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ABSTRACT

Nowadays, vehicles have become an integral part of our lives due to mobility advantages. However, traffic accidents continue to occur worldwide. This study aims 
to develop a pure image-based solution using a combination of “deep learning” and “image processing” techniques to minimize the occurrence of traffic accidents. 
While the You Only Look Once (YOLO) algorithm is one of the fastest object detection algorithms, it faces slight accuracy and robustness problems. Afterward, the 
YOLO algorithm with Darknet-53 architecture, which is pretrained with COCO Dataset, has faced reliability issues to detect objects in “Night” images while getting high 
results on “Day” images. Therefore, we suspect that the COCO Dataset is inclined toward brighter images rather than low-light ones. To support this idea with scientific 
evidence, we analyzed the COCO Dataset. Besides, to overcome this issue, fine-tuning and classifier filter designs have been proposed. Additionally, lane detection 
systems were developed to improve the reliability of the feedback system. As a result, the classifier filter system achieved 99.92% accuracy in distinguishing between 
“Night” and “Day” images. After evaluation processes, the proposed system achieved ~0.92 IOU with YOLOV3 fine-tuned model and ~0.95 IOU with YOLOV4 fine-tuned 
model. Furthermore, the lane detection algorithm achieved 88.00% accuracy.
Index Terms—Day and night classification, object detection, driver assistance system
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I. INTRODUCTION

Transportation plays a vital role in human life, particularly with the increasing population 
growth. However, it also brings about several problems, such as traffic jams and accidents. 
Therefore, it is crucial to establish rules and regulations to regulate traffic and prevent accidents. 
However, statistics show that even with government regulations, these problems continue to 
persist in human life. According to data released by the Turkish Statistical Institute (TurkStat), 
the lowest number of traffic accidents recorded between 2009 and 2019 was 1.053.346 in 2009, 
while the highest number was 1.313.359 in 2015. Additionally, the same report mentions that 
1.168.144 accidents occurred, and 174.896 of them resulted in death or injury. Moreover, a 
total of 5.473 people died and 283 234 people were injured in these accidents. TurkStat also 
revealed that 88% of these accidents were caused due to driver defects in the first place [1]. 
In addition, as reported by the National Highway Traffic Safety Administration (NHTSA) in the 
United States, a total of 33 654 fatal accidents were experienced in 2018 [2]. Additionally, the 
same institution conducted a study that found in 2018, about 400.000 people were injured 
in accidents caused by distracted drivers' negligence [3]. Besides that, as shown in another 
research on accidents, 70% of individuals involved in car-to-pedestrian incidents were posi-
tioned in front of the vehicle. Furthermore, among these individuals, 90% were in motion at 
the time of the accident [4].

Throughout recent technological developments, companies can manufacture fully autonomous, 
semi-autonomous, or partially autonomous vehicles. Despite that, the manufacturing costs are 
increasing due to slower development [5], additional sensors, and other factors. To reduce manu-
facturing costs while maintaining optimal performance, it is crucial to develop collision warning 
systems, adaptive cruise control, lane control systems [6], and other related technologies with 
maximum accuracy and minimal cost.

The NHTSA has classified the level of automation in vehicles into six levels [7]. The first level, 
which is described as level 0, represents zero automation in vehicles. This means that the driver is 
fully responsible for all decisions and the car is under human control. None of the car’s systems, 

Content of this journal is licensed 
under a Creative Commons
Attribution-NonCommercial 4.0 
International License.

mailto:baris​canku​rtkay​a@gma​il.co​m
http://orcid.org/0000-0002-3779-7557
http://orcid.org/0000-0001-9567-1023
http://orcid.org/0000-0002-6436-6963


Electrica 2023; 23(3): 607-618
Kurtkaya et al. Deep Learning-Based Driver Assistance System

608

including the brake, steering, throttle, and motive power, are depen-
dent on any autonomous system. Levels 1 and 2 of vehicle automa-
tion are quite similar, with level 2 providing continuous assistance to 
both acceleration/braking and steering, while level 1 only provides 
assistance to one of them. As the automation level increases, the 
technology in cars gradually improves. However, in the United States 
of America, automation levels above level 2 are not yet available for 
consumer purchase as levels 3 to 5 have the ability to fully control 
the car autonomously.

This paper proposes a level 1 system for improving driver safety 
and comfort through various image-based operations and a feed-
back module. The system aims to enhance the driver's experience 
by providing lane tracking, detecting objects, calculating their dis-
tance, and utilizing a prioritization algorithm. As this paper does not 
include direct interventions in acceleration or braking, which require 
extensive electronic and mechanical devices, the proposed system 
falls into the level 1 category. 

The proposed system uses four different image-based opera-
tions, including three image processing techniques and a deep 
learning-based object detection algorithm. To prevent overfit-
ting of the object detection algorithm to specific object colors, 
data augmentation techniques such as color shifting and flipping 
were used [8]. These techniques not only helped to protect the 
convolutional neural network (CNN) model from overfitting but 
also increased the amount of available data, resulting in improved 
model performance.

Image preprocessing techniques remain valuable for improving the 
accuracy of driver assistance systems. Well-known preprocessing 
techniques, such as noise cancellation, classification, data cleaning, 
and transformation [9, 10, 11], can help to map the input dataset 
space to a more diverse one, thereby increasing the system’s robust-
ness. For instance, the Laplacian [12] and Sobel Feldman [13] filters 
are popular for extracting Salt and Pepper [14] and Gaussian noise 
[12] from images. Furthermore, it is common to use filters to classify 
data with a threshold. In this case, the filter is specifically designed 
to amplify the differences between the most important properties 
of the two classes. Also, lane detection is a common task in the lit-
erature and is often performed using the Hough Linear Transform 
algorithm [15], which detects points in the same direction by analyz-
ing their slope and bias [16].

While driver assistance systems and autonomous vehicles are pop-
ular topics in the literature, many papers build their systems using 
expensive sensors, such as lidar sensors [17, 18, 19]. In contrast, the 
objective of this paper is to create an only image-based application 
that reduces the occurrence rate of traffic accidents. In addition to 
building a robust system, it is essential for the system to be real-time. 
Thus, the system was implemented using the YOLO algorithm to 
meet these demands. Despite having high mAP results on the COCO 
dataset with pretrained Darknet-53, both YOLOv3 [20] and YOLOv4 
[21] algorithms performed poorly on night images from the Oxford 
RobotCar (ORC) dataset. To overcome this issue, Darknet-53 model 
was fine-tuned with ORC dataset [22] in this article. 

In addition, there are several object detection algorithms available 
other than YOLOv3 and YOLOv4 [23], such as Fast R-CNN [24], Faster 
R-CNN [25], Mask R-CNN [26], RetinaNet [27], and SSD [28]. Although 
RetinaNet may provide higher accuracy than YOLOv3, it is worth 

noting that YOLOv3 is approximately 1.5 times faster than the fastest 
RetinaNet50-500 [20]. Additionally, both Faster R-CNN and RetinaNet 
have lower performance in terms of accuracy and running speed 
compared to YOLOv4 [20, 23].

Moreover, since both YOLOV3 and YOLOV4 algorithms utilize CNNs, 
the selection of an appropriate network for accurate image fea-
ture extraction is crucial. Some commonly used networks include 
Darknet-53 [20], Darknet-19 [20], ResNet-101 [29, 31], ResNet-152 
[29],  VGG-16 [30],  and VGG-19 [30]. 

II. APPROACH

Autonomous driving is a crucial concept for the future of transporta-
tion, and it is a hot topic in the literature. As even minor issues can 
result in fatalities, it is essential to build a robust system. Hence, this 
study implemented two specialized deep learning models for differ-
ent weather conditions. Additionally, a condition classifier filter was 
designed to select the appropriate model for the current state. With 
this basic filter design, the system still achieved excellent results dur-
ing the day, while improving its accuracy score by more than 400% 
in the night images for object detection. Additionally, in order to 
enhance the precision of the feedback, an algorithm for controlling 
the location of detected objects is employed. This algorithm utilizes 
the Hough Transform technique to estimate the road lane and fil-
ters out any objects that are not close to the estimated cruise track. 
After verifying the relative track position, the algorithm estimates 
the distance and provides feedback, as illustrated in Fig. 1. Lastly, a 
final control algorithm is in place to ensure that the vehicle remains 
between the lanes throughout its course.

A. Preprocessing and Classifying the Day and Night
This study evaluates the competency of the pretrained YOLO algo-
rithm backbone, trained on the COCO dataset, in the classification of 
cars and individuals under low light scenarios like nighttime imag-
ery. The study aims to shed light on the limitations and deficiencies 
of the algorithm in this particular scenario and propose a system to 
overcome them. To maintain accuracy in day images while improv-
ing accuracy in night images, a classification system was designed 
to select the appropriate deep learning model. Initially, the most 
basic classification method of thresholding the average of the 
image pixels was used to address this issue. However, this approach 
resulted in an overlapping problem, as illustrated in Fig. 2. To over-
come this problem, a preprocessing design was proposed, which 
involved creating a filter to maximize the divergence between the 
two classes. Procedure 1 outlines the algorithm for creating the fil-
ter. First, the average night and day images were generated. Next, 
the night average image was subtracted from the day average 
image to identify the most significant differences, as illustrated in 
Fig. 3. Finally, the filter’s pixel values were assigned using a 10-tier 
ranking algorithm that divides the values between 0 and 255 into 
10 groups and assigns a coefficient that is between 0 and 9 based 
on the pixel value.

After creating the filter, the input images are convolved with the 
designed filter, and the resulting matrix is divided by the count of 
non-zero pixels. This process is equivalent to taking the average of 
the Hadamard product of the input image with the filter, exclud-
ing zero elements. As a result, more divergent image averages are 
obtained, as shown in Fig. 4. Using a simple threshold, a success rate 
of 99.92% was achieved.
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Procedure 1 Filter Creation Algorithm

1: procedure FilterCreation (ni, dj,)
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i� �1
*
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*

4: � � �n davg avg

5: for k in len(∆):

6:for l in len(∆[k]):

7:fi[k][l] = 10-tier ranking algorithm (∆[k][l])

Procedure 2 Filter Algorithm

1: procedure Filter (fij, fiij, threshold)

2: f fiij ij� (Hadamard Product)

3: f
i j

f without valued pixelsavg
j i

ij� � �� �1
0

*
*

4: � � �f thresholdavg

5: if ∆ > 0 (day)

6: else (night)

B. Object Detection
The selected model after day and night classification was utilized 
to enhance driver safety in real-time by implementing YOLOV3 and 
YOLOV4 as object detection algorithms, thereby improving sys-
tem robustness and reducing latency. The architectures of YOLOV3 
and YOLOV4 were retained as described in their respective papers 
and are depicted in Fig. 5 and Fig. 6, respectively. The last convolu-
tion layer of the models' output had 21 channels, given that only 

pedestrian and car classes were present, calculated using the for-
mula (classes + 5) * 3 from YOLOV3's paper.

YOLOV3 utilized Darknet53 CNN and Feature Pyramid Network (FPN) 
[31] to aggregate parameters from different backbone levels for dif-
ferent detector levels. In contrast, YOLOV4 employed CSP-Darknet53 
backbone and Path Aggregation Network (PANet) [32]  and also 
employed Spatial Pyramid Pooling (SPP) [33].

C. Lane Estimation
After performing object detection, this paper also includes the esti-
mation of road lanes to address two additional main issues. First, 
this study controls the road lanes in relation to the car to maintain 
the cruise track. Second, to increase the robustness of the system by 
decreasing false alarms, the position of the detected objects is con-
trolled with respect to the road lanes, in other words, the estimated 
cruise track.

To achieve more accurate road lane estimation, we propose a region of 
interest (ROI) as a hyperparameter. This ROI covers the area of the car's 
potential track with a margin. Within this region, we suggest using a 
triangle whose base lies on the car's front bumper, and its top point 
indicates the most likely direction of the car. Subsequently, the region 
of interest mask will be applied to prevent extraneous parts of the car 
and other objects in the image. This approach provides an advantage 
in improving the robustness of the lane estimation process.

Subsequently, the image undergoes Canny edge detection to elimi-
nate any noise, utilizing a 5 × 5 Gaussian filter, and to detect edges 
using a 3 × 3 Sobel Edge Kernel. Next, the Hough Transform is applied 
to identify the road lines in the filtered image. The Hough Transform 
utilizes the classic linear function formula (Formula 1) to detect road 
lines by converting x-y coordinates into slope and bias coordinates. 
It scans all points and generates linear lines in these coordinates. It 
then selects the most intersected points and creates a line with this 
linear function formula.

In the final step, the captured image is partitioned into two regions 
in the middle, and the Euclidean distance is applied to identify 
the two closest lanes to the central zero point. A linear regression 

Fig. 1. The block diagram of proposed method.
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is performed using the x0-y0 and x1-y1 points to extrapolate the 
lane lines. The resulting values are compared with a predetermined 
threshold, and if they fall below it, an alert is issued to the driver via 
the interface. After the lane estimation process, the algorithm pro-
duces the final output, as illustrated in Figure 7.

y y m x x bias1 0 1 0�� � � �� � �  (1)

D. Distance Calculation
The proposed driver assistance system employs a distance calcu-
lation method to assess the proximity of other vehicles and their 
potential threat to the user. Specifically, the system utilizes the coor-
dinates of the bottom corners of the prediction boxes to generate 
feedback. These coordinates’ X values are fed into the two linear 
lines’ functions that the road lane detection algorithm determines. 
The resulting Y coordinate values are then compared to the Y coor-
dinate values of the road lanes. If the Y value of a point is lower than 
the Y values of both lines, the object is deemed within the esti-
mated road lanes and is considered a potential threat. For identified 
vehicles that could pose a threat, the system calculates the predic-
tion box’s area using the [length × width] formula. If the box’s size 

exceeds a predefined threshold, the system classifies these vehicles 
as potential threats.

E. Feedback Selection
There are five states in the feedback mechanism. Also, simple exam-
ple is shown in Fig. 8.

Procedure 1 Filter Creation Algorithm

if (Another vehicle in the lane is too close):

 display_stop_sign()

else if (Human detected inside the image):

 displ ay_si dewal k_sig n()

else if (Vehicle is in lane and away):

 displ ay_sl ow_do wn_si gn()

else:

 if (the vehicle is between the lanes):

  display_checked_sign()

 else:

  displ ay_la ne_co ntrol _corr ectio n_sig ns()

III. EXPERIMENTS

This section presents the experimental results and implementation 
details of the proposed system. First, the training procedure and 
dataset are described. Second, a detailed account of the hardware 
and software components is provided. Lastly, the results are pre-
sented in order to evaluate the performance of the proposed models.

A. Dataset
The methodology proposed in this paper utilizes two distinct mod-
els. The first model is pretrained with the COCO dataset [34], while 
the second model is fine-tuned with the ORC dataset [22] for various 
class labels. This approach is chosen because the pretrained model 
with COCO dataset performs poorly in night images but excels in 
day images. To maintain its efficiency on day images, a model selec-
tion algorithm is devised. Furthermore, this paper compares the 

Fig. 2.  Image pixel averages with filter.

Fig. 3. Night average image subtraction from day average image.

Fig. 4. Image pixel averages without filter.
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pixel probability mass functions of COCO and ORC, as shown in 
Fig. 9, Fig. 10, and Fig. 11 to elucidate the reasons for the pretrained 
 model’s limitations.

The ORC dataset was gathered by the Oxford Team between May 
2014 and December 2015, using the ORC platform, an autonomous 
Nissan LEAF. The vehicle covered a route through central Oxford 
twice a week on average during this period, capturing a diverse 
range of images in various driving conditions. 

The dataset utilized in this study comprises data collected from 
seven distinct sensors and includes five distinct data types, as illus-
trated in Table I. Notably, the ORC dataset also encompasses a broad 
range of weather conditions, as demonstrated in Fig. 12. Specifically, 
the training dataset employed a Point Grey Bumblebee XB3 (BBX3-
13S2C-38) trinocular stereo camera with a resolution of 1280 × 960 
× 3, capable of capturing 16 frames per second using a 1/3″ Sony 
ICX445 CCD sensor. The dataset utilized in this study specifically 
features data captured by the Bumblebee XB3 camera, consisting 
of a total of 11.070.651 samples and occupying 13.78 TB of storage 
space. Additionally, Fig. 2 showcases a variety of samples captured 
by the Bumblebee XB3 under various environmental conditions.

For all the training processes, a training dataset comprising 18.505 
night-time and 17.987 daytime images was selected for filter 
design, deep learning models, and lane estimation algorithms. 
To improve the quality and quantity of the deep learning model’s 
dataset, several preprocessing techniques were employed, includ-
ing random saturation, hue, and contrast shifting. As a result of 
these techniques, the size of the night training dataset was aug-
mented to 100 000 images. The dataset was then split into three 
subsets, with 20% (20.000) allocated for testing, 10% (10.000) for 
validation, and the remaining 70% (70.000) for training the deep 

Fig. 5. YOLOV3 model architecture.

Fig. 6. YOLOV4 model architecture.

Fig. 7. Lane prediction algorithm output.
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learning model. It is important to note that the test and training 
datasets were separated prior to data augmentation. Therefore, 
during the fine-tuning process, the model did not encounter any 
variations in the test images.

B. Experiment Results
In the experiment section, three main results were obtained from the 
individual system components. First, the filter classification results 
were presented, including the results before and after applying the 
filter. Table II demonstrates that the filter produced with the ten-tier 
ranking algorithm significantly improved the overall success rate 
in percentage. Additionally, the impact of the filter produced with 
the ten-tier ranking algorithm can be observed in the dataset image 
pixel averages, as shown in Fig. 4 and Fig. 13.

Second, the success rates of YOLOV3 and YOLOV4 models pre-
trained with COCO and fine-tuned with ORC models were com-
pared on ORC night images. The architectures of both models are 
illustrated in Fig. 5 and Fig. 6. YOLOV3 uses Darknet53 CNN and FPN 
[32] as the method of parameter aggregation from different back-
bone levels for different detector levels, while YOLOV4 employs 
CSP-Darknet53 backbone and PANet [33]. Additionally, YOLOV4 
uses SPP [33] as well.

The hardware used for training and evaluation included a GTX 1050 
GPU with 640 CUDA cores, a base frequency of 1354 MHz, and a 
boost frequency of 1455 MHz. The PC was equipped with an Intel 
i7-7800X CPU with a clock speed of 3.8 GHz and 16GB of RAM. The 
operating system used was Ubuntu 20.04.

Fig. 8. Example of the feedback.

Fig. 9. ORC’s night images’ PMF. ORC, Oxford RobotCar; PMF, probability mass function.

Fig. 10. COCO train images with car label’s PMF. PMF, probability mass function.
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In object detection models, IOU and mAP results are com-
monly used for evaluation, as reported in the literature 
[35]. Initially, YOLOV3 algorithm with pretrained backbone 
was implemented and evaluated but failed to produce sat-
isfactory results, as illustrated in Fig. 14. Subsequently, 
YOLOV4 with pretrained backbone was implemented, but 
it also failed to perform well on the ORC dataset, as seen in  
Fig. 15 and Fig. 16. The IOU threshold of 50% was selected for 

evaluation, and the results are presented in Table III. The evalu-
ation results show that there are significant reliability and over-
fitting issues with YOLO models that have pretrained backbones 
on COCO dataset. However, after fine-tuning both YOLOV3 and 
YOLOV4 algorithms with the ORC dataset, their evaluation met-
rics improved by more than 5 times. Test examples of the two 
models fine-tuned with the ORC dataset are shown in Figs. 17,18, 
19, and 20.

This paper also includes a lane detection algorithm which aims to 
predict road lanes for enhancing driver safety. The table presents the 

Fig. 11. COCO train images with person label’s PMF. PMF, probability mass function.

TABLE I. COLLECTED DATA SUMMARY STATISTICS [24]

Sensor Type Count Size

Bumblebee XB3 Image 11 070 651 13.78 TB

Grasshopper2 Image 8 485 839 9.08 TB

LMS-151 2D Scan 25 618 605 255.95 GB

LD-MRS 3D Scan 3 226 183 31.76 GB

SPAN-CPT GPS 3D Position 1 188 943 496 MB

SPAN-CPT INS 6DoF Position 11 535 144 4.74 GB

Stereo VO 6DoF Position 3 690 067 422 MB

Fig. 12. Oxford RobotCar Dataset condition variousity [23].

TABLE II. FIRST AND LAST CLASSIFICATION OF DAY AND NIGHT

First Classification Last Classification

Night Day Night Day

Total images 18505 17987 18505 17987

Error count 26 441 0 29

Percentage of success 0.14% 2.45% 0.00% 0.16%

Total error percentage 1.28% 0.08%
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lane detection algorithm’s results (Table IV). The same dataset used 
to test the deep learning models was also used to evaluate the lane 
prediction algorithm.

IV. CONCLUSION

The current investigation proposes a computer vision system that 
addresses the safety of nighttime driving using a complex frame-
work. Despite the system’s development, difficulties arose due to the 
YOLOV3 and YOLOV4 failures. While these models are highly accurate 
in daylight conditions, their performance dramatically decreases to 
IOU values of 0.09 and 0.17, respectively, in low-light conditions. 
Therefore, fine-tuning was crucial in this scenario. Following the 
fine-tuning process, YOLOV3 and V4 models achieved IOU scores of 
0.92 and 0.95, respectively. However, to sustain the excellent object 
detection score, a filter classification system was created. With this 
filter, day and night classification accuracy of 99.92% was achieved. 
In addition to deep learning-based object detection, the proposed 
system offers superior safety measures compared to similar studies 

by detecting lane boundaries with an 88% accuracy and alerting the 
driver about the distance to other vehicles, pedestrians' presence, 
and lane violations.

Fig. 13. Sample pictures from dataset.

Fig. 14. YOLOV3 pretrained test example.
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However, there is still room for further expansion and improvement. 
For instance, object movement prediction in traffic studies, which is 
well-documented in the literature, can be implemented in this proj-
ect to enhance the system's performance. Additionally, this project 
is limited to simulation tests using the ORC dataset, and conducting 
experiments on real-world scenarios may provide valuable insights. 
With more budget, the development of specialized hardware can be 
considered. Furthermore, exploring newer versions of YOLO, such as 

Fig. 15. YOLOV4 pretrained test example.

TABLE III. TEST RESULTS MODEL WITH YOLOV3/YOLOV4 WITH COCO 
DATASET

IOU mAP

YOLOV3 pretrained with COCO 0.0936 0.1286

YOLOV4 pretrained with COCO 0.1698 0.1863

YOLOV3 fine-tuned with ORC 0.9155 0.9241

YOLOV4 fine-tuned with ORC 0.9514 0.9657

Fig. 16. YOLOV4 pretrained test example.

Fig. 17. YOLOV3 fine-tuned test example.

Fig. 18. YOLOV4 fine-tuned test example.

Fig. 19. YOLOV4 fine-tuned test example.
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YOLOv5, v6, or v7, can be a promising direction for future research. 
Another possible avenue for future research is the development or 
implementation of a meta-learning system to reduce dependence 
on specific datasets. Additionally, applying explainable artificial 
intelligence methods to understand YOLOv3 and YOLOv4 pretrained 
models on the dataset could provide valuable insights to address the 
dependency issue.
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