j, ,� � �� �� ��0 1  (4)

PD U ub lb lbi j j j j, ,� � �� �� ��0 1  (5)

While UB j  and LB j  expresses the lower and upper bounds of the 

j-dimensional optimization problem, ub
UB
m

j
j= , lb

LB
m

j
j=  and 

U 0 1,� �  is a random number with a uniform distribution between 0 
and 1.

B. Evaluation of the Fitness Function
The value of each PD’s fitness function represents the quality of the 
available food at a particular resource, its potential to build new 
nests, and the correct response to predator-prevention stimuli. The 
array storing the fitness function values is sorted, and the minimum 

TABLE I. DETAILS OF THE CEC 2019 BENCHMARK FUNCTIONS

No Name of Functions Dimension Search Range Fmin

F1 Storn’s Chebyshev polynomial 
fitting problem

9 [−8192, 8192] 1

F2 Inverse Hilbert matrix problem 16 [−16384, 
16384]

1

F3 Lennard–Jones minimum 
energy cluster

18 [−4, 4] 1

F4 Rastrigin’s function 10 [−100, 100] 1

F5 Griewangk’s function 10 [−100, 100] 1

F6 Weierstrass function 10 [−100, 100] 1

F7 Modified Schwefel’s function 10 [−100, 100] 1

F8 Expanded Schaffer’s F6 function 10 [−100, 100] 1

F9 Happy cat function 10 [−100, 100] 1

F10 Ackley function 10 [−100, 100] 1
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fitness obtained value is declared the best solution for the given 
minimization problem. The next three best values are considered 
along with the best value for nest building that helps them escape 
from predators [19].
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C. Exploration Phase
This phase includes the PD’s foraging and nest-building activities.  
In PDO, the transitions between exploration and exploitation are 
divided into four phases. These stages are achieved by dividing the 
maximum iteration by 4. The first two strategies are used in the explo-

ration phase ( iter
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In the exploration phase, the movements of the PDs are captured 
with the Lévy flight model so that the concentration in only one area 
is prevented. The found resource is reported to the group with a spe-
cial voice, and the decision is made according to the quality of the 
food. The location update is defined in (7)
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where GBesti j,  is the achieved best global value, eCBesti j,  is the 
effect of the obtained best available solution, which is expressed in 
(9), ρ  is fixed custom food source alarm (set to 0.1 kHz), rPD  is the 
position of a generated random solution, rPD  refers to the total ran-
domized effect of all PDs in the colony which is expressed by (10)
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The term DS, expressed in (11), refers to the digging power depend-
ing on the food source. Levy n� �  is a Lévy distribution and contrib-
utes to a better and more efficient exploration of the problem space.
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In the given equations, r  takes values between −1 and 1 depend-
ing on the existing iterations, providing the probabilistic feature for 
exploration, ∆  represents a small number that explains the small 
differences that exist in PDs.

D. Exploitation Phase
The PD’s response to two separate sounds (communication and 
warning) constitutes the exploitation phase. Their two different 
responses to the sounds of feeding and protection from predators 
result in a promising convergence of the PDO in the exploitation 

phase. At this stage, strategies ∆  and 3
4

max
max

_
_

iter
iter iter≤ ≤  

are followed, respectively. These two strategies are expressed in (12) 
and (13)

PD GBest eCBest CPD randi j i j i j i j� � � � � � �1 1, , , ,�  (12)

PD GBest PE randi j i j� � � � �1 1, ,  (13)

where ε refers to the quality of the food source, 
PD GBest PE randi j i j� � � � �1 1, ,  is the cumulative effect of PDs in the 
colony, and PE  is the effect of predators formulated in (14) [19]
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III. PDO-BASED MLP TRAINING

The main processing unit of the MLP is neurons, which are similar to 
neurons in the human brain. Neurons are connected to each other 
by weights. MLP has three layers, and since the number of neurons 
in the hidden layer can be determined by the user to achieve the 
best result, it was determined as 2 1n +  (n, number of neurons in the 
input layer) for this study. The data presented to the input layer is 
multiplied by certain weights and transmitted to the hidden layer. 
The neurons in the hidden layer multiply the data again with certain 
weights and are collected with the bias value and transmitted to the 
output layer. The neurons in the output layer also process the data 
in the same way as the input and hidden layers. Then the activation 
function is applied to the value. The reason for using the sigmoid 
function as an activation function is that this function is nonlin-
ear and continuous, and it does not need a derivative. The result 
obtained from the activation function is the output of the neuron 
[30, 31]. The IRIS data set was used in this study for training of the 
ANN [32]. Figure 1 represents the overall process of MLP training via 
PDO algorithm.

IV. EXPERIMENT AND RESULTS

A. Optimization of Problems with PDO Algorithm
The optimization process of a problem is given in Fig. 2.

The performance of the PDO algorithm was assessed by comparing 
it with the golden eagle optimization (GEO) [34], reptile search algo-
rithm (RSA) [35], and Archimedes optimization algorithm (AOA) [36]. 
Experiments were carried out using the MATLAB program. Thirty 
search agents were used for each algorithm. In addition, 51 indepen-
dent runs and 500 iterations were used to achieve a fair result. When 
Table II is examined, statistical measurements of all algorithms in the 
form of mean, best, worst, and standard deviation (Std) are given. 
Optimal results are shown in bold. The PDO algorithm achieved the 
most optimal values in all measurements for the F1, F2, F3, and F6 
functions. In F5, it provided the most optimal result in all measure-
ments except the best value. It reached the most optimal result in 
the best value for the F7 function. Other algorithms achieved rela-
tively better results in F8, F9, and F10 functions.
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Convergence curves are visualized in Fig. 3. When all the results are 
evaluated, and it is seen that the PDO algorithm behaves in accor-
dance with the results given in Table II. It has been observed that the 
PDO algorithm has difficulties in solving F8-F10 functions since their 
optimization is difficult.

The boxplots are provided in Fig. 4. It is seen from this figure that 
there are output values for F4 that PDO cannot keep within the pre-
sented range. In F10, only one result is the outlet value, while for the 
other eight functions, no outlet value is seen. This leads to the con-
clusion that PDO keeps the results within a certain range and is a 
stable algorithm.

The purpose of Wilcoxon’s test is to see whether the PDO algorithm 
is more advantageous than other algorithms [37]. When Table III 
is examined, the PDO is seen to be different and more advanta-
geous than the other algorithms in F1, F2, F3, F8, and F10 functions. 
The  PDO algorithm has lost its superiority over the RSA algorithm 
in the F4 and F9 functions. In F4, F5, and F6 functions, it was equal to 
the AOA algorithm. However, the PDO algorithm is mostly in a win-
ning position, indicating its superiority and competitiveness.

B. Results of MLP Training
In this study, MATLAB software was used for MLP training. Fair 
treatment was guaranteed in network training by performing 

Fig. 1. PDO-MLP flowchart [33]. MLP, multilayer perceptron; PDO, Prairie dog optimization.

Fig. 2. Optimization process.
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TABLE II. STATISTICAL PERFORMANCE COMPARISON OF THE AOA, GEO, RSA, AND PDO ALGORITHMS

No Metric AOA GEO RSA PDO

F1 Mean 4.6675E+09 5.6838E+11 6.9282E+04 5.5828E+04

Std 1.6305E+10 4.3674E+11 1.6814E+04 7.4975E+03

Best 7.5185E+05 7.2459E+10 4.9530E+04 4.5786E+04

Worst 1.0237E+11 2.4630E+12 1.1975E+05 7.3267E+04

F2 Mean 1.9276E+01 5.3137E+03 1.8283E+01 1.7566E+01

Std 3.8864E−01 1.8415E+03 4.9333E−01 1.2994E−01

Best 1.8150E+01 1.7322E+03 1.7426E+01 1.7355E+01

Worst 1.9848E+01 9.4806E+03 1.9464E+01 1.7797E+01

F3 Mean 1.2703E+01 1.2704E+01 1.2703E+01 1.2702E+01

Std 9.5446E−04 7.0815E−04 1.8532E−05 6.8169E−06

Best 1.2702E+01 1.2703E+01 1.2702E+01 1.2702E+01

Worst 1.2706E+01 1.2706E+01 1.2703E+01 1.2702E+01

F4 Mean 1.2297E+04 1.3407E+04 9.9798E+03 1.0557E+04

Std 5.5766E+03 4.6490E+03 3.2192E+03 4.8274E+03

Best 4.5436E+03 5.5480E+03 5.5456E+03 4.2671E+03

Worst 2.6879E+04 2.3579E+04 1.9860E+04 2.6256E+04

F5 Mean 4.0103E+00 4.4053E+00 4.3393E+00 3.7113E+00

Std 8.4471E−01 8.0436E−01 5.7641E−01 5.0457E−01

Best 2.5054E+00 2.8771E+00 3.3422E+00 2.6725E+00

Worst 6.0064E+00 6.3395E+00 5.8566E+00 4.5980E+00

F6 Mean 9.0372E+00 1.3284E+01 1.1144E+01 8.8861E+00

Std 9.2095E−01 8.2895E−01 7.3069E−01 9.2593E−01

Best 6.8739E+00 1.0330E+01 9.3207E+00 6.6225E+00

Worst 1.1254E+01 1.4965E+01 1.2360E+01 1.0652E+01

F7 Mean 2.4736E+02 1.4578E+03 9.5684E+02 6.6682E+02

Std 1.1114E+02 2.4024E+02 1.5546E+02 1.8803E+02

Best 1.0365E+02 9.2333E+02 6.1968E+02 1.0246E+02

Worst 5.9423E+02 1.8267E+03 1.2545E+03 9.8505E+02

F8 Mean 5.5575E+00 7.2670E+00 6.2475E+00 6.0263E+00

Std 5.3766E−01 3.3913E−01 4.1651E−01 3.4939E−01

Best 3.7995E+00 6.3814E+00 5.3817E+00 5.0980E+00

Worst 6.5016E+00 7.7782E+00 6.9490E+00 6.5401E+00

F9 Mean 9.3826E+02 2.4455E+03 1.2732E+03 1.3619E+03

Std 3.9719E+02 8.3920E+02 3.0725E+02 4.0723E+02

Best 1.9603E+02 4.5674E+02 6.8686E+02 6.6523E+02

Worst 1.8879E+03 4.6029E+03 2.0662E+03 2.4633E+03

F10 Mean 2.0132E+01 1.8679E+01 2.0493E+01 2.0351E+01

Std 1.2691E−01 4.5487E−01 1.0150E−01 1.4323E−01

Best 1.9337E+01 1.6980E+01 2.0137E+01 2.0003E+01

Worst 2.0252E+01 1.9343E+01 2.0646E+01 2.0603E+01

AOA, Archimedes optimization algorithm; GEO, golden eagle optimization; RSA, reptile search algorithm; PDO, Prairie dog optimization.
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Fig. 3. Convergence curve plots of CEC 2019 functions.
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Fig. 4. Comparing statistical results according to boxplot.
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30  independent runs. Initially, randomly distributed search agents 
(n) were incremented each time as N = 50, 100, 150, and 200, and the 
results were evaluated according to the statistical measures given 
in Table IV and the presented results in Figs 5 and 6. Although the 
classification ability of the PDO algorithm is at an average level, it 
provides very successful results in MSE values.

When the convergence curve graph is examined, as the number of 
search agents increases, the MSE value approaches 0, and the error 
rate decreases. The box plots show that the number of search agents 
is 200, and the values   are close to each other with an error rate closer 
to 0.

V. CONCLUSION

This paper investigates the performance of the PDO algorithm for 
MLP training. The competitiveness of the PDO algorithm is tested 
through the CEC 2019 functions. As seen from the presented results, 
PDO suffers from providing desirable values for some of the test 
functions, although it demonstrates a great advantage in the diffi-
cult problem set of CEC 2019. Therefore, further enhancements to 
this algorithm in various ways may be performed in future poten-
tial works. Nonetheless, the PDO algorithm’s highly competitive 
structure offers a great deal for tackling the optimization of real-
world problems. This study only reveals a specific application of this 

TABLE III. RESULTS OF WILCOXON’S TEST

No Item AOA Versus PDO GEO Versus PDO RSA Versus PDO

F1 p-value 5.1453E−10 5.1453E−10 3.1835E−06

Winner PDO PDO PDO

F2 p-value 5.1453E−10 5.1453E−10 9.3064E−10

Winner PDO PDO PDO

F3 p-value 8.6484E−09 5.1453E−10 5.1453E−10

Winner PDO PDO PDO

F4 p-value 1.1532E−01 7.9392E−05 7.0771E−01

Winner = PDO RSA

F5 p-value 9.1560E−02 5.1363E−05 1.7624E−05

Winner = PDO PDO

F6 p-value 4.2017E−01 5.1453E−10 5.4615E−10

Winner = PDO PDO

F7 p-value 8.2719E−10 5.1453E−10 2.9672E−09

Winner AOA PDO PDO

F8 p-value 8.2719E−10 5.1453E−10 2.9672E−09

Winner AOA PDO PDO

F9 p-value 9.2651E−06 2.4440E−08 3.5830E−01

Winner AOA PDO RSA

F10 p-value 1.1402E−08 5.1453E−10 1.9997E−05

Winner PDO GEO PDO

AOA, Archimedes optimization algorithm; GEO, golden eagle optimization; RSA, 
reptile search algorithm; PDO, Prairie dog optimization.
 = The algorithms performed equally.

TABLE IV. RESULTS OF MSE AND CLASSIFICATION RATE

Metric

Search Agents No (N)

50 100 150 200

Best 0.0319 0.0265 0.0263 0.0246

Std 0.1073 0.1232 0.0913 0.0429

Classification rate 62.0000 62.7500 65.3333 66.6667

Rank 4 3 2 1

MSE, mean squared error.

Fig. 5. Convergence curve of MSE values by number of search 
agents. MSE, mean squared error.

Fig. 6. Boxplot of MSE values by number of search agents. MSE, 
mean squared error.
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algorithm, and the results show how capable it is for MLP training, 
which indicates its good potential for different challenging engi-
neering optimization problems.
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