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ABSTRACT

A set of system identification experiments are conducted for a modified differential drive robot. A linear model was developed by performing identification experiments 
to verify the model and determine unknown parameters by utilizing the motion profiles of the robot. A discrete model based on travelled distance increment was 
used. Nonlinear model estimates have also been generated using automated identification functions from the MATLAB's system identification toolbox. The linear 
model was tested through obtained data and the results were compared with the nonlinear model. It was observed that the assumption of the linearly time-invariant 
model allows for the state-space formulas to be implemented so that these reproductions are developed in a relatively simple structure that does not unnecessarily 
complicate the control system.
Index Terms—Autonomous system, data-driven control, differential drive, mobile robot, system identification
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I. INTRODUCTION

Due to extensive mobility capabilities within their environments, autonomous mobile robots 
have attracted a wide range of research interests in many engineering fields [1-3]. Diverse appli-
cations of these robots such as industry [4], research [5], military [6], education [7], and sur-
veillance [8] along with many other potential applications [9], make them a popular choice. In 
particular, the mobilization of wheeled mobile robots (WMR) has exclusively escalated with the 
technological advancements in hardware manufacturing. This has motivated the robotics and 
control community to seek novel applications of WMRs through research fields such as model-
ing [10], control [11], identification [2], and simulation [12]. Taking into consideration all types 
of WMRs, differential drive mobile robots (DDMR) are prominent platforms in a wide variety 
of practical applications because of their straightforward architecture and dynamics. A typical 
DDMR has main wheels driven by DC motors and an unactuated rear wheel that stabilizes the 
robotic platform. To change the orientation of a DDMR, a differential velocity between its wheels 
is applied as an input command; thus, an inevitable wheel slippage takes place. Independent 
control of DDMR motors provides exclusive maneuvering capability which makes these robots 
highly efficient, particularly in indoor applications [13]. On the other hand, the differential drive 
characteristic of DDMRs makes them a common example of nonholonomic by reason of rolling 
constraints [1, 5]. There are a number of types of modeling that exist for these robotic platforms 
such as linear time-invariant models which can be attained by Taylor series linearization [14].

Indeed, mathematical models of most physical systems are composed of differential equa-
tions. Due to this fact, sometimes mathematical modeling has become very rigorous and even 
impossible to generate a model. Nonetheless, a model can be developed through an alternative 
approach which is the system identification method that utilizes the system measurement data 
[15, 16]. In particular, data-driven system identification provides system description by perform-
ing input and output data utilization [17]. There exist numerous publications in the literature on 
the application of system identification to robotics such as robot simulators [18], three-dimen-
sional parallel robots [19], and robot training [20]. For DDMRs, physics-based and data-driven 
models are quite popular choices [17]. The behavior of a physical system can be predicted through 
physics-based models before its construction. Data-driven models, on the other hand, evaluate 
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a system based on various identification tests. Therefore, this model 
approach is able to outline the behavior of a system satisfactorily by 
handling an entire set of observations which makes the data-driven 
model approach widely applicable. Through system identification of 
a nonlinear model, behavioral aspects of a DDMR can be obtained. 
However, nonlinear model identification can be rigorous because 
complex sets of nonlinear equations of the systems are among the 
most difficult equations to solve. Since every nonlinear system can 
be represented by a linear model, they are preferably used in many 
system identification problems [14, 15]. However, it should be noted 
that this is only possible through obtaining a good linear represen-
tation of the system. In other words, this is only valid where the lin-
ear model adequately represents the system. Identification of linear 
models has many advantages over nonlinear models such as sim-
plicity of model structure, identification through linear regression, 
and generally no convergence issue. In any case, even when such 
problems are encountered, they are relatively simple to handle with 
linear models. This work focuses on the data-driven system identifi-
cation of a modified two-wheeled differential drive robot. The devel-
oped mobile robot has a high power-to-weight ratio, which makes 
it quite fast compared to its counterparts. A linear model has been 
developed through performing system identification experiments 
for verification of the model as well as identification of the unknown 
parameters by utilization of actual motion profiles of the robot. The 
identification procedure is carried out in the discrete-time domain 
by relating known input vectors and output of the unknown system. 
Butyl rubber-based wheels with high grip features have been devel-
oped to ensure the ideal rolling of the wheels. Hence, the possible 
effects of sliding and slipping, which may arise from the high speed 
of the robot, have been reduced to negligible levels; thus, it has been 
shown that a consistent model can be obtained even without tak-
ing such effects into account. A nonlinear model estimate has also 
been generated using the automated identification functions from 
the MATLAB toolbox.

II. LITERATURE REVIEW

Efforts to provide more accurate and consistent autonomy to mobile 
robots are being carried forward with many identification, control, 
and other related studies. In [21], the identification method of a 
DDMR was developed by including actuator dynamics. The authors 
developed a discrete model based on the increase in traveled dis-
tance, and the identification procedure was performed with the 
resulting linear and time-invariant model. The system identification 
and control methodology developed for a DDMR produced for the 
line following is presented in [22]. In this way, the performance of the 
robot has been tried to be improved by applying a controller based 
on system identification. Another study describes the odometric 
parameters of DDMRs with a calibration technique based on con-
tinuous-time kinematic equations [14]. The applied method tries to 
avoid the time discretization error by applying least squares estima-
tion. This is accomplished by utilizing the measurements obtained 
by the camera integrated into the robot, as well as the position infor-
mation obtained from the wheel encoders.

In [23], the control of a line-following DDMR is studied using a real, 
that is, non-ideal, actuator approach. Taking into account the veloc-
ity saturation of the actuator, how this affects the performance of the 
robot is discussed experimentally. The solution scheme for control-
ling a locomotion task of a DDMR using sliding mode is discussed in 
[9]. For this, the stability of the proposed dynamic model has been 

examined and the limits of the sliding mode have been investigated. 
Another study performs the identification procedure by developing 
a linear dynamic model based on the distance traveled by a DDMR 
[24]. Thus, the time-varying parameters of the robotic platform 
are estimated by simple identification methods. Motion control of 
a four-wheel drive mobile robot based on the vector field orienta-
tion technique is presented in [25]. The authors develop a realistic 
simulation environment, combining the traditional field orientation 
method with a multivariate orientation control in this environment. 
As a result, it is shown that the proposed method has a more accu-
rate route-tracking capability. In [26], motion tests and navigation 
of a four-wheeled mobile robot are handled using a fuzzy logic con-
troller. In this context, the dynamic model of the robot was devel-
oped and the ground plane identification was carried out. A chaotic 
path-planning strategy for a mobile robot used for field scanning is 
expressed in [27]. In another study, some innovative modeling and 
control applications for DDMRs are discussed in detail [12]. In this 
context, solutions are offered in order to overcome some of the 
main difficulties applicable to mobile robots. In [28], localization 
and identification for the multi-mobile robot system are discussed. 
By modifying the Probability Hypothesis Density (PHD) filter, which 
is a multi-target tracking technique, identification is performed by 
means of robot odometric data.

A unified dynamic modeling approach for DDMRs based on 
Lagrangian and Newton–Euler mechanics is presented in [29]. Along 
with the proposed method, the main difficulties encountered in 
modeling mobile robotic systems are described. Another study 
discusses the development of robust kinematics and closed-loop 
motion control of a DDMR capable of reaching specific target loca-
tions in indoor environments [30]. The authors try to verify the con-
sistency of the designed kinematics and control method with the 
Lyapunoc criterion. In [31], an inverse kinematics model has been 
experimentally developed through direct control of a DDMR. The 
angular velocities of the robot wheels were adjusted to provide lin-
ear movement of the robot, taking into account all the mechanical 
and systematic errors of the robot, and the system performance was 
investigated. The method by which a mobile robot effectively uses 
environmental resources and makes them useful so that the robot 
can guide itself is presented in [32]. Another work experimentally 
develops a kinematic model framework based on external sensors 
for a skid-steering DDMR [10]. This is accomplished based on the 
limitation of the robot's circular centers of rotation. In [33], a spe-
cific controller adaptive to discrete-time form has been developed 
to control the trajectory of a DDMR. In the proposed method, which 
does not require a comprehensive model of the robot, identification 
of the dynamic model is performed using a neural network. A differ-
ent modeling and trajectory control approach for an effective design 
of a mobile robot is discussed in [34]. Another study has examined 
the issue of wheel slippage in detail in DDMRs, and an accurate 
dynamic model is developed based on the resulting traction forces 
between the wheel and the ground [35]. With this developed model 
and control strategy, it is tried to prevent these sliding effects that 
cause various problems.

In [36], system identification of a DDMR is performed through an 
experimental environment created using a camera and specific 
ground markers. With the developed model, parameters such as 
system delay and friction are tried to be determined experimen-
tally. Additionally, the linear model of the robot is obtained by the 
regression method and utilized for parameter estimation. In [37], a 
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dynamic model for DDMRs is developed based on the speed com-
mands, thus taking into account the actuator effects. In particular, a 
solution is proposed for commercial mobile robots that only accept 
speed command as input. It is shown that the obtained dynamic 
model has many computational advantages. An effort to improve 
the motor torques of remote-controlled two-wheeled mobile robots 
and thus the consistency of the trajectory they are expected to fol-
low is presented in [38]. The proposed method uses p-norm and 
can provide full power to the robot actuators if systematic errors are 
eliminated. Another study proposes a method that applies linear 
parameterization to the robot model, taking into account the actu-
ator-induced effects of a DDMR [39]. In this way, the robotic system 
parameters become identifiable through the recursive least squares 
method. An overarching model for proper navigation of mobile 
robots used for industrial purposes is provided in [40]. The presented 
navigation method consists of two layers, making it easy to adapt 
this architecture to various conditions and environments. In [41], the 
performance of the kinematics controller is tried to be increased by 
considering the dynamic model of a mobile robot for situations that 
require fast movement or load carrying. Thus, the robot parameters 
can be identified properly and the distance error is greatly reduced.

The effort to enable linear control by applying partial linearization to 
a DDMR dynamic model that includes actuator effects is discussed in 
[42]. An optimization-based method is used to modify the robot con-
trol parameters. Another work presents an actuator control solution 
that largely eliminates error using the discretized kinematic model of 
DDMRs [43]. Moreover, with the proposed model, systematic faults 
are identified through the extended Kalman filter. In [44], the model 
predictive control strategy of a DDMR is discussed by developing a 
linearized dynamic model. The system gains obtained through the 
controller are adjusted by utilization of the measured moments. 
Considering a four-wheel DDMR as a multi-input single-output sys-
tem, the stages of system identification are discussed in [45]. The 
proposed identification method is investigated through the autore-
gressive exogenous (ARX) and autoregressive moving average exog-
enous parametric models and it is observed that the ARX model is 
more suitable. Detailed trajectory tracking of an omnidirectional 
robotic platform is presented in [46]. Unlike traditional methods, the 

data obtained through the production phase is utilized, and thus 
proper modeling of the robotic system is carried out through system 
identification. In [47], a kinematic controller that generates the refer-
ence values of the commanded velocity inputs is adapted to a newly 
designed DDMR. Based on the nonlinear kinematic model, the pro-
posed kinematic controller is effectively implemented. An analytical 
model that estimates the motion of a DDMR by taking into account 
torque and friction effects is discussed in [48]. An overview of the 
estimation of system parameters of mobile robots is given in [49]. 
In this context, system modeling, trajectory control and parameter 
identification are performed and their validation is tested.

III. TEST PROCEDURE

A. Test Robotic Platform
The test robot platform used in this study is based on the Stingray 
robot kit which has several properties that make it a highly useful 
indoor robotic system. As shown in Fig. 1, it has two main wheels 
that can rotate independently through the differential drive feature. 
The system consists of two large plates connected with supporting 
panels which provide extra volume for mounting external hardware. 
This has facilitated adding a variety of additional electronics in the 
Stingray used for the study to allow experimentation. The resultant 
robot is referred to as Modified Stingray Robot Platform (MSRP) as 
shown on the far right of Fig. 1. The MSRP motors, embedded sensors, 
and other electronic equipment are controlled by a multi-processor 
microcontroller. Motor encoders are used to measure the rotation 
of the motor shafts connected to the wheels, that is, to measure the 
wheel displacement in a certain time interval and thus to determine 
the speed of the robot. Motor encoders are used to measure the 
rotation of the motor shafts connected to the wheels and thus to 
determine the speed of the robot. Therefore, closed-loop control of 
the robot can be achieved, that is, parameters such as the speed of 
the robot and the distance traveled per unit time are controlled. The 
robot also has a Wi-Fi module that provides telemetry and remote 
communication capabilities. Through program control, data can be 
transmitted and received to any program that reads from and writes 
to the appropriate IP address and ports provided the computer is in 
the research lab local area network.

Fig. 1. Illustration of the robotic platform and coordinate systems.
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Through the motor control board, the MSRP motors can be con-
trolled using two different approaches. In “effort mode,” a fixed per-
centage of total battery power is exposed to each motor. The effort 
is translated into a Pulse Width Modulation (PWM) signal that drives 
the motors directly. In “velocity mode,” a closed-loop feedback con-
troller is used to achieve the desired rotational speed for each motor. 
System feedback is obtained by rotary encoders. A Proportional 
Integral (PI) controller with feed-forward is used to generate PWM 
commands to track the desired speed. The reason for having a veloc-
ity control mode is that due to motor differences, applying the same 
voltage to both motors will not necessarily cause both motors to 
rotate at precisely the same speed. By using the encoders, the duty 
cycle can be adjusted through the motor control board to achieve 
the desired velocity.

B. Kinematic Model of the Robot
Although sensor readings provide some clues, generally there is no 
direct way to measure a robot’s pose. Sensor data can properly be 
interpreted through kinematics to generate an accurate estimation. 
Commanding an equal “effort” or “velocity” input to both wheels 
will move MSRP forward. Moreover, setting different inputs to each 
wheel will pivot MSRP about the slower wheel. It is important to note 
that the amount of traveled distance of each wheel does not neces-
sarily give the correct position of the robot. For instance, the distance 
traveled by each wheel can be the same for two different trajectories, 
yet, the final pose can be completely different. Unlike joint rotations 
of robot manipulators, the traveled distance is not enough to derive 
the pose of the robot. It is clear that kinematics depends on the spe-
cific configuration of the robot and each configuration has its own 
kinematic properties. In the case of MSRP, the locomotion actions are 
represented by wheel speeds and wheel steering values.

MSRP can be modeled as a flat rigid chassis mounted on wheels. 
Using the flat-earth assumption, the chassis is considered to be per-
fectly parallel to the ground; thus, it locomotes on a horizontal plane. 
Defining the inertial coordinate system by x yI I,� �  and the robot 
coordinate system by x yR R,� �  as shown in Fig. 1(a), full pose of the 
MSRP in the inertial frame can be denoted by

� �I
T

x y��� ��  (1)

To map the motion of MSRP from one coordinate system to another, 
a relationship between the inertial coordinate system and robot 
coordinate system is given by

� �� � �R IR� � �  (2)

where R  is the orthogonal rotation matrix denoted by

R �
� �
� �� � � �

�

�

�
�
�

�

�

�
�
�

cos sin
sin cos

0
0

0 0 1
 (3)

Linear velocity, v , is directly proportional to the angular velocity, ω,  
of the wheels as

�� �r V  (4)

where r  is the radius of the wheels. Considering the robot moving 
along a circle of radius R  as shown in Fig. 1(b), the following equa-
tions hold based on (4)

� R w VR�� � �/ 2  (5a)

� R w VL�� � �/ 2  (5b)

where w  is the distance between the wheels, VL  and VR  are the 
velocities of the left and right wheels, respectively. Solving (5a) and 
(5b) for R  and ω

R
w V V

V V
R L

R L
�

�
�

�

�
�

�

�
�2

 (6)

��
�V V
w

R L  (7)

According to (6) and (7), the robot moves through a straight line 
when V VL R= ; rotates about its midpoint when V VL R� � ; rotates 
about the left wheel when VL = 0 ; and rotates about the right wheel 
when VR = 0 . To find the velocity of the geometric center of the chas-
sis, (6) and (7) are plugged into ��V R/  and get

V
V VR L�
�
2

 (8)

By defining the differential velocity VD , another representation of 
VL  and VR  can be made as follows:

V V VR D� �  (9a)

V V VL D� �  (9b)

Note that the robot moves through a straight line when VD = 0.  
Substituting (9a) and (9b) into (6) yields an expression which is a 
more convenient selection of speeds in order to trace desired cir-
cular paths

R
w V

VD
� �

2
 (10)

Through basic trigonometry, the motion equations can also be 
expressed as

�x V� cos�  (11a)

�y V� sin�  (11b)

�� ��  (11c)

Integration of both sides yields

x t V t t dt
t

t

� � � � � � ��� ���
0

cos �  (12a)

y t V t t dt
t

t

� � � � � � ��� ���
0

sin �  (12b)

� �t t dt
t

t

� � � � ��
0

 (12c)
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Substituting (7) and (8) into (12) yields the ultimate motion equa-
tions as follows

x t
V V

t dt
t

t

R L� � � � � ��� ���
0

2
cos �  (13a)

y t
V V

t dt
t

t

R L� � � � � ��� ���
0

2
sin �  (13b)

� t
V V
w

dt
t

t

R L� � � ��
0

 (13c)

The structural design of MSRP allows it to perform four basic move-
ments on a two-dimensional plane. These are forward motion, right 
turn, left turn, and rotation around its own axis. Since right and left 
turns are the symmetry of each other, it will be sufficient to perform 
tests with one of them. Due to the high grip feature of the wheels, 
the robot’s rotation around its own axis was not included in the tests. 
Since it requires both wheels to move at the same speed but in oppo-
site directions, it prevents the robot from performing this motion 
appropriately. Laboratory tests consist of two different locomotion 
cases which are a full left turn, V VL R� �� �0 0, , and a forward motion, 
V VL R� �� �0 . Considering the first case by assuming the velocity of 

the left wheel VL  is constant, then (13c) can be modified as follows:

� t
V
w

dt
t

L� � � ��
0

 (14)

� t
V
w

tL� � � �  (15)

Substituting (15) into (13a) and (13b)
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t
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t
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Calculation of these integrals yields
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A similar procedure can also be applied for forward motion case as 
follows:

� t
V V
w

dt
t

R L� � � ��
�
�

�
�
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0

 (20)

� t
V V
w
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 (21)

Substituting (21) into (13a) and (13b) yields
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Rather than coming up with a continuous function, the microcon-
troller processes a series of samples at a specified sampling rate. 
Therefore, it would be more convenient to use the following discrete 
form, the full derivation of which is given in the Appendix.
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Thus, by sampling the wheel speeds V VL R,� �  at a fixed time interval 
dt� � , the inertial pose of the robot over time can be derived using 

the above equation.

C. Test Methodology
For most robotics applications, system identification, which is the 
identification of the theoretical input/output relation x  generated 
from real input/output data, is complicated because of nonlinearity, 
which requires a rigorous mathematical procedure. However, system 
identification problems become significantly tractable if the system 
is absolutely linear. A linear system assumption generally, but not 
always, simplifies the problem in terms of model development. Thus, 
modeling can be done straightforwardly through the identification 
of the system parameters.

The system input of the MSRP is the commands given to the motors 
that drive the wheels, and the corresponding system output is the 
measured speeds of the wheels. In the absence of any initial input, 
u , the value of a linearized single-input single-output system is 
given as

x t x exp t� � � � � �� �0 / �  (25)

where the initial value is indicated by x 0� � , and τ  is the time con-
stant of the system. The value of a system with an initial value of 0, a 
gain of G , and an input of u  is as follows:

x t Gu exp t� � � � �� ��� ��1 / �  (26)

Thus, by measuring the system response and gain corresponding 
to the input value, the whole system can be modeled assuming 
that the linearized form of the system given by (24) is (25) and (26). 
Meanwhile, a similar approach can also be taken through the state-
space (SS) method. The model generation procedure is summarized 
in Table I.
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First, a MATLAB program infers the response of the motors to the 
system inputs, from which the system parameters are computed for 
each state. Meanwhile, the model output is analyzed through the 
code and compared with the experimental data. On the other hand, 
the SS model of the system is created through another program by 
using the input/output relation of the system, and thus, the model 
output is compared with the experimental (actual) values. For each 
iteration of the program’s loop, an array is declared into which the 
data is stored. To save this on a file, a Wi-Fi module is used to upload 
the data to a computer through File Transfer Protocol (FTP) which is 
summarized in Table II.

D. Identification Procedure
For the DDMR platform under consideration, the system input is the 
commands sent to the wheels, and the corresponding system out-
put is the wheel speeds. This system can be represented by the ARX 
model as follows:

v t m v t n u t t
–

k

†

�� � � � �� � � � �� � � �� �
� �
� �1 1 1 1

1 1� �

�� � �  (27)

where u  and v  represent model input and output respectively, m  
and n  are model parameters, t  stands for sampling rate, � t �� �1  is 
the system noise. In its implicit form, (27) can also be written as

v t t tT�� � � � � � �� �1 1� � �  (28)

where ζT  and η  are defined as regression and parameter vector, 
respectively, and can be expressed as follows:

� � �� � � � �� � � � � �� ��� ��v t v t u t u t
T

� �1 1  (29)

� � �� �� ��m m n n
T

1 1� �  (30)

The identification procedure emerges as the determination of η  
based on measurements to be made on the system. Therefore, it is 
necessary to determine η  using v t �� �1  and � t� �  measurements 
obtained for all t  values. For this, the above expression is evaluated 
as an optimization problem and its value is tried to be minimized as 
follows.

J k • k v t t •
t

k
T,� � � �� � � � ��� ��

�

�

�

�1
0

1
2

1 �  (31)

Here, v t t •T�� � � � �1 �  denotes the prediction error of the system. 
Depending on the minimization of the value of this expression, the 
estimation error of the system will be reduced to the same extent. 
Equation (31) can also be written more formally as:

˘ argmin ,� �k J k� � � � ��  (32)

The block diagram showing the system identification procedure is 
shown in Fig. 2. The following (more appropriate) form can be used 
to make the solution of (31) simpler.

˘ min• k arg V k k • V k k •
•

T� � � � � � � ��� �� � � � � ��� ��� �� �  (33)

where

V k v v k
T� � � � � � ��� ��1 �  (34)

� k kT T T
� � � � � �� ��� ��� �0 1�  (35)

Then, (31) is differentiated with respect to η  and is set equal to zero 
as it is desired to be minimized as follows:
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Therefore,

•̆ k k V k k kT T� � � � � � ��� �� � � � ��� ��
�

� � �
1
 (37)

Equation (37) is the general solution to this optimization problem 
and can be expressed in its original form as follows:
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TABLE I. STATE-SPACE (SS) MODEL GENERATION ALGORITHM

Input {Obtained data file (.txt)}

Step 1 Assess each column to a variable

Step 2 Package specific data set, I O f, ,�� ��

Step 3 Create s-s model, mss

Step 4 Create model output, y ss

Output Model prediction

TABLE II. MSRP MOVEMENT AND FILE TRANSFER ALGORITHM

Input { ILe v, , IRe v, }

Step 1 Execute required movement

Step 2 Write necessary data to matrix

Step 3 Send data file to computer

Output V VL R,  

MSRP, Modified Stingray Robot Platform. Fig. 2. Block diagram of the system identification procedure.
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IV. RESULTS

Initially, a program is written to send step commands to the MSRP in 
order to move each wheel at a desired velocity and/or percentage 
effort. For each test, required data were collected at 20 Hz frequency. 
To implement movement on the robot and file transfer between the 
robot and the computer, a nested if-else loop was created to exe-
cute movements based on how much time has passed. For instance, 
for one test, the MSRP had to remain still for 2 seconds, move at 
300 mm/s for 2 seconds, and stop again. A counter is initialized at 
zero and incremented by one, 20 times a unit interval when the 
code looped back through. Therefore, inputs to both wheels, wheel 
velocities, and odometer counts for each wheel had to be written 
to a matrix at 20 Hz. The counter is used to cycle through the array 
elements in the data file to obtain the required information. After all 
motion tests have been performed, the data file (.txt) is sent back to 
the computer through the FTP server client.

Figures 3, 4, and 5 show the results of the tests performed. The plots 
numbered from I to VIII indicate each individual test results. In order 
to compare the outputs in the same group, normalization (*) was 
performed and shown in Fig. 5. The horizontal dashed lines indi-
cate normalized input levels. The plots reveal that the effort mode 
provides more accurate velocity outputs as the input increases. The 

velocity mode also yields accurate velocity outputs at high input 
values. When returning to 0 ( �� 0 ), both functions resulted in 
an undershoot, except when the effort input function received an 
input of 60% effort. For tests I–VIII, the system parameters need to 
be estimated.

The results of the tests performed are also compiled in Table III. (E-L) 
and (V-L) in the table indicate that the left wheel is moved in effort 
and speed modes, respectively. Since the right wheel is not com-
manded, the robot will make a rotation around this wheel. As shown 
in the table, the gain using velocity input was approximately 1 each 
time since the output velocity was about the same as the input func-
tion. The gain using effort input averaged to approximately 14. This 
gain will vary based on the battery voltage at the time of testing 
since the input function is the percentage of available battery volt-
age applied. The time constants from 0 to the step input were higher 
than from the step input to 0.

A total of nine more tests (IX to XVII) for forward locomotion have 
been conducted and the results are shown in Figs. 6, 7, 8, and 9. 
Similarly, the plots numbered from IX to XVI indicate individual test 
results. Figure 8 shows the normalized outputs for which VL  and 
VR  outputs of tests IX–XII, and VL  and VR  outputs of tests XIII–XVI, 

Fig. 3. MSRP responses to various effort inputs. MSRP, Modified Stingray Robot Platform.



Electrica 2023; 23(3): 619-633
Bakirci. Data-Driven System Identification of a Modified Differential Drive Mobile Robot Through On-Plane Motion Tests

626

Fig. 4. MSRP responses to various velocity inputs. MSRP, Modified Stingray Robot Platform.

Fig. 5. Normalized MSRP responses to effort (left) and velocity (right) inputs. MSRP, Modified Stingray Robot Platform.
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respectively. The horizontal dotted lines indicate the normalized 
input levels.

The main observation that can be made from these figures is that the 
effort input function resulted in less overshoot and less oscillations 
than the velocity input function. Both functions resulted in under-
shoot when going from the step input to 0. For the tests, the gain for 
each available steady-state level and the time constant for each step 
transition are compiled in Table IV. Note that, Test XVII is shown in 
two rows; thus, part 1 in the second row is actually part 4 of the same 

test. The result of the test XVII is shown separately since the input is 
completely different from other cases.

MATLAB’s system identification functions were used to generate dis-
crete, time-invariant, SS models using a data set that was obtained 
through both effort and velocity functions. Data set XI was chosen to 
generate the SS model for the effort mode function. Data set XV was 
chosen to generate the SS model for the velocity mode function. To 
generate each SS model, the data file was accessed using MATLAB 
and data columns were again assigned to variables which represent 
required data arrays. Data from which to create the SS model was 
compiled and then a SS model was created using appropriate func-
tions. The SS model using the XI date set is denoted by (39). Similarly, 
the SS model using the XV data set is expressed with (40). The term 
denoted by e  represents the total error.
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TABLE III. CIRCULAR LOCOMOTION TEST RESULTS

Test Mode Input Gain τ ← 0 τ → 0

I E-L 15% 9.132 0.603 0.247

III E-L 30% 13.353 0.616 0.231

III E-L 45% 14.544 0.415 0.452

IV E-L 60% 14.177 0.305 0.339

V V-L 0.15 m/s 1.054 0.528 0.228

VI V-L 0.30 m/s 1.022 0.257 0.313

VII V-L 0.35 m/s 1.009 0.524 0.455

VIII V-L 0.60 m/s 1.017 0.443 0.222

�� 0 , step input from 0 to desired level; �� 0 , vice versa.

Fig. 6. MSRP responses to a variety of effort inputs. MSRP, Modified Stingray Robot Platform.



Electrica 2023; 23(3): 619-633
Bakirci. Data-Driven System Identification of a Modified Differential Drive Mobile Robot Through On-Plane Motion Tests

628

Fig. 7. MSRP responses to a variety of velocity inputs. MSRP, Modified Stingray Robot Platform.

Fig. 8. Normalized MSRP responses to effort (top row) and velocity (bottom row) inputs. MSRP, Modified Stingray Robot Platform.
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y t x t u t� � � ��� �� � � � � �976 1 125 7 0. .  (40b)

Each of the SS models was exercised using input from test XVII and 
plots for each model were created showing the input for test XVII, 
the actual output from the robot, and the predicted output. The 
results are shown in Fig. 10.

The SS model created by using test XI which utilized the effort-input 
function is shown in Fig. 10 (left). When the model was exercised 
using the input from test XVII, the model output has shown a good 
agreement with the actual output of each wheel. This similarity was 
then visualized by comparing the model output with the actual out-
put of each wheel as shown in Fig. 10 (right). The SS model created 
by using test XV which utilized the velocity-input function is shown 
in Fig. 11. When the model was exercised using the input from test 
XVII, the model output was completely different than the actual 
output of each wheel as expected. This is because test XVII used the 
effort-input function. Thus, the SS model created using the results 

Fig. 9. MSRP response to Test XVII. MSRP, Modified Stingray Robot 
Platform.

TABLE IV. RESULTS OF THE FORWARD LOCOMOTION TEST

Test Mode u G τ u G τ u G τ

IX E-B 15% 12.131 0.218 30% 14.175 0.237 25% 14.075 0.554

X E-B 25% 14.225 0.241 40% 14.506 0.584 35% 14.281 0.534

XI E-B 35% 14.283 0.525 50% 14.402 0.697 45% 14.446 0.571

XII E-B 45% 14.454 0.633 60% 14.673 0.635 55% 14.558 0.786

XIII V-B 0.15 m/s 1.039 0.507 0.30 m/s 1.057 0.457 0.25 m/s 1.033 0.566

XIV V-B 0.25 m/s 1.026 0.515 0.40 m/s 1.038 0.447 0.35 m/s 1.069 0.374

XV V-B 0.35 m/s 1.077 0.504 0.50 m/s 1.011 0.524 0.45 m/s 1.053 0.277

XVI V-B 0.45 m/s 1.054 0.445 0.60 m/s 1.076 0.446 0.55 m/s 1.053 0.161

XVII E-B 25% 14.078 0.624 40% 14.757 0.675 30% 13.839 0.453

XVII E-B 35% 14.313 0.417 15% 13.338 0.362 60% 14.831 1.057

u k� � , input; G, gain; τ , time constant for step transition.

Fig. 10. State-space model output (test XI) for effort-input function.
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of the effort-input function will map test XVII input to the expected 
output whereas using the velocity-input function, it will not.

A nonlinear model was also created and exercised with inputs from 
test XVII. To create the nonlinear model, the data file was accessed 

and data columns were again assigned to variables which represent 
required data arrays. The test XVII input, the actual output for each 
wheel, and the nonlinear model prediction were then graphed to 
analyze the results as shown in Fig. 12. The nonlinear model predic-
tion shows extremely similar results as the actual output for each 
wheel. This similarity was also visualized by comparing the model 
output with the actual output of each wheel as shown on the right of 
Fig. 12. The main difference is that there is a larger amount of under-
shoot for the actual wheels when returning to 0 than the nonlinear 
model prediction. The nonlinear model produced an output more 
similar to the actual output than the SS model.

V. CONCLUSIONS

An accurate linearized model for a DDMR was developed to per-
form desired movements as well as return a file containing an 
array of experimental data to perform the identification procedure. 
Various tests have been conducted to identify key system param-
eters such as gain and time constant. Through system identifica-
tion, a discrete time-invariant, SS model was generated using the 
obtained data sets. The predetermined input values were step 
inputs that yielded output, from which the gain and time constants 
were used to determine the SS models for the robot. A nonlinear 
model estimate was also generated and exercised with the sys-
tem inputs. It was observed that while velocity mode seems to be 
more accurate and predictable, it had a more jagged steady state. 
In each test, the effort mode required longer times to change the 
velocity of the robot. It was also noticed that there were minor dis-
parities between the left and right wheels in most cases, and it was 
troublesome to gauge exactly which one to go with. Additionally, 
the Matlab model buffers the noise from the signals to make them 
closer to how an ideal time-invariant system would behave. The SS 
models include buffering characteristics through the formulas that 
allow for the feedback and overshoot signals to become smoothed 
and ideal in a steady state characteristic. The assumption of the lin-
early time-invariant model allows for the SS formulas to be imple-
mented so that these reproductions are developed in a relatively 
simple structure that does not unnecessarily complicate the con-
trol system.
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APPENDIX: DERIVATION OF DISCRETE ODOMETRIC MODEL OF THE ROBOT

The following relations can be deduced from Fig. A1, where d , dL  and dR  are the distance traveled by the center, left wheel and right wheel 
of the robot, respectively.

d R� ��  (A1)

d R
w

L � ��
�
�

�
�
�2
��  (A2)

d R
w

R � ��
�
�

�
�
�2
��  (A3)

When (A2) is multiplied by −1 and added by (A3), the following expression is obtained.

�� �
�d d
w

R L  (A4)

Substituting (A4) in (A2) and solving for R yields the following expression.

R
w

d d
d d

R L

R L�
�

�
2

 (A5)

Then, substituting (A4) and (A5) in (A1) gives the distance traveled as expressed below.

d
d dR L�
�
2

 (A6)

The following relation can be deduced from Fig. A2(i), where a is the angle between the horizontal and the distance traveled between two 
consecutive positions.

a �
��
2

 (A7)

The new orientation of the robot, b, is obtained from Fig. A2(ii) as follows.

b � ��  (A8)

Fig. A1. Nonlinear model output for the effort-input function.



Thus, all necessary parameters have been derived to obtain the discrete odometric model of the robot. Finally, starting from Fig. A2(iii), the 
following model can be obtained for x , y , and θ .

x x dt t t
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� � �t t t� � �1 �  (A11)

Noting that �� �� dt  and d dt V VL R� �� �� �/ 2 , the following final form (24) can be obtained.
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Fig. A2. Nonlinear model output for the effort-input function.


