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ABSTRACT

In this paper, an adaptive predictive control for controlling and stabilizing fractional order chaotic systems around the equilibrium point is provided. The stability of 
fractional order chaotic systems around equilibrium points in the presence of parameter uncertainty has been demonstrated using Lyapunov's stability theorem. In 
addition, the uncertain parameters of fractional order chaotic systems are calculated using appropriate adaptive methods based on the proposed predictive controller 
structure. Rossler and Chen systems were considered to numerical simulations. The results demonstrated the adaptive predictive control method's usefulness and 
performance.
Index Terms—Adaptive control, equilibrium point, fractional order chaotic systems, predictive control.
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I. INTRODUCTION

Chaotic systems are nonlinear systems that are extremely sensitive to initial conditions and are 
difficult to predict. These systems have been observed in a variety of applications including 
chemistry, biology, finance, and engineering. Many control strategies, such as adaptive control 
[1–5], sliding mode control [6, 7], adaptive back-stepping control [8], and predictive and fuzzy 
control [9], have been applied in research to govern chaotic systems. In recent decades, scholars 
have been particularly interested in fractional calculations. These calculations are related to non-
integer derivatives (fractional). Because fractional calculations have a memory and inheritance 
property, various systems are explained more correctly than integer order models. Controlling 
chaotic systems with a fractional order model is one of the newest topics of interest among 
researchers. Many controllers were utilized in the research to control fractional chaotic systems.

The followings are among the studies on the use of predictive control to govern the behavior 
of fractional chaotic systems. In [10], the chaotic system is controlled by a fuzzy and predictive 
controller. The authors of [11] examined the dynamics of a fractional order chaotic system, its sta-
bilization via predictive control, and its circuit validation. In 2019, Zoad et al. [12] used predictive 
control of a fractional order delayed chaotic system with its circuit implementation.

Wang et  al. [13], in 2018, proposed a nonlinear fuzzy predictive control for a class of integer 
order chaotic systems. In 2017, Khan et al. [14] employed a predictive controller to control the 
Rabinovich chaotic system. The control input was arranged in such a way that the chaotic trajec-
tories converged on the unstable equilibrium points. A practical predictive control model for a set 
of noisy chaotic hybrid systems connected to the Chua circuit was proposed in [15]. Wang et al. 
suggested a fuzzy generalized predictive control for fractional order nonlinear systems in 2017 
[16]. Based on the Grünwald–Letnikov definition, Laplace transform, and discretization, a group 
of fractional order nonlinear systems was translated to the autoregressive community moving 
average (CARMA) model in the stated article. A linear CARMA model for nonlinear systems was 
presented based on Takagi–Sugeno’s fuzzy theory. Then, using the CARMA predictive model and 
generalized predictive control theory, a generalized predictive control approach for fractional 
order nonlinear systems was proposed. To control chaotic systems, [17] employed a robust frac-
tional order controller based on predictive control. The simulation results on three-dimensional 
Lorenz and Chen chaotic systems demonstrated the efficacy of the robust control technique. In 
[18], Zheng and Li used predictive control to govern fractional order systems.
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In a class of fractional chaotic systems, Mofid et al. exploited observer 
control of sliding mode disturbance based on adaptive synchroni-
zation [19]. In [20], an active control technique was used to build a 
robust fractional adaptive intelligent controller for uncertain frac-
tional order chaotic systems. Mirzajani et al. created a T-S adaptive 
fuzzy controller for fractional order systems with uncertain param-
eters and input limitations. The properties of the unknown fractional 
system were taken into account in their control strategy. The adap-
tive procedures were then built to estimate these parameters using 
Lyapunov’s stability theorem [21].

To prevent chaos in fractional systems, Paneh Kolai et  al. used an 
adaptive fractional mode feedback controller. For reduced and full 
mode feedback controllers with singular and vector feedback gains, 
they adopted a different control approach [22]. Lu et  al. [23] sug-
gested finite-time adaptive neural network control for the fractional 
order chaotic system of a permanent magnet synchronous motor in 
2020.

The economic chaotic fractional order system was controlled using 
an active control in [24]. Shukla and Sharma used Lyapunov and 
Mittag–Leffler stability theorems to stabilize a group of fractional 
chaotic systems utilizing the back-stepping approach [25]. Ni et al. 
in 2017 applied the non-singular time-constant fractional-order 
terminal sliding mode synchronization approach for the control 
of fractional-order chaotic systems [26]. To control fractional order 
integrated chaotic systems in presence of external disturbances, [27] 
employed fractional integral sliding surface control with a convolu-
tional algorithm. The authors of [28] proposed a new fractional order 
memristor 3D chaotic system. The topic of control and synchroniza-
tion was then investigated using PI control in sliding mode.

Deep recurrent neural networks with finite-time terminal sliding 
mode control for a chaotic fractional order financial system with 
market certainty were investigated in [29]. The authors of [30] inves-
tigated chaotic dynamics and chaotic control for a time-delayed 
fractional order satellite model. For chaos control, a simple linear 
feedback control mechanism was adopted in this paper. The authors 
of [31] used feedback and adaptive control techniques to control 
and synchronize fractional order chaotic systems. The authors of 
[32] described a novel method for chaotic modeling, control, and 
synchronization of a fractional biological oscillator. For memory 
modeling in the system, the concept of fractional order was applied. 
The authors of [33] investigated the dynamics and synchronization 
control of symmetric fractional order chaotic systems. The authors of 
[34] described the stability of a fractional order system with uncer-
tainty and disturbance. A basic linear feedback control strategy was 
utilized to control fractional chaotic systems in this paper. Zouad 
et  al. in 2019, designed a new secure communication scheme for 
fractional order delayed chaotic system, then they simulated of its 
electronics circuit [35].

Because the parameters of chaotic systems are often unknown in 
practice, an adaptive control technique is required to estimate the 
system parameters. The predictive controller was also adopted 
because of its ability to predict the system’s future behavior. As a 
result, the fundamental contribution of this paper is the combina-
tion of predictive control and adaptive control to control the behav-
ior of chaotic systems with a fractional order model toward the 
equilibrium point. A previous study indicates that the combination 
of these two controllers has not been examined in this application. 

In this article, the parameter estimation rules are constructed using 
Lyapunov’s stability theorem, and the system states converge to the 
equilibrium point using predictive control.

The following is the rest of this article. The basic concepts and pre-
liminary steps for fractional calculations are covered in the second 
section. The third section describes how to develop predictive and 
adaptive control for fractional order chaotic systems. The fourth sec-
tion includes numerical simulations. The fifth section contains con-
clusions and recommendations for future research in this topic.

II. PRELIMINARIES

For fractional calculus, there are three well-known definitions: 
Caputo, Riemann–Liouville, and Grünwald–Letnikov. For fractional 
calculations, the Grünwald–Letnikov definition is used in this article. 
The fractional derivative using Grünwald–Letnikov concept is as fol-
lows [28]: 
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where Г is the gamma function.

For numerical simulation, the modified version of Eq. (2) is used. The 
numerical approximation of α at kh points (k = 1, 2, …) is as follows.
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III. PROBLEM STATEMENT AND CONTROLLER DESIGN

In this part, first, a predictive feedback control is devised to stabi-
lize a fractional order chaotic system at the equilibrium point by 
introducing a control signal to the fractional order chaotic system. 
The adaptive controller is then employed to estimate the uncertain 
parameters of the fractional order chaotic system. In this paper, it has 
been assumed states of the system are observable.

A. Predictive Feedback Controller Design
The controlled system is defined as follows: 

D x t f x t u t! ( ) ( ( )) ( )" #  (5)
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Assume that the control law is as follows: 

u t k D x t x t x k f x t x t xf f! " # ! " $ ! " %! " # ! "! " $ ! " %! "& ,  (6)

in which xf is an unstable equilibrium point of the system (5) and k is 
a negative control parameter such that k ≠ −1. By substituting Eq. (6) 
in Eq. (5), we have: 

D x t f x t k f x t k x t x f
! ( ) ( ( )) ( ) ( ( )) ( ( ) )" " # # $! 1  (7)

Assume that λ1, λ2, …, λm are the eigenvalues of the Jacobian matrix 
(Df) of the system (5) in the equilibrium point xf without controller. 
Also assume that σj,βj are the real and imaginary parts of the eigen-
values of the Jacobian matrix of system (5) without controller. The 
authors of [18] have shown that the following equation holds: 
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Assuming that k  is equal to Eq. (8), it was shown in [18] that if 
k k! "( , )1 , then the equilibrium point, xf ∈ Rn, of the controlled sys-
tem (5) is asymptotically locally stable. To illustrate this, consider the 
following theorem:

Theorem 1 [18]: If the control law u(t) is considered as Eq. (6), then the 
system of Eq. (7) will be stable towards the equilibrium point, xf, consid-
ering k ≠ −1.

Note 1: Since the stability around the equilibrium point is guaran-
teed, the predictive control law is defined as the following switching 
law:
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where Ɛ is a small positive number such that it meets conditions of 
Eq. (9). 

A Lyapunov function and its derivative are considered as follows: 

V e D V eD e! !1
2

2 , " "  (10)

In which, the control error toward the equilibrium point, e = x − xf, is 
zero. By applying of the controller (6) to system (5) and applying the 
fractional order derivative to the Lyapunov function in Eq. (10), the 
following equation is obtained. 

D V e f x k ke k k k k kj
! " #$ % % & ' ( % % ) % % *( ( )( ) ), , ,( ) ,1 0 1 1 0 1 0  (11)

where η is a small positive number. The Laypunov’s derivative is as 
follows: 

D V e f x k ke e ke f x! "# $ $ % $ &( ( )( ) ) ( ( )) ,1 0  (12)

where ηf (x) is a small number close to zero. Therefore, in terms of 
the Lyapunov stability criterion, the stability conditions are also 

established because of η being small. Now, if there are parameters 
with uncertainty in the system (5), this control method must have 
fundamental changes, therefore, the innovation of this article is the 
use of the adaptive control plan in conditions where the system 
parameters are unknown.

Remark. Control law in Eq. (6) can be applied in practical applica-
tions. The controller is generally a negative feedback of the observed 
system states x (t) and the known equilibrium point xf. k is a negative 
expression and it is calculated by implementation of predictive con-
trol. The expression f(x(t)) may have unknown parameters that will 
be obtained by using adaptive rules.

B. Designing of the Adaptive Controller Combined With 
Predictive Control
According to the predictive controller designed in the previous sec-
tion, an adaptive controller is proposed in this section to estimate 
the unknown parameters of fractional order chaotic systems.

It is considered that a hyper-chaotic system with a controller can be 
generalized using Eq. (13).
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In which A1,A2,A3,A4 include uncertain parameters. The terms gi(x), 
i = 1, 2, 3, 4, and ui(t) include the state variables without parametric 
uncertainty and control efforts, respectively. The control efforts are 
calculated as in Eq. (14). 
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In Eq. (14), ki,i = 1, 2, 3, 4 are negative. ˘ , ˘ , ˘ , ˘A A A A1 2 3 4  are parameter 
estimations of system (13) determined in Eq. (18). The estimation 
error is defined as !A A A ii i! " !˘ , , , ,1 2 3 4 . The x! parameters are the 
components of the equilibrium point and equal to zero.

Theorem 2: If the control signal (14) is applied to the system (13) along 
with the parameter estimation criteria in Eq. (18), the system (13) will 
tend to the equilibrium point asymptotically, according to the Lyapunov 
stability theorem. 

Proof: The Lyapunov function is used to control the system toward 
the equilibrium point as Eq. (15).
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The proposed Lyapunov function’s derivative is as in Eq. (16):
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The derivative of the Lyapunov function will be as follows after 
applying of the controller (14) in (16): 
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If parameter estimation rules are taken into account like (18):
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where λi < 0,i = 1, 2, 3, 4. By applying the parameter estimation laws 
and considering that x(1 + ki)Ai, I = 1, 2, 3, 4 is close to zero, the deriva-
tive of the Lyapunov function becomes as follows: 

D V k e A ii i i i
! "# $ #2 2 1 2 3 4! , , , ,  (19)

As a result, the fractional derivative of Lyapunov function is negative, 
and the parameters are determined using Eq. (18). Fig. 1 depicts the 
block diagram of the adaptive predictive control method for chaotic 
system control.

As shown in Fig. 1, the uncertain parameters are estimated in the 
adaptive design block before entering the predictive control block 
and calculating the control effort vectors. The control effort is then 
applied to the chaotic system in order to stabilize and converge the 
system states toward the equilibrium point. The states of X are calcu-
lated and compared to the reference value to determine the error. 
The pre-control procedure between the systems then continues 

using the obtained error and the estimated parameters. This process 
is repeated until the simulation time is over and the states converge 
to the equilibrium point.

In the following, the simulations and the results on two fractional 
order chaotic systems of Rossler and the Chen hyper-chaotic system. 

IV. SIMULATIONS AND RESULTS

The proposed adaptive predictive controller was applied to Rossler 
chaotic system and Chen hyperchaotic systems in this section, and 
the results were obtained. The simulation findings for Rossler sys-
tem are presented first, followed by the simulation results for Chen’s 
hyperchaotic system.

A. Rossler System
The fractional order Rossler system is described as follows: 
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This system with order α = 0.97 and a = 0.34, b = 0.4, c = 4.5 shows 
chaotic behavior [18].

Consider the system with controller u t u u u T( ) [ ]= 1 2 3 , as follows: 
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Assume that the parameters a, b, and c are uncertain and must be 
estimated. Control errors relative to the equilibrium point are defined 
as e x x ii i fi! " !, , ,1 2 3 . It is shown in [18] that xfi  is at the origin.

In this system it is defined that ! ! !a a a b b b c c c! " ! " ! "˘ , ˘ , ˘ , . Therefore, 

D a D a D b D b D c D c! ! ! ! ! !! ! !" " "˘ , ˘ , ˘ , . According to Theorem 2, the con-
trollers can be calculated as follows: 

u k x x e
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where k1, k2, k3 = −0.95. Estimation rules for unknown parameters are 
written as follows:

Fig. 1. Block diagram of the proposed scheme for adaptive predictive control for controlling chaotic systems
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where λa, λb, and λc = −0.95.

B. Fractional Order Hyperchaotic Chen System
Consider the fractional order hyperchaotic Chen system, which is as 
follows:
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The system with control input is defined as follows:
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Chaos control errors are ei = xi, i = 1, 2, 3, 4. Uncertain parameters 
include a, b, c, d, and r and must be estimated. In this system, parameter 
estimation errors are as ! ! ! ! !a a a b b b c c c d d d r r r! " ! " ! " ! " ! "˘ , ˘ , ˘ , ˘ , ˘ .  
According to Theorem 2, the control efforts are calculated as follows:
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In which k1 = k2 = k3 = k4 = −0.95 are the predictive control gains. 
According to Eq. (18), the adaptive laws of the parameters are deter-
mined as follows: 

Fig. 2. (a) x1(t), x2(t), x3(t) vs. time

Fig. 3. ˘ , ˘ , ˘a b c  estimations vs. time
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The simulation results of the predictive control combined with adap-
tive control for fractional order Rossler system and fractional order 
hyperchaotic Chen system are given. 

C. Simulation Results of the Fractional Order Rossler System
The simulation results for the fractional order chaotic Rossler sys-
tem are shown in this section. The simulation time is 100 seconds, 
and the controller is activated after 50 seconds. The time step size is 
0.01 and the fractional order parameter is assumed to be 0.97. Fig. 2 

depicts the results of the control of state signals x1, x2, and x3. The 
parameter k is assumed to be −0.95.

It can be seen in Fig. 1 that after 50 seconds, x1(t) quickly reaches 
zero by applying the controller. Fig. 2 shows the estimation results 
of ˘ , ˘ , ˘a b c .

Fig. 3 shows that the parameters are well estimated from the start 
using Eq. (23) and without the control signal. And they changed from 
their original value at the 50s when the controller was applied, but 
they returned to their original value after the controller was removed.

D. Simulation Results of the Fractional Order Hyperchaotic Chen 
System
In this section, the results related to predictive control combined 
with adaptive control for Chen fractional order hyperchaotic system 
are shown. In this case, the simulation time is equal to 100 seconds, 

Fig. 4. x1(t), x2(t), x3(t), x4(t) vs. time

Fig. 5. Estimation of parameters ˘ , ˘ , ˘a b c of the Chen fractional order 
hyperchaotic system vs. time

Fig. 6. Estimation of parameters ˘ , ˘d r  of the Chen fractional order 
hyperchaotic system vs. time
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the time step size is 0.01, and the controller is applied at 50s. The 
results of applying the proposed controller are shown in Fig. 4 related 
to the states x1,x2,x3,x4. The controller gains k1,k2,k3,k4 were considered 
equal to -0.95. Control gains of λa,λb,λc,λd,λr = −0.95 are considered.

It can be seen from Fig. 4 that since the controller is applied, the sys-
tem states have converged to the zero-equilibrium point. Fig. 5 and 
Fig. 6 show the parameter estimation results. 

Figs. 5 and 6 show that the parameters are also estimated once the 
controller is applied. According to the results, the proposed design is 
capable of controlling fractional order Chen and Rossler systems and 
estimating their parameters.

V. CONCLUSION

The control problem of Rossler and Chen chaotic systems was inves-
tigated in this paper using the predictive feedback approach along 
with the estimation of unknown system parameters using adaptive 
control. The control of chaotic and hyperchaotic systems toward 
equilibrium points was researched using Lyapunov’s stability theo-
rem. The adaptive rules and controllers were then obtained with 
its assistance, allowing a set of fractional order chaotic systems to 
converge toward their equilibrium points. According to the results, 
all of the modes have converged toward the equilibrium point, and 
the parameters have also been appropriately determined. The prac-
tical application of the suggested adaptive predictive controller for 
synchronizing these systems while accounting for uncertainty and 
unknown parameters can be explored for future research in this sub-
ject. The practical application of the proposed controller can be used 
for Chua circuit. It is also proposed that the mentioned controller be 
used to control and synchronize chaotic and hyperchaotic systems 
with delayed fractional order.
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