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ABSTRACT

This paper proposes a new metaheuristic optimization algorithm, namely thermal exchange optimization (TEO), to solve the optimal power !ow (OPF) problems. 
Various con!ict objective functions, such as the total fuel cost (TFC), the total power loss, total emission gas (TEG), and the total voltage deviation have been optimized 
individually and simultaneously. The proposed TEO is validated on the electric test system Institute of Electrical and Electronics Engineers 30-Bus. The optimization 
results achieved by the proposed method in solving single-objective functions were more e"ective in #nding the optimal solution compared to several well-known 
algorithms. The results clearly show the superiority of the proposed method in the majority of the case studies, with a better solution and competitive computational 
time. In contrast, the proposed multi-objective TEO (MOTEO) based OPF is investigated to solve the multi-objective OPF. It can be noticed from the results obtained 
that the proposed MOTEO achieved the better optimum compromise solution with a TFC value of 822.4796 $/h and a TEG value of 0.26939 ton/h, which yields a 
competitive total cost (970.8219 $/h) compared to those obtained by other algorithms. Moreover, the statistical analysis proves that the proposed MOTEO needs a 
lower number of trials to locate the best solution, also the standard deviation required to solve the single-objective problems is 0.03361, which is better compared 
to other techniques. The simulation results achieved by this method compared with other competitive algorithms proved the superiority of MOTEO in #nding better 
solutions while also producing a high-quality Pareto front with appropriate precision.
Index Terms—Meta-heuristic algorithm, thermal exchange optimization (TEO), optimal power !ow (OPF), IEEE 30-bus test system
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I. INTRODUCTION

Nowadays, energy is an aspect of the development of every country, especially electrical energy, 
which has become necessary for most activities that would be almost impossible in its absence. 
As well as planning for the future growth of the power systems field, one of the most important 
challenges in power systems is the issue of optimal power flow (OPF) [1]. It is featured as an essen-
tial operator’s tool, which plays a critical role in solving modern optimization problems related 
to the field of power system operation [2], and is useful for ensuring high efficiency and safety 
in real-time operations when increasing load demand is an urgent challenge for energy system 
operators. It aims to find optimum operating conditions subject to the physical, management, 
and engineering constraints of electrical grids [3], [4]. The OPF problem is generally considered 
to be a complex, non-linear, large-scale, multidimensional, non-convex optimization problem [5].

The main objective of the OPF strategy is to ensure the secure operation of the network. 
Especially while solving an OPF problem, it should govern the variables that control or make 
decisions in a practical area that optimizes predefined fitness functions [6].The optimum value 
of the controlling variables, which is composed of the active powers generated, should be within 
a predetermined range [7]. Taking into consideration the satisfaction of a collection of equality 
and inequality constraints [8]. Typically, optimization focused on single-objective functions of 
OPF problems has been a means to address a function with a single goal. The total fuel genera-
tion cost is considered one of them, which is the most popular objective function and frequently 
calls for reducing generation costs in order to gain the maximum benefit of power dispatch. 
Furthermore, environmental and technological concerns have led to the consideration of vari-
ous targets, including total emission gas (TEG). The active power loss should also be reduced 
as much as possible, and voltage deviation can reflect the quality of the voltage in the energy 
system; therefore, it should be reduced as much as possible [9]. With the aim of improving the 
security of energy systems and solving their problems more efficiently. The research is becoming 
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more and more motivating to study the multi objective optimal 
power flow (MOOPF), which aims to solve multiple objective func-
tions simultaneously. Previously, traditional methods involved con-
verting a single-objective problem into a multi-objective problem 
by assigning a weighting factor to each objective [10]. But recently, 
various multi-objective algorithms have been applied to solve real 
optimization problems.

The OPF has attracted many researchers to apply various optimiza-
tion approaches that are dedicated to solving OPF problems. It can 
be classified into two different categories: the mathematical and 
metaheuristic approaches. Various mathematical methods have 
been used for optimizing various power flow problems, such as the 
interior point method, Newton’s method, ε-constraint, nonlinear 
programming, quadratic programming, linear programming, and 
decomposition routines [11-14]. As the complexity of the problem 
increases, new techniques start via the Kuhn–Tucker condition to 
determine the optimal solution and converge in a few iterations to 
overcome the constraints. In general, the classical approaches have 
many weaknesses; for example, they suffer from certain obstructive 
limitations like the continuity and derivability of the fitness func-
tion and require much iteration, which leads to a long computa-
tional time to reach the near global solution. Also, those methods 
are based on mathematical concepts to deal with OPF problems of 
various sizes. Most of these methods can ensure a local optimum but 
lack the ability to achieve a global solution [15].

In order to reduce and overcome the drawbacks of those approaches, 
the researchers have developed various techniques that have 
employed unpopular research domains, especially to solve complex 
power-engineering optimization problems, which include the OPF 
problems [16]. In the past few years, numerous meta-heuristic algo-
rithms have been widely employed for solving several optimization 
problems. Nature is considered to be a major source of inspiration 
for numerous algorithms. These algorithms are unique and can be 
applied to each optimization problem regardless of its origin; they 
are aimed at simplifying and rapidly solving complex problems [17]. 
They are different from the traditional techniques, which can provide 
a unique solution; those methods have been implemented based on 
various natural phenomena like biological, physical, and chemical 
phenomena [18].

Several optimization algorithms have been applied to solving the 
OPF problem and have taken up a large place in the literature. 
Generally, metaheuristic algorithms are commonly developed and 
successfully applied for solving the classical OPF problem [19], rang-
ing from traditional methods. Some of them have been classified as 
evolutionary algorithms, biological phenomena, swarm algorithms, 
and others based on physical phenomena, etc., like the genetic 
algorithm (GA) [20], particle swarm optimization (PSO) [21], bacte-
rial foraging methods, such as bat algorithms (Bat) [22]. In [23], a 
recent algorithm named enhanced equilibrium optimizer is pro-
posed to solve several optimal power flow (OPF) problems. It was 
clearly proven its efficacy compared to other powerful optimization 
methods. The effectiveness of this method is analyzed and assessed 
on the standard IEEE 30-bus system, obtained results compared to 
many optimization algorithms [24], enhanced GAs [1], etc. Although 
various hybrid metaheuristic algorithms have been developed and 
continue to be developed every day, some of them are used in solv-
ing different optimization problems, and most are not applied in the 
new studies. These methods are not widely used, and do not achieve 

the expected effect, which is assigned of a serious failure, not only 
for these hybrid metaheuristic algorithms but also for any newly 
developed algorithms for the first time [25]. Hybrid algorithms have 
been applied for solving the OPF problem like, particle swarm with 
gray wolf optimizer [14], the hybrid PSO and Gravitational search 
algorithm (GSA) [26], and hybrid Differential Evoluation (DE) with 
harmony search algorithm (HSA) [27]. In [28], a physics-guided graph 
convolutional neural network (GCNN) algorithm was employed to 
solve the OPF, taking into account various changes in topologies. 
An iterative feature of physical and practical constraints is also 
developed. The efficiency of the proposed technique validated on 
several IEEE test systems such as the IEEE 57-bus system, the IEEE 
118-bus, and the 300-bus. In [29], a hybrid Harrison Hawk optimiza-
tion based on differential evolution algorithm has been developed 
to solve engineering problems. This algorithm is particularly effec-
tive in solving the OPF problem on the IEEE 30-bus system; this algo-
rithm is more effective in finding the optimal solution. In [30], a new 
hybrid algorithm based on combining the teaching learning-based 
artificial bee colony (TLABC) with the fitness-distance balance-
based-TLABC (FDB-TLABC) is proposed to solve single-objective 
OPF, by considering the integration of renewable sources and FACTS 
devices. The obtained results using FDB-TLABC proves its competi-
tive aspect in solving with accuracy the optimal power flow prob-
lem. This algorithm has a distinct advantage over its competitors in 
terms of finding optimal solutions. In [31], a hybrid method namely 
fitness-distance balance-based artificial ecosystem optimization 
(FDB-AEO) designed and applied to improve the solution of the 
transient stability constrained OPF problem. In [32], a recent hybrid 
technique named fitness–distance balance-based adaptive guided 
differential evolution algorithm was developed and applied for solv-
ing the security-constrained OPF; the performance of this method 
was validated on an IEEE 30-bus test system under several opera-
tional conditions. Furthermore, some multi-objective algorithms 
have been suggested for solving the OPF problem, comprising two 
or more fitness functions like the non-dominated sorting GA [33], 
multi-objective PSO (MOPSO) [34] and the multi-objective grass-
hopper optimization algorithm [8]. In [35], a powerful and stable 
method called multi-objective adaptive guided differential evolu-
tion (MOAGDE) was used for solving the MOOPF and can find the 
best Pareto optimum solutions. In [36], a recent multi-objective ver-
sion named mproved multi-objective manta-ray foraging optimi-
zation (IMOMRFO), has the ability to achieve the best compromise 
solution with high efficiency and precision. These modern optimiza-
tion techniques can mostly be used to solve the OPF problem and 
have proven their high performance in several power-engineering 
optimization problems.

This research paper contributes to the study of the effectiveness of 
a newly emerged metaheuristic algorithm called thermal exchange 
optimization (TEO) for solving OPF problems with both single- and 
multi-objective types. The performances of the proposed method 
have been validated on many practical optimization problems. 
This algorithm is examined in IEEE 30-bus system, and the results 
of optimization demonstrate the superiority of the present tech-
nique with success in solving the OPF problem in order to find a 
better solution with less iteration and a minimum execution time. 
The obtained results using the proposed TEO have been compared 
to particular metaheuristic techniques, such as the GA, which mim-
ics genetic laws to provide the best solutions [37], and the PSO, 
this algorithm was developed based on the behavior of animals. 
Where, the candidates (solutions) tend to track the best individual 
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experience as well as the global best solution experimented by all 
candidates up until each iteration, which was developed based on 
the behavior of animals, and to the salp swarm algorithm (SSA) 
which is a recent intelligence algorithm-based swarm [38]. On the 
other hand, the proposed algorithm namely TEO has been com-
pared to other recent hybrid algorithms such as, the FDB-AEO [32], 
and FDB-based Archimedes optimization algorithm (FDB-AOA), 
the purpose of using this technique is to investigate how the FDB-
based guide selection technique affects the exploitation and explo-
ration stages of the AOA algorithm, also to identify the guidance 
mechanism that delivers the most efficient search results [39]. The 
obtained results clearly show that the proposed TEO can be used 
to solve with accuracy various single-objective functions related to 
the OPF problems.

A second goal of this article is the implementation of the recent ver-
sion of multi-objective TEO to handle MOOPF problems. To verify 
their performances relentlessly, a comparative study between the 
reported method and other multi-objective versions of some algo-
rithms, like the multi-objective GA (MOGA), which used a non-domi-
nated sorting process to assign labels to Pareto sets, beginning with 
the initial solution, is illustrated using the Pareto fronts. In contrast, 
the set of optimum Pareto is a collection of non-dominated solu-
tions frontier. The corresponding objective function’s values in the 
objective space are called the Pareto front [40]. Another popular 
algorithm with high performance is MOPSO. This algorithm gen-
erates a repository with a defined capacity in which a set of non-
dominated solutions accumulated for use in the next steps [41]. 
The multi-objective SSA (MSSA) starts with a foraging strategy by 
preparing a random initial population of salps, respecting the limits 
and boundaries of variables. Afterward, it computes the fitness func-
tion value for each salp to provide non-dominated solutions in the 
repository. A roulette wheel is used to archive non-dominated solu-
tions. Following that, the positions of the leading/following salps are 
then updated to ensure the best compromise in terms of multiple 
objectives before the end condition is satisfied [42]. The MOAGDE is 
a robust and efficient method for discovering Pareto-optimal solu-
tions for multi-objective optimization problems, involving various 
forms with complex decision and objective spaces. It emerged by 
adapting the adaptive guided differential evolution algorithm spe-
cifically for multi-objective optimization. Although this method was 
rarely studied, the OPF remains a significant challenge in the plan-
ning and operation of contemporary power systems. The efficacy of 
this method (MOAGDE) was examined on various fitness functions 
on an IEEE 30-bus test system; the details of this method can be seen 
in [35]. The IMOMRFO is a highly efficacious technique that was cre-
ated using the Pareto archiving approach, which is based on crowd-
ing distance [36]; the proposed approach was used for handling a 
multi-objective optimization problem in the engineering field and 
also for solving the MOOPF. The effectiveness of this developed 
method was examined on an IEEE 30-bus system. The details of this 
method can be seen in [43]. The obtained results using the proposed 
multi-objective TEO (MOTEO) compared to other recent algorithms 
clearly proves its high ability to find with accuracy the best Pareto 
front solution of various conflict objective functions.

The rest of this research paper is detailed as follows:

A brief description of the OPF formulation is presented in the first sec-
tion. The second section presents the proposed thermal exchange 
algorithm and their recently investigated multi-objective version 

(MOTEO) for solving the OPF problems with both single- and multi-
objective types. The simulation and numerical results based on the 
practical test system IEEE 30-bus are presented and discussed in the 
third section; the improvement results are clarified and discussed in 
the fourth section. Finally, the last section provides the conclusions 
and future directions.

II. DESCRIPTION OF THE OPTIMAL POWER FLOW PROBLEM

The OPF is a leading energy management optimization tool that 
aims to minimize a nonlinear fitness function and finds the optimal 
configuration of numerous control variables while keeping all equal-
ity and inequality constraints within their specified maximum and 
minimum boundaries [11], [44]. In general, the OPF problem can be 
formulated as follows:

Optimize F (x, u) (is the fitness function) (1)

subjected to

G x u,! " # ! "0 is the equality_constraints  (2)

H x u,! " # ! "0 is the inequality_constraints  (3)

Here, F denotes the modeled fitness function; u indicates the deci-
sion variables; and x indicates the state variables [7]. The vector of 
state variables is expressed using the following equation [3-4]:

x P V V Q Q S SG L L NPQ G G N TL TL NTLG! " " "#$% &'(1 1 1 1, , ,, , , , ,  (4)

where PG1 indicates the slack bus’s power, VL denotes the load bus’s 
voltage, QG represents the generator’s reactive power, and STL indi-
cates the apparent power flow in transmission lines. NPQ indicates 
the total number of load bus, a generation bus number is indicated 
by NG, and a transmission line by NTL. The controlled variables (u) can 
be formulated as follows [3, 4]:

u P P V V Q Q T TG G NG G G NG C C n NC Tr! " " " "#$% &'(2 1 1 1, , , , ,, , ,  (5)

where PG denotes the vector of output real power of thermal gener-
ating units, VG refers to the generator’s bus voltage, Qc indicates the 
injected shunt compensator’s reactive power, T denotes the trans-
former’s tap setting, nC represents the shunt reactive compensation 
unit number, and NTr is the transformer number.

A. Fitness Functions
In this research paper, there are four fitness functions related to 
power system operation: the total fuel cost (TFC), TEG, total active 
power losses (APL), and total voltage deviation (TVD) [10-12]. Their 
mathematical models can be expressed as follows:

1) Minimization of Total Fuel Cost
The first fitness function is to minimize the TFC (Min.fTFC) of genera-
tors units ($/h), and the fitness function-based quadratic form is 
expressed as follows [5-6], [15]:

f Min f x u a P b P cTFC
i

N

i G i G i

G

i i1
1

2! " # ! $ $
!
%. ,  (6)

where NG refers to the number of generators and PGi  indicates the 
active power output of ith generating units.



Electrica 2024; 24(1): 67-86
Djeblahi et al. Solving Optimal Power Flow using Metaheuristic Algorithm

70

ai, bi, and ci denote the coefficients of cost function-based thermal 
generating units.

2) Minimization of the Total Emission Gas
The second fitness function is to reduce the emission of gas (Min.fTEG). 
It can be stated as follows (eq. 7) [5] [16]:

f Min f x u P P PEm
i

N

i i G i G i i G

G

i i i2
1

2 210! " # ! $ $" # $ " #
!

%&. , ' ( ) * +exp  (7)

where: αi, βi, γi, ζi, and λi denote the coefficients of fitness function 
emission gas of ith generating units.

3) Minimization of Total Active Power Loss
The third fitness function is the total APL which can be formulated 
using the following equation [4]:

f Min f x u Min G V V V VAPL
i

NTL

ij i j i j ij3
1

2 2 2! " # ! $ %" #
&

'

((((

)

!
*. , cos+

,,

----
 (8)

where Vi indicates the magnitude of voltage at ith bus, Gij denotes 
the conductance between bus i and bus j, NTL is the transmission 
lines number, and θij is the voltage angle difference [4].

4) Minimization of Voltage Deviation
The last fitness function is voltage deviation. With a goal for limiting 
the magnitude of voltage deviation at the load buses nearly to the 
1.0 p.u., it can be expressed as follows [6], [10], [15], [45], [46]:

f V
i

i4
1

1! ! "
!
#VD
NPQ

 (9)

where VD represents the voltage deviation, NPQ is the load buses 
numbers, and Vi denotes the voltage in each load bus.

B. Multi-Objective Functions
The multi-objective problems can be defined as problems in 
which there are several independent fitness functions that are 
optimized  simultaneously. This can be expressed by the following 
equation [44]:

MinF x u F x u F x u F x ui, , , , , , ,! " # ! " ! " $ ! "%
&'

(
)*1 2  (10)

where i is the number of objective functions.

C. System Constraints
To achieve the above objectives optimally, a collection of equality 
and inequality restrictions must be satisfied.

1) Equality Constraints
The equality constraints reflect the physical proprieties of the power 
system. These constraints can be enforced through the power flow 
equations, which require that the net injection of active and reactive 
power at each bus is equal to zero [1]. A power system’s operating 
limits are determined by its equipment. It is possible to categorize 
equality constraints as follows [6], [47]:

P P V V G BG D i
i
j

N

j ij ij ij iji i

b

! " # $ % # $# $
"
"

&
1
1

cos sin' '  (11)

Q Q V V G BG D i
i

N

j ij ij ij iji i

b

! " # $ ! # $# $
"
%

1

sin cos& &  (12)

where; PDi , QDi denote the active and reactive power demand of 
the ith bus; respectively; Gij, Bij represent the conductance and sus-
ceptance of transmission line between i and j buses; respectively; θij: 
denotes the voltage phase angle difference between buses i and j; Vi 
and Vj: denote the magnitudes of voltage at ith and jth bus; Nb repre-
sents the total number of buses.

2) Inequality Constraints

1. Generation constraints: active power (eq. 10), reactive power 
(eq. 11), and voltage (eq. 13) [6], [47]

The output power of each generating unit has a lower and upper 
bound, and this constraint is expressed by using, [40], [46]:

P P PG
min

G G
max

i i i≤ ≤  (13)

Fig. 1. Flowchart of the TEO algorithm.
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Q Q QG
min

G G
max

i i i≤ ≤  (14)

V V V i NG
min

G G
max

Gi i i! ! " #; , , ,1 2  (15)

1. Security constraints

These constraints include the limits on voltage magnitudes of load 
bus (VL,i), power transmission line limit (SL,i), and tap setting trans-
former (TTr i, ) constraints [38].

S S i NL i L i
max

, , ; , , ,! " #12 STL  (16)

where SL,i and SL i
max
,  are the power boundaries of the ith transmission 

line. NSTL is the number of transmission lines of the power system 
[6], [29].

• Load bus: voltage magnitudes of load buses [4], [6], [10], [44], [47]

V V V iL i
min

L i L i
max

, , , ; , , ,! ! " #12 NPQ (17)

Where VL i
min
,  and VL i

max
,  are the boundaries voltage limits of the ith 

load bus VL,i. NPQ is the number of load buses.

• Transformer tap setting: [6], [47]

T T T i NTr i
min

Tr i Tr i
max

Tr, , , ; , , ,! ! " #12  (18)

where TTr imin
,  and TTr imax

,  indicate the boundaries of the ith tap changer 
transformer. NTr is the number of tap changers.

1. Shunt capacitor: reactive power of the shunt capacitor must (eq. 
19) [6], [10]

Q Q Q i nC i
min

C i C i
max

C, , , ; , , ,! ! " #12  (19)

where , ,QC i
min  and QC i

max
,  are the boundaries of the ith shunt com-

pensator QC,i. nC is the number of shunt capacitors connected to the 
power system.

III. THE PROPOSED METAHEURISTIC OPTIMIZATION 
ALGORITHM

The main purpose of this study is to adapt and apply a new efficient 
physics-inspired meta-heuristic optimization algorithm, namely TEO, 
introduced recently by Kaveh and Dadras in 2017 [48], to solve vari-
ous single- and multi-objective OPF problems. 

A. Thermal Exchange Optimization
The TEO is inspired by physical phenomena to solve an optimiza-
tion problem [48]. The proposed TEO is based on the concept of 
the Newton’s law of cooling to find the best optimum solution. The 
process of this method is based on the behaviors of objects accord-
ing to their temperature, which affects their position, switching 
between warm and cold to reveal an updated position [49]. In the 
TEO optimizer, the search agents are divided into two parts. The first 

Fig. 2. Pairing cooling objects and environmental solutions.

Fig. 3. Flowchart of the proposed MOTEO algorithm.

TABLE I TEST CASES ADDRESSED IN THIS RESEARCH

Test case n° Fitness Functions

Test case 1 Total fuel cost (TFC)

Test case 2 Total emission gas (TEG)

Test case 3 Active power losses (APL)

Test case 4 Voltage deviation (VD)

Test case 5 TFC and TEG simultaneously

Test case 6 TFC and APL simultaneously

Test case 7 APL and VD simultaneously

Test case 8 TFC, TEG, and APL simultaneously

TABLE II DETAILED DATA OF THE IEEE 30-BUS TEST SYSTEM

Element Quantity Details

Buses-number 30 -

Branches-number 41 -

Generators-number 6 Slack-Bus is 1/ 2/ 5/ 8/ 11 and 13

Capacitors-number 9 buses: 10 and 24

Transformer with tap changer 4 branches: 11/ 12/ 15 and 36

Total power demand

 Active power - 283.4 MW

 Reactive power - 126.2 MVAR

Load buses 24 -
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part presents the candidate search agents, which are considered as 
cooling objects whose temperature represents the optimizing vari-
ables; the other part is considered the remaining agents supposed 
to represent the environment [48], [49] and then the reverse pro-
cess [48]. The following steps are used to explain the original TEO 
algorithm. The flowchart of the reported method TEO is depicted 
in the Fig. 1:

The process of this algorithm starts with the initialization of the tem-
peratures of all search agents and objects, which are randomly cre-
ated in the search space [2]. Their solutions can be described as in 
equation (20) [48].

T T T T k Nk Min k Max Min
0 1! " # $% & ! '''rand  , ,  (20)

where T T T Tk Min k Max Min k N0 1! " # $% & ! '''rand  , ,  represents the 
initial vector solution of the kth object; TMax and TMin are the bound-
aries of the solution vector; randk is a vector of random numbers 
created independently for the kth object, where each component 
ranges between 0 and 1, and N is the number of objects or search 
agents [48]; 

After then, the temperatures of all objects are evaluated and 
descendingly organized according to their value of the cost func-
tion, while preserving the first NPop number of objects to be equal 
to the number of presumed objects. The historically best solutions 
must be saved in thermal memory (TM) in order to achieve a higher 
efficacy and lower complexity; They are updated and renewed with 
each iteration [48]. 

The sorted objects are divided into two equal parts according to the 
definition in Fig. 2. At this time, the first half T1 is an environment 
object Tn

2
1+

, and the second half is the cooling object.

According to Newton’s law of cooling, the rate of heat loss of an 
agglomerated object is exactly proportional to the temperature dif-
ference between the object and its surroundings, as expressed in the 
equation below (Eq. 21).

Te t Te
Te Te

exp
! " #
#

$ #! "Env

Env
†t

0
 (21)

where Te(t) represents the novel temperature at time t following the 
thermal exchange between an object with the temperature Te0 and 
the environment with temperature TeEnv. β is a constant that relates 
to several parameters, such as heat capacity and object-specific den-
sity. As can be observed, when β has a higher value, the object tends 
to change less amount of temperature. An analogy is inspired by this 
feature.

β is defined to minimize the solution’s cost and variance. The value β 
is expressed as in the following equation (eq. 22):

! " f
f

i

max
 (22)

where fi represents the cost of the current object and fi is the highest 
cost of the worst object in the population, respectively. t is the time 
associated with the iteration numbers, as illustrated in the following 
equation (eq. 23).

t = Iter
Max-Iter

 (23)

TABLE III THE COST COEFFICIENTS OF GENERATING UNITS OF IEEE 30-BUS 
SYSTEM

Bus ci bi ai PGmini PGmaxi
1 0.00375 2 0 50 200

2 0.0175 1.75 0 20 80

5 0.0625 1 0 15 50

8 0.00834 3.25 0 10 35

11 0.025 3 0 10 30

13 0.025 3 0 12 40

TABLEE IV THE EMISSION COEFFICIENTS OF GENERATING UNITS OF IEEE 
30-BUS TEST SYSTEM

Bus γ. 10−2 β. 10−4 α. 10−6 ✓. 10−4 λ. 10−2

1 4.091 −5.554 6.49 2.0 2.857

2 2.543 −6.047 5.638 5.0 3.333

5 4.258 −5.094 4.586 0.01 8.0

8 5.326 −3.55 3.38 20.0 2.0

11 4.258 −5.094 4.586 0.01 8.0

13 6.131 −5.555 5.151 10.00 6.667 Fig. 4. Schema of IEEE 30-bus test system.
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where Iter is the current iteration, and Max − Iter is the maximum 
number of iterations.

 The environmental solutions have been randomized change before 
updating the temperature using the eq. (24) [48].

T C C t Ti
Env

i! " # $ "% &% &$% &$1 11 2 Rand Env"  (24)

where Ti"Env and TiEnv indicate the object’s temperature before and 
after modification; C1 and C2 are the internal control parameters; 
rand is a random vector comprising in the interval [0 1]. Equation 
25 is used for checking the new temperature of each agent, which 
is a essential step was designed to minimize randomness when the 
algorithm approaches their final iterations, hence, decreasing and 
increasing exploitation [49].

T T T T ti i i i
New Env Env Old exp! " #$ %& # &( '  (25)

where TiOld  and TiNew  denote the previous and updated tempera-
ture of the ith object, and β and t are the two parameters mentioned 
above.

The second mechanism for escaping local optima was created 
to find a global optimum solution. This mechanism is introduced 
through the parameter ‘Pro,’ which takes values within the range 
(0, 1), specifying whether one component of each cooling object 
needs to be replaced or not. Each agent Pro value is compared to 
Ran (i), where i ranges from (1 to n) is a random number uniformly 
distributed between (0 and 1). If Ran(i)<Pro, one dimension of the 
ith agent is randomly selected and its value regenerated as follows 
using Equation 26 [48]:

T T T Ti j j j
j min max minrandom! " # $% &  (26)

TABLE V INTERNAL PARAMETER SETTINGS OF THE ALGORITHMS

Algorithm Name Parameters Value

Single 
objective

All algorithms Population size 20

Maximum iterations 200

GA Selection type Roulette

Crossover 0.8

Mutation 0.14

PSO Inertia weight (w1) 0.5

Inertia weight (w2) 0.9

Local weight (C1) 1.2

Local weight (C2) 1.4

SSA C1 [0, 1]

C2 Rand ()

C3 Rand ()

TEO C1 1.2

C2 2.2

FDB-AEO The standard parameters of the algorithm

FDB-AOA The standard parameters of the algorithm

Multi-
objective

MOGA The same parameters of single-objective

MOPSO c1 1.2

c2 1.4

Beta 0.1

Lambda 0.9

w 1

wdamp 0.95

MSSA The same parameters of single-objective

MOTEO C1 1.2

C2 2.2

Percentage of crossover 0.7

Percentage of mutation 0.4

Mutation 0.02

DSC-MOAGDE The standard parameters of the algorithm

IMOMRFO The standard parameters of the algorithm

GA, genetic algorithm; FDB-AEO, #tness-distance balance-based arti#cial 
ecosystem optimization; FDB-AOA, #tness-distance balance- based Archimedes 
optimization algorithm; IMOMRFO, improved multi-objective manta-ray 
foraging optimization; MOGA, multi-objective genetic algorithm; MOPSO, 
multi-objective particle swarm optimization; MSSA, multi-objective salp swarm 
algorithm; MOTEO, multi-objective thermal exchange optimization; PSO, 
particle swarm optimization; SSA, salp swarm algorithm; TEO, thermal exchange 
optimization; DSC-MOAGDE: Dynamic Switched Crowding mutiobjective- 
Adapative Guided Di"erential Evolution Algorithm.

TABLE VI THE OPTIMIZED RESULTS OF THE TEO ON SOLVING SINGLE-
OBJECTIVE OPF PROBLEM

Test  
Case 1

Test  
Case 2

Test  
Case 3

Test  
Case 4

PG1 176.4878 70.1690 51.9111 173.1889

PG2 48.8374 71.4234 79.9957 71.4215

PG5 21.4310 49.1068 49.9983 15.0800

PG8 21.9482 34.6021 34.9973 11.4022

PG11 12.1969 28.2083 29.9984 10.7081

PG13 12.0000 33.8037 39.9968 12.0000

Total fuel cost($/h) 802.3607 929.7806 968.5297 815.1328

Emission gas (ton/h) 0.3665 0.21929 0.2216 0.3673

Active power losses (MW) 9.5012 3.9134 3.4976 10.4008

ΔV (p.u.) 0.6829 0.7219 0.7237 0.67514

CPU time (s) 16.9921 17.28617 17.2302 17.0174

Bold values in Table X indicate the best value obtained.
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Stopping criteria of the algorithm
It must be controlling the maximum number of iterations; if the 
condition is met, the algorithm stops searching and reports the best 
solution found so far; otherwise, it resumes and returns the stage 
of evaluation of temperature. The optimization process is completed 
after several iterations [49].

B. Multi-objective thermal exchange optimization
Due to structural similarity to a single-objective TEO, just the nec-
essary differenence is mentioned for the sake of brevity. The differ-
ences between the introduced MOTEO and its basic single-objective 
version are mainly relied upon in how the objects are arranged and 
how the parameter β is measured. β is restructured as follows (eq. 
27) [49]:

! " ri
PopN

 (27)

where ri reports the final rank of the solution and NPop refers to the 
number of population.

n TEO, the highest i parameter is related with the increasing cost 
value of the solution (see Eq. 19). In MOTEO, each solution requires a 
number of cost values, whereas in TEO, each solution has a multiple 
cost value. As a result, the novel formulation (Eq. 25) is suggested, 
which functions similarly. The solution that belongs to a larger rank 
of Pareto front has a higher β parameter. 

The reminder steps are similar to TEO. The flowchart in Fig. 3 explains 
the basics of MOTEO. The details of MOTEO can be retrieved from [48].

IV. SIMULATION PROCEDURE

The performances of the proposed TEO have been validated on the 
standard IEEE 30-bus test system. Eight different test cases have been 
addressed, which are mentioned in Table I. The simulations have 
been elaborated using PC-HP-Intel (R) Core (TM) i5-1035G1CPU@1.00 
GHz to 1.19 GHz, with a RAM of 8 GB under Windows 10, 64-bit, and 
MATLAB 2021.

A. Brief Description of IEEE 30-Bus Test System
The detailed data of this test system are mentioned in Table II. Also, 
the other data of the test system, including the cost and emission 
generator coefficients and output generation power boundary lim-
its, are indicated in Tables III and IV. Fig. 4 illustrates the topology of 
the IEEE 30-bus test system [13], [29].

B. Numerical Simulation Results and Discussion
To achieve a rational comparison, all test- cases and all the algo-
rithms used are compared under the same conditions, such as the Fig. 5. Convergence characteristics for TFC minimization: test case 1.

TABLE VII THE OPIMIZED RESULTS OF THE PRESENTED METHOD (TEO) WITH OTHER METHODS: TEST CASE 1

GA PSO SSA FDB-AEO FDB-AOA TEO

PG1 172.7648 178.2879 176.8127 176.6824  176.9304 176.4878

PG2 52.0187 48.5015 48.7627  48.8565  49.5669 48.8374

PG5 22.9486 21.4564 21.5116  21.5157  21.3281 21.4310

PG8 20.9285 20.2835 21.7192  21.6382  20.5942 21.9482

PG11 10.8531 11.9820 12.1158  12.2217  12.5504 12.1969

PG13 13.2136 12.5260 12.0000  12.0013  12.0000 12.0000

Total fuel cost ($/h) 802.8716 802.4219 802.3603 802.3604 802.3883 802.3607

Emission gas (ton/h) 0.3544 0.3715 0.3674  0.3671 0.3678 0.3665

Active power losses (MW) 9.3273 9.6373 9.5220  9.5157 9.5700 9.5012

ΔV (p.u.) 0.6817 0.6823 0.6827  0.6828 0.6829 0.6829

CPU time (s) 22.7751 18.2526 17.5517  17.3033 18.5131 16.9921

GA, genetic algorithm; FDB-AEO, #tness-distance balance-based arti#cial ecosystem optimization; FDB-AOA, #tness-distance balance-based Archimedes 
optimization algorithm; PSO, particle swarm optimization; SSA, salp swarm algorithm; TEO, thermal exchange optimization.
Bold values in Table X indicate the best value obtained.

mailto:i5-1035G1CPU@1.00
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maximum iteration being 200 iterations and the population size 
being 20. The rest of the parameter settings of the algorithms used 
in this work have been mentioned in Table V.

For all test cases, the simulation results include the optimal settings 
of the control variables, the TFC, TEG, APL, and voltage deviation. 

• Solution Methodology

The basic steps for solving OPF using metaheuristic optimization 
methods are:

Step 1: Define the fitness function and the constraints.

Step 2: Introduce the matrix data lines and line data of the test 
system.

Step 3: Initialization of the parameters of the metaheuristic, such as 
the population size and boundary limits of the decision variables. 
This population consists of a set of solution vectors, each represent-
ing a possible configuration of the power system variables (e.g., gen-
erator setpoints, transformer tap positions).

Step 4: Evaluation of the fitness of each candidate solution in the 
population. Fitness is determined by calculating the objective func-
tion value for each solution and checking if it satisfies the constraints. 
Solutions that violate constraints can be assigned a penalty or a low 
fitness value.

Step 5: Evaluate the fitness fiction by calculating the power flow in 
order to find the best global optimal solution.

Step 6: Apply the exploration stage and the exploitation stage

Step 7: Update the solution and save the best decision variables.

Step 8: Test convergence criteria.

1) Single-Objective Optimal Power Flow Problem 
The efficacy of the proposed TEO was first evaluated by testing it on 
solving single-objective OPF problems,which were considered as 
test cases 1 to 4 and discussed previously in Table I. Table VI repre-
sents the details of the simulation results for each test case.

To demonstrate the superiority of this algorithm (TEO), their simula-
tion results compared with the other algorithms have proven their 
effectiveness for solving the OPF problems, such as the SSA, PSO, 
and GA. 

• Test Case 1: Minimization of the TFC

The first test case selected the TFC as a fitness function. Table VII dis-
plays the simulation results of the presented technique compared 

TABLE VIII THE OPIMIZED RESULTS OF THE PRESENTED METHOD (TEO) WITH OTHER METHODS: TEST CASE 1

PGi (MW) GA PSO SSA FDB-AEO FDB-AOA TEO

PG1 70.1690 68.8179 68.1098 68.2291 68.3633 70.5539

PG2 71.4234 70.9642 71.2237 71.3491  72.2541 68.2759

PG5 49.1068 50.0000 50.0000 49.9992  49.9968 50.0000

PG8 34.6021 35.0000 35.0000 34.9990  34.9782 35.0000

PG11 28.2083 30.0000 30.0000 29.9988  29.9980 30.0000

PG13 33.8037 32.4405 32.8757 32.6383  31.6380 33.4010

Total fuel cost ($/h) 929.7806 934.0096 935.3462 935.0626 934.5488 931.5967

Emission gas (ton/h) 0.21929 0.21756 0.21756 0.2176  0.2176 0.2137

Active power losses (MW) 3.9134 3.8225 3.8092 3.8136  3.8285 3.8308

ΔV (p.u.) 0.7219 0.7236 0.7237 0.7237  0.7235 0.7238

CPU time (s) 20.55941 18.47389 17.2877 18.1378 17.9821 17.2861

GA, genetic algorithm; FDB-AEO, #tness-distance balance-based arti#cial ecosystem optimization; FDB-AOA, #tness-distance balance-based Archimedes 
optimization algorithm; PSO, particle swarm optimization; SSA, salp swarm algorithm; TEO, thermal exchange optimization.
Bold values in Table X indicate the best value obtained.

Fig. 6. Convergence behaviors for TEG minimization: test case 2.
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with other techniques. The values of the best TFC are almost the 
same by all method, especially by SSA, FDB-AEO, FDB-AOA, and TEO. 
It is confirmed that the TEO achieved the best TFC (802.3606831 $/h) 
at a reduced execution time compared to other techniques. The con-
vergence behaviors for TFC minimization using the TEO, and using 
other methods are illustrated in Fig. 5.

• Test Case 2: Minimization of Total Emission Gas

For the second test case, the fitness function selected is the TEG. The 
optimized results provided by the presented technique (TEO) com-
pared with others are depicted in Table VIII. It is also found that TEO 
achieves the best emission gas reduction with 0.2137 ton/h com-
pared to other techniques. The optimized value of emission gas was 

achieved at a competitive time. The convergence behaviors for TEG 
minimization using the proposed method and other methods are 
illustrated in Fig. 6.

• Test Case 3: Total Active Power Losses Minimization

The third fitness function investigated was to reduce the total APL. 
The optimal results found using the proposed TEO and other tech-
niques are shown in Table IX. It should be mentioned that the best 
optimal solution has been obtained by the presented method (TEO) 
with a value of 3.4976 MW. Fig. 7 shows the convergence character-
istics for total real power loss minimization using PSO, GA, SSA, FDB-
AEO, FDB-AOA, and TEO methods.

• Test Case 4: Voltage Deviation Reduction

In this test case, the voltage deviation was selected as the fitness 
function. Table X shows the optimized decision variables found 
using the proposed TEO and other techniques. It can be noticed that 
the TEO method achieves the best optimum with a value of 0.67514 
p.u. Noting that the values obtained by all methods are almost the 
same. Fig. 8 illustrates the convergence characteristics for TVD mini-
mization using the proposed TEO and other techniques.

Table XI displays a summary of the comparison between the opti-
mized-results achieved by the presented method (TEO) and the 
other investigated techniques for single-fitness function on IEEE 
30-bus test system.

• Discussion of the Results

The simulation results clearly demonstrated the superiority of 
the proposed method (TEO) when compared to other powerful 
population metaheuristic algorithms. It can be observed that the 
proposed TEO can solve with accuracy various single-objective 
functions-based OPF problems. It also provides a lower value for 
the majority of test cases studied. On the other hand, the proposed 

TABLE IX THE OPTIMIZED RESULTS OF THE PRESENTED METHOD (TEO) WITH OTHER METHODS: TEST CASE 3

PGi (MW) GA PSO SSA FDB-AEO FDB-AOA TEO

PG1 55.74086 53.2708 51.9292  52.4025  52.3605 51.9111

PG2 78.40561 79.4866 79.9865  79.7951  79.7951 79.9957

PG5 49.90884 49.6869 49.9955  49.9487  49.9887 49.9983

PG8 34.30025 34.9979 34.9982  34.9731  34.9931 34.9973

PG11 28.80385 29.8611 29.9940  29.9224  29.9124 29.9984

PG13 39.81672 39.6225 39.9946  39.8647  39.8547 39.9968

Total fuel cost ($/h) 960.9912 964.7394 968.4830 967.3385 967.5097 968.5297

Emission gas (ton/h) 0.2216 0.2213 0.2216 0.3663 0.3662 0.216

Active power losses (MW) 3.5761 3.5259 3.4979 3.5065 3.5045 3.4976

ΔV (p.u.) 0.7225 0.7236 0.7237 0.7236 0.7236 0.7237

CPU time (s) 21.7652 18.7029 17.3293 17.3758 17.5368 17.2302

CPU, Central Processor Unit; GA, genetic algorithm; FDB-AEO, #tness-distance balance-based arti#cial ecosystem optimization; FDB-AOA, #tness-distance balance-
based Archimedes optimization algorithm; PSO, particle swarm optimization; SSA, salp swarm algorithm; TEO, thermal exchange optimization.
Bold values in Table 9 indicate the best value obtained.

Fig. 7. Convergence behaviors for total power loss minimization: 
test case 3.
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TEO achieves the best solutions at a competitive computational 
time compared to other algorithms. It should be mentioned that 
in the majority of test cases, the optimum solutions have been 
achieved by using the TEO, among other competitive methods. 
The TEO algorithm has the best performance in terms of optimal 
solution, convergence, and minimum execution time. Therefore, it 
may be considered as a strong and competitive tool to solve vari-
ous OPF problems.

• Robustness of the Proposed Method (TEO) 

A statistical analysis is performed to measure the robustness and 
prove the efficiency of each method, in particular the TEO in solv-
ing various problems related to optimal power management. Four 
indices are calculated: the minimum, the maximum, the median, 
and the standard deviation (SD) for 50 independent runs. As well 

depicted in Table XII, the proposed TEO achieved the best solution 
at a lower SD (0.03361) compared to other competitive methods. 
Fig. 9 shows the evolution of optimized TFC versus trials related 
to the proposed TEO and to other techniques. Fig. 10 illustrates a 
comparison between the optimized TFC versus trials for GA, TEO, 
SSA, PSO, and the two hybride optimization algorithms, namely 
FDB-AEO and FDB-AOA. It is confirmed that the reported technique 
(TEO) allows achieving the best solution at a reduced SD compared 
to other competitive methods. This clearly proves the accuracy and 
stability of this algorithm in solving various types of single-objec-
tive functions. 

TABLE X THE OPTIMIZED RESULTS OF THE PROPOSED TECHNIQUE (TEO) AND OTHER METHODS: TEST CASE 4

PGi (MW) GA PSO SSA FDB-AEO FDB-AOA TEO

PG1 194.0816 159.4153 169.6567 189.3845 168.2957 173.1889

PG2 25.2490 80.0000 74.3248 50.8421 72.8975 71.4215

PG5 35.0760 15.0000 15.2995 20.5075 15.7564 15.0800

PG8 15.5173 13.5643 10.4383 10.3819 13.3754 11.4022

PG11 10.8967 11.4546 10.0772 10.6836 10.5875 10.7081

PG13 12.3078 13.5325 13.8788 12.2959 12.5457 12.0000

Total fuel cost ($/h) 825.5293 823.6236 817.9730 804.4774 815.7353 815.1328

Emission gas (ton/h) 0.4204 0.3290 0.3598 0.4069 0.3553 0.3673

Active power losses (MW) 9.7284 9.5667 10.2753 10.6954 10.0582 10.4008

ΔV (p.u.) 0.6806 0.6789 0.6754 0.6754 0.6765 0.6751

CPU time (s) 22.6669 18.5927 17.4028 17.654262 18.4908 17.0174

GA, genetic algorithm; FDB-AEO, #tness-distance balance-based arti#cial ecosystem optimization; FDB-AOA, #tness-distance balance- based Archimedes 
optimization algorithm; PSO, particle swarm optimization; SSA, salp swarm algorithm; TEO, thermal exchange optimization.
Bold values in Table X indicate the best value obtained.

Fig. 8. Convergence behaviors for TVD: test case 4.

TABLE XI COMPARISON OF SIMULATION RESULTS BETWEEN TEO, SSA, GA, 
AND PSO FOR TEST CASES 1 TO 4

Methods
Total Fuel 
Cost ($/h)

Emission 
Gas (ton/h)

Active 
Power 

Losses (MW)

Voltage 
Deviation 

(p.u.)

Initial 875.1688 0.8983 17.528 0.6380

Test case Test case 1 Test case 2 Test case 3 Test case 4

GA 802.8716 0.2137 3.5761 0.6801

PSO 802.4219 0.2176 3.5259 0.6789

SSA 802.3603 0.2176 3.4979 0.6754

FDB-AEO 802.3604 0.2176 3.5065 0.6754

FDB-AOA 802.3883 0.2176 3.5045 0.6765

TEO 802.3607 0.2193 3.4976 0.6751

GA, genetic algorithm; FDB-AEO, #tness-distance balance-based arti#cial 
ecosystem optimization; FDB-AOA, #tness-distance balance-based Archimedes 
optimization algorithm; PSO, particle swarm optimization; SSA, salp swarm 
algorithm; TEO, thermal exchange optimization.
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• Discussion of Results Using Statistical Analysis: Test Cases 1 
to 4

In this section, for all test cases (cases 1-4), each candidate algorithm 
has been executed 10 times. For that, the boxplot graph is used to 
evaluate the robustness of the proposed algorithm, namely TEO 
compared to other algorithms in terms of dispersion of the solutions. 
Four statistical indices are calculated: the minimum, the maximum, 
the median, and the SD. Table XIII shows the statistical results for 10 
independent runs for all methods. Fig. 11 illustrates the box plot of the 

fitness values for the TEO and other algorithms such as: GA, PSO,SSA, 
FBD-AEO, and FBD-AOA. It can be concluded that the proposed TEO is 
statistically superior compared to other techniques and has exhibited 
a stable search performance in relatively all test cases for single- and 
multi-objective functions. It is confirmed that the reported technique 
(TEO) allows achieving the best solution at a reduced SD compared 
to other methods. This clearly proves the accuracy and stability of this 
algorithm in solving such single-objective functions. According to 
these preliminary results, it can be concluded that the proposed TEO 
algorithm can be successfully used to solve various OPF problems. 

TABLE XII STATISTICAL ANALYSIS OF TEO AND OTHER METAHEURISTIC ALGORITHMS

GA PSO SSA FDB-AEO FDB-AOA TEO

Mean 803.5740 802.9784 802.4023 802.5861 802.8336 802.4007

Best 802.8716 802.4219 802.3603 802.3604 802.3883 802.3607

Median 803.5873 802.9017 802.3956 802.4575 802.7317 802.3937

Max 804.5768 803.8347 802.5243 803.5488 803.8324 802.5286

SD 0.385200 0.382200 0.035402  0.2905 0.3745 0.03361

GA, genetic algorithm; FDB-AEO, #tness-distance balance-based arti#cial ecosystem optimization; FDB-AOA, #tness-distance balance- based Archimedes 
optimization algorithm; PSO, particle swarm optimization; SSA, salp swarm algorithm; TEO, thermal exchange optimization.

Fig. 9. Evolution of optimized TFC versus trials: (a) GA, (b) PSO, (c) SSA, (d) TEO, (e) FDB-AEO, (f ) FDB-AOA.
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2) Multi-Objective Optimal Power Flow Problem
As indicated earlier, the MOOPF has been used to improve the per-
formance of practical power systems in terms of energy quality and 
operation’s security. A recent version of MOTEO has been applied to 
solve various combined conflict bi-objective functions. The perfor-
mance of the proposed MOTEO has been verified and examined on 
the standard IEEE 30-bus test system. The population size is set to 
20, and the iteration numbers are 200. The results will be presented, 
analyzed, and discussed in the following subsections.

• Results and Discussions of Bi-Objective Function

The efficiency of the proposed method (MOTEO) has been validated 
to optimize two objective functions simultaneously. To evaluate its 
ability and particularity, a comparative study has been carried out, 
and the results of the two-dimensional Pareto fronts of all three test 
cases provided by the MOTEO are compared with other algorithms 
such as the MOGA, MOPSO, MSSA, DSC-MOAGDE, and IMOMRFO.

• Test Case 5: Minimize TFC and TEG Simultaneously
Fig. 10. Comparison between the optimized TFC versus trials for 
GA, TEO, SSA, PSO, FDB-AEO, and FDB-AOA.

TABLE XIII STATISTICAL ANALYSIS FOR ALL SINGLE-OBJECTIVE CASES (1 TO 4) OF TEO AND OTHER METAHEURISTIC ALGORITHMS

Case GA PSO SSA FDB-AEO FDB-AOA TEO

1 Mean 803.5104 803.1650 802.4258 802.5184 802.8073 802.4074

Best 802.8716 802.4219 802.3603 802.3604 802.3883 802.3607

Median 803.5851 803.1084 802.4325 802.3782 802.6757 802.3966

Max 804.5768 803.8347 802.5243 803.5488 803.8324 802.5286

SD 0.5152 0.4502 0.0550 0.3884 0.4171 0.0511

2 Mean 0.2201 0.2177 0.2176 0.2178 0.2179 0.2165

Best 0.2193 0.2175 0.2176 0.2176 0.2176 0.2137

Median 0.2199 0.2177 0.2176 0.2177 0.2176 0.2172

Max 0.2209 0.2179 0.2178 0.2188 0.2192 0.2183

SD 5.3991e-04 1.0529e-04 8.3593e-05 3.5997e-04 6.2058e-04 0.0018

3 Mean 3.5882 3.5495 3.5133 3.5291 3.5159 3.5036

Best 3.5761 3.5259 3.4979 3.5053 3.5045 3.4976

Median 3.5818 3.5370 3.5115 3.5185 3.5175 3.5009

Max 3.6308 3.6507 3.5464 3.6423 3.5321 3.5183

SD 0.0171 0.0375 0.0160 0.0406 0.0085 0.0074

4 Mean 0.6817 0.6798 0.6773 0.6762 0.6774 0.6756

Best 0.6806 0.6789 0.6754 0.6754 0.6765 0.6751

Median 0.6816 0.6797 0.6777 0.6763 0.6771 0.6754

Max 0.6856 0.6813 0.6797 0.6772 0.6799 0.6763

SD 0.0014 7.7405e-04 0.0014 6.6073e-04 0.0012 4.7044e-04

GA, genetic algorithm; FDB-AEO, #tness-distance balance-based arti#cial ecosystem optimization; FDB-AOA, #tness-distance balance-based Archimedes 
optimization algorithm; PSO, particle swarm optimization; SSA, salp swarm algorithm; TEO, thermal exchange optimization.
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Fig. 11. Box plot of various #tness values for all algorithms: test cases 1- 4, (a) test case 1, (b) test case 2, (c) test case 3, (d) test case 4.

TABLE XIV COMPARISON OF OPTIMIZED BI-OBJECTIVE SOLUTION-BASED TFC AND TEG: TEST CASE 5

PGi (MW) MOGA MOPSO MSSA DSC-MOAGDE IMOMRFO MOTEO

PG1 11h8.9466 119.5862 129.7038 124.3816 123.6978 129.0920

PG2 60.1173 65.9017 56.7952 51.6604 73.7514 61.2001

PG5 33.5915 28.2659 30.7532 34.9932 19.9763 26.4864

PG8 27.1607 33.1777 30.2075 33.1353 27.5029 31.3122

PG11 23.4719 25.5318 21.9756 18.3483 22.2963 25.5441

PG13 26.1024 17.1631 20.4509 26.9306 23.0856 16.4142

Total fuel cost($/h) 837.4416 831.0422 823.7553 834.6016 831.5045 822.4796

Total cost ($/h) 977.9700 973.0574 971.84984 978.6653 979.5550 970.8219

Emission gas(ton/h) 0.2552 0.2579 0.26894 0.26162 0.26886 0.26939

Active power losses (MW) 5.9904 6.2264 6.4862 6.0494 6.9104 6.6490

ΔV (p.u.) 0.7112 0.7105 0.7075 0.6691 0.6687 0.7091

CPU time (s) 29.9906 32.4147 19.4735 32.7852 34.3546 30.7970

IMOMRFO, improved multi-objective manta-ray foraging optimization; MOGA, multi-objective genetic algorithm; MOPSO, multi-objective particle swarm 
optimization; MSSA, multi-objective salp swarm algorithm; MOAGDE, muti-objective adapative guided di"erential evolution; MOTEO, multi-objective thermal 
exchange optimization.
Bold values in Table X indicate the best value obtained.
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The aim of this test case is to optimize two fitness functions, the TFC 
($/h) and the TEG (ton/h), simultaneously. The simulation results 
are provided in Table XIV. The Pareto fronts generated using the 
proposed MOTEO and other techniques are presented in Fig. 12. 
Table XIV depicts the optimized results obtained by MOTEO com-
pared with other algorithms. It is found that MOTEO has the highest 
economic total cost (970.82189 $/h) compared to other techniques. 

• Test Case 6: Minimizing the TFC and APL Simultaneously

This case focuses on the optimization of the TFC ($/h) and the total 
APL (MW). The optimal solutions for the two-dimensional Pareto 
fronts created by the proposed algorithm and other algorithms are 
shown in Fig. 13. Table XV gives the optimized tradeoff values of 

control variables achieved by the proposed MOTEO and other multi-
objective algorithms.

• Test Case 7: Minimizing the APL and the VD Simultaneously

This test case is dedicated to analyzing the conflict existing between 
the APL (MW) and the VD (p.u.). The statistical results of the simula-
tion for this test case are depicted in Table XVI. Fig. 14 illustrates the 
two-Dimensional Pareto fronts generated by the presented algo-
rithm (TEO) compared with other algorithms. 

Table XVI represents a comparative study between MOTEO and 
other metaheuristic algorithms.

Fig. 12. The two-dimensional Pareto front solutions for test case 5 
obtained using MOTEO and other methods. Fig. 13. The two-dimensional Pareto front solutions for test case 6 

obtained using MOTEO and other methods.

TABLE XV COMPARISON OF OPTIMIZED BI-OBJECTIVE SOLUTION BASED TFC AND APL: TEST CASE 6

PGi (MW) MOGA MOPSO MSSA DSC-MOAGDE IMOMRFO MOTEO

PG1 132.7925 122.3352 117.4630 133.9546 122.3850 127.1674

PG2 54.0488 58.4186 58.7366 49.4046 62.8179 47.6816

PG5 32.7928 38.1387 34.9059 33.5581 28.4283 30.8446

PG8 29.4633 34.4243 31.1443 22.4309 30.1119 35.0000

PG11 17.3037 18.6077 21.8392 23.8560 22.8256 26.5488

PG13 23.5788 17.4201 25.1411 26.7483 23.2041 22.2764

Total fuel cost ($/h) 824.4156 837.8367 838.8245 829.317 828.8290 828.9341

Total emission gas (ton/h) 0.2739 0.2595 0.2531 0.2740 0.2608 0.2631

Active power losses (MW) 6.5799 5.9444 5.8302 6.5526 6.3728 6.1188

ΔV (p.u.) 0.7030 0.7038 0.7104 0.6720 0.6715 0.6770

CPU time (s) 31.7540 31.7991 18.6996 34.8751 32.1245 31.497

 IMOMRFO, improved multi-objective manta-ray foraging optimization; MOGA, multi-objective genetic algorithm; MOPSO, multi-objective particle swarm 
optimization; MSSA, multi-objective salp swarm algorithm; MOTEO, multi-objective thermal exchange optimization; MOAGDE, muti-objective adaptive guided 
di"erential evolution. 
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TABLE XVII A COMPARATIVE STUDY BETWEEN MOTEO WITH OTHER METAHEURISTIC ALGORITHMS

Test Cases MOGA MOPSO MSSA DSC-MOAGDE IMOMRFO MOTEO

5 TFC ($/h) 837.4416 831.0422 823.7553 834.6016 831.5045 822.4796

TEG (ton/h) 0.2552 0.25790 0.26894 0.26162 0.26886 0.26939

Total cost ($/h) 977.9700 973.0574 971.8498 978.6653 979.5550 970.8219

6 TFC ($/h) 824.4156 837.8367 838.8245 829.317 828.8290 828.9341

APL (MW) 6.5799 5.9444 5.8302 6.5526 6.3728 6.1188

7 APL (MW) 4.1614 4.3772 5.3127 4.9856 4.937 3.7553

VD (p.u.) 0.7173 0.7022 0.7041 0.7129 0.7158 0.7198

IMOMRFO, improved multi-objective manta-ray foraging optimization; MOGA, multi-objective genetic algorithm; MOPSO, multi-objective particle swarm 
optimization; MSSA, multi-objective salp swarm algorithm; MOTEO, multi-objective thermal exchange optimization.

Table XVII shows a comparison study between optimized results 
achieved by the reported method (MOTEO) and other techniques.

• Discussion of Obtained Results

According to the simulation results focused on solving the MOOPF 
problems, three test cases have been studied to solve two conflict-
ing objective functions simultaneously. 

In the test case 5, the bi-objective function focused on solving the 
tradeoff between the TFC and TEG. Based on the results depicted 
in Table XIV, it can be noticed that the MOTEO achieved the better 
optimum compromise solution with a TFC value of 822.4796 $/h and 
a TEG value of 0.26939 ton/h, which yields a reduced total fuel cost 
(970.8218974 $/h) compared to those obtained by other algorithms. 
Fig. 12 depicts the tradeoff curve between the total fuel cost and 
emissions gas obtained by the MOTEO and other methods. It can be 
seen that MOTEO has the best Pareto optimal front with a highly uni-
form distribution.

Fig. 14. The two-dimensional Pareto front solutions for test case 7 
obtained using MOTEO and other methods.

TABLE XVI COMPARISON OF OPTIMIZED BI-OBJECTIVE SOLUTION-BASED APL AND VD: TEST CASE 7

PGi (MW) MOGA MOPSO MOSSA DSC-MOAGDE IMOMRFO MOTEO

PG1 76.4181 74.0321 99.6784 108.5225 100.3876 57.1299

PG2 75.9677 78.0799 73.6429 51.2789 63.2410 80.0000

PG5 49.9982 49.1559 42.8278 49.6713 45.0850 50.0000

PG8 34.4495 35.0000 26.6675 25.4817 26.5437 33.7980

PG11 25.5862 11.5237 16.0669 22.7374 26.3753 26.2274

PG13 25.1417 39.9856 29.8292 30.5887 26.5988 40.0000

Total fuel cost ($/h) 921.0733 933.8563 876.8233 885.3373 877.4701 959.9527

Total emission gas (ton/h) 0.2226 0.2331 0.2418 0.2421 0.2349 0.2235

Active power losses (MW) 4.1614 4.3772 5.3127 4.9856 4.937 3.7553

ΔV (p.u.) 0.7173 0.7022 0.7041 0.7129 0.7158 0.7198

CPU time (s) 30.8146 32.8041 22.9968 32.8756 31.8754 30.7970

IMOMRFO, improved multi-objective manta-ray foraging optimization; MOGA, multi-objective genetic algorithm; MOPSO, multi-objective particle swarm 
optimization; MSSA, multi-objective salp swarm algorithm; MOTEO, multi-objective thermal exchange optimization.
Bold values in Table X indicate the best value obtained.
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In test case 6, the bi-objective function focused on solving the trad-
eoff between the total fuel cost and the total APL. As can be seen 
from Table XV, the best optimum compromise solution for this test 
case obtained using the proposed MOTEO is: 828.9341 $/h for TFC 
and 6.1188 MW for APL, respectively. Fig. 13 shows the optimal 
Pareto front generated by MOTEO and other techniques. These solu-
tions cover a wider range of the entire Pareto front with uniform dis-
tribution solutions. 

In test case 7, investigate the application of the proposed MOTEO for 
solving the bi-objective functions based on total power losses and 
voltage deviation. Table XVI presents the best optimum compro-
mise solution achieved by using the proposed algorithm compared 
to other techniques. The best compromise solutions obtained by 
MOTEO are 3.7553 MW for APL and 0.71982 p.u. for VD. Fig. 14 shows 
the distribution of the two-dimensional Pareto front solutions of the 
APL and the VD. It can be seen clearly that MOTEO has a higher uni-
form distribution Pareto optimal front compared to other algorithms. 
The results provided by the proposed method (MOTEO) clearly dem-
onstrate the superiority of this algorithm over other algorithms. The 
MOTEO achieved the best compromise solution for all test case-based 
bi-objective functions compared to other algorithms, but it is slightly 
better than the MSSA. Also, it can be shown clearly that MOTEO has 
provided the highest Pareto front with uniform distribution solutions 
and covers a wider range of fitness functions studied. 

• Test case 8: Minimization of three objective functions: Total 
fuel cost, Total emission gas, and active power losses

This test case is focused to validate the particularity of the pro-
posed technique by applying it to simultaneously optimizing three 
objective functions: the TFC, the total power losses, and the TEG. 
Table XVIII summarizes the optimized results for the best compro-
mise solutions. The three-dimensional Pareto fronts achieved by the 
MOTEO are illustrated in Fig. 15.

V. CONCLUSION

In this research paper, a novel meta-heuristic approach, namely the 
TEO algorithm, inspired by physical phenomena, has been success-
fully adapted and applied to improve the solution of multi-objective 
OPF problems. The reported algorithm has been implemented and 
validated on the standard IEEE 30-bus test system to optimize various 
fitness functions such as the TFC, TEG, APL, and DV. The simulation 
results of single-objective-based OPF confirmed that the TEO could 
efficiently achieve competitive solutions compared to other tech-
niques in terms of solution accuracy and execution time. The TEO 
can get the best solutions and provide considerably better values for 
all objective functions. Also, the execution time required by TEO for 
resolving each objective function is slightly faster than other com-
petitive algorithms. Moreover, the MOTEO has been investigated for 
solving combined objective functions-based OPF, and it is also exam-
ined through optimizing tri-objective functions. The obtained results 
clearly indicate that the presented method is able to find a near-
global solution by optimizing the control variables related to the 
standard IEEE 30-bus test system. The Pareto curve provided by solv-
ing combined objective functions allows the decision-maker to make 
a better-informed decision regarding the compromise between the 
conflicting objectives. It is found from all optimization results that the 
TEO has high performance to solve several OPF problems, including 
both single- and multi-objective OPF problems. Due to the competi-
tive aspect of the proposed TEO, in the near future, this technique will 
be adapted and applied to solve the large-scale OPF of the Algerian 
electric test system, considering the integration of various types of 
renewable energy in coordination with the FACTS devices.
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Fig. 15. The three-dimensional Pareto fronts-based MOTEO: test 
case 8.

TABLE XVIII COMPARATIVE BEST COMPROMISE SOLUTION-BASED 
THREE-DIMENSIONAL PARETO FRONTS GENERATED BY THE MOTEO

PGi (MW)
Best Total 
Fuel Cost

Best 
Emission 

Gas

Best Active 
Power 
Losses

Best 
Compromise 

Solution

PG1 176.4878 70.1690 51.9111 113.8162

PG2 48.8374 71.4234 79.9957 69.9688

PG5 21.4310 49.1068 49.9983 35.1111

PG8 21.9482 34.6021 34.9973 33.5876

PG11 12.1969 28.2083 29.9984 24.7972

PG13 12.0000 33.8037 39.9968 12.0000

Total fuel cost ($/h) 802.3607 929.7806 968.5297 844.3766

Emission gas (ton/h) 0.3665 0.21929 0.2216 0.25262

Active power losses 
(MW)

9.5012 3.9134 3.4976 5.8808

ΔV (p.u.) 0.6829 0.7219 0.7237 0.6690

CPU time (s) 16.9921 17.2861 17.2302 37.1027

Bold values in Table X indicate the best value obtained.
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