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ABSTRACT

Alzheimer's disease (AD), a neurological condition connected with aging, causes cognitive deterioration and has a substantial influence on a patient's daily activities. 
One of the most widely used clinical methods for examining how AD affects the brain is the electroencephalogram (EEG). Handcraft calculating descriptive features 
for machine learning algorithms requires time and frequently increases computational complexity. Deep networks provide a practical solution to feature extraction 
compared to handcraft feature extraction. The proposed work employs a time–frequency (TF) representation and a deep feature extraction-based approach to detect 
EEG segments in control subjects (CS) and AD patients. To create EEG segments' TF representations, high-resolution synchrosqueezing transform (SST) and traditional 
short-time Fourier transform (STFT) approaches are utilized. For deep feature extraction, SST and STFT magnitudes are used. The collected features are classified using 
a variety of classifiers to determine the EEG segments of CS and AD patients. In comparison to the SST method, the STFT-based deep feature extraction strategy 
produced improved classification accuracy between 79.56% and 92.96%.
Index Terms—Alzheimer's dementia, electroencephalogram (EEG), synchrosqueezing transform (SST), short-time Fourier transform (STFT), time–frequency analysis, 
deep feature extraction.
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I. INTRODUCTION

Memory loss, difficulty locating words and languages, lack of desire, cognitive slowness, planning 
problems, and changes in conscious awareness levels are all indicators of dementia [1–3]. This 
condition is caused by a number of reasons, some more prevalent than others [1]. Alzheimer’s 
disease (AD) is the most common dementia kind, contributing to around 60%-70% of dementia 
occurrences in those over the age of 65 [4]. The extracellular buildup of the protein fragment 
β-amyloid peptide (Aβ) and the creation of an aberrant version of tau protein within neurons are 
two of the most commonly observed brain abnormalities associated with AD.

This causes nerve cell death, which manifests as small memory issues that escalate to major brain 
dysfunction over time. There is no known cure for AD, and current treatments can only delay the 
illness’s course. Early AD diagnosis allows people to learn about the condition and plan for future 
requirements. Also, symptom-delaying medications can be utilized whenever it is most conve-
nient for the patient. A prompt diagnosis also reduces the overall cost of care. As a result, the only 
way to assure effective treatment is early identification [3–5].

Several brain imaging modalities, such as magnetic resonance imaging, positron emission 
tomography, single-emission computed tomography, and electroencephalogram (EEG), are uti-
lized in computer-aided diagnosis systems to get information on the neurodegenerative process. 
During the last two decades, there has been significant growth in clinical and academic attention 
to EEG as a viable, non-invasive technique sensitive enough for neurological disease diagnosis 
and severity assessment [3, 5]. A loss in EEG complexity, a slowing of the EEG, and disruptions 
in EEG synchronization are some of the most prominent abnormalities in the EEG signals of AD 
patients. This inspired the researchers to create multiresolution analysis and feature extraction 
methods to examine the EEG data of AD patients [6]. In recent decades, several studies have 
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been conducted to automatically diagnose AD utilizing different 
combinations of time, frequency, time–frequency (TF), and nonlin-
ear analysis approaches.

In order to detect EEG signals in dementia patients, several studies 
have examined the total power, absolute power, and relative power 
of different EEG frequency bands, such as delta (≤4 Hz), theta (4–8 
Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (≥30 Hz) [6–10]. 
According to earlier research, AD patients differed from cognitively 
healthy older people by having (i) higher variability and greater 
power in the delta (≤4 Hz) and theta (4–8 Hz) frequency bands and 
(ii) a slowdown in frequency and lower power in the alpha (8–13 Hz) 
frequency bands. Nonlinear features that are complexity-based such 
as entropy: approximate entropy [7, 8, 11, 12], spectral entropy [13], 
sample entropy [11], permutation entropy [11, 12, 14], Tsallis entropy 
[11], and fuzzy entropy [15]; fractal dimension: Higuchi [6, 13, 16] and 
Katz’s [6, 16]; and Lyapunov exponent [17], Lempel–Ziv complex-
ity [18, 19], zero crossing rate, spectral roll-off, spectral centroid [20], 
and Kolmogorov complexity [21] are computed from AD patients 
and control subjects (CS) in many studies. In each of these investiga-
tions, it was underlined that the brain complexity of AD patients was 
lower than that of the control group, and encouraging findings have 
been presented. Different decomposition techniques, including dis-
crete wavelet transform [6, 20, 22–25], continuous wavelet transforms 
(CWTs) [26, 27], empirical mode decomposition (EMD) [22, 28], ensem-
ble EMD [28], and iterative filtering decomposition [29], have also 
been employed for the analysis of EEG data of AD patients in addition 
to computing different features from EEG signals or their sub-bands.

Several of the handcrafted feature extraction approaches listed 
above have been proposed for AD EEG classification utilizing tradi-
tional machine learning (ML) algorithms (i.e., Support Vector Machine 
(SVM), Linear Discriminant Analysis (LDA), k-Nearest Neighbor (kNN), 
and Artificial Neural Networks (ANNs)) [8, 13, 22]. Whereas these 
manual feature extraction and ML-based models provided excellent 
classification results, they are computationally complex and diffi-
cult for physicians to understand. These issues are addressed by the 

suggested mixed deep learning (DL) approaches, which are based 
on EEG time-series data or their frequency domain or TF representa-
tions (TFRs) [30–33].

In this paper, using an advanced DL-based quantitative EEG process-
ing technology, we present a novel method for the challenge of dif-
ferentiating AD from CS.

II. PROPOSED METHOD

This research presents a unique TFR and deep feature extraction-
based technique for detecting EEG segments in AD and CS patients. 
Fig. 1 provides the flowchart for the proposed technique. The pro-
cessing modules are explained in the following:

• N-channel AD and CS EEG recording: A Philips Alice-6 device was 
used to record 19-channel EEG signals from 15 AD patients and 
11 CS.

• Preprocessing: An expert system is used to eliminate the artifacts. 
The EEG recording is then divided into N non-overlapping epochs 
of 5 seconds, and each epoch is examined separately.

• Time–frequency representation of AD/CS EEG segments: Every 
EEG segment is transformed into the joint TF domain using short-
time Fourier transform (STFT) and synchrosqueezing transform 
(SST). Given the nth epoch under study, the corresponding TFR for 
each EEG channel is calculated, yielding a total of 19 TFRs.

• Deep feature extraction: The deep learning model, ResNet50, is 
used for feature extraction, and

• Classification: Three traditional ML techniques are employed 
to discriminate between the EEG epochs of CS and AD patients, 
utilizing the deep feature set. To accomplish 2-way classification 
problems, multi-modal ML classifiers based on Decision Tree (DT), 
SVM, and kNN architectures are created.

A. Electroencephalogram Data Set of Alzheimer’s Dementia
The EEG data from 15 AD patients identified with early-stage AD 
using diagnostic testing and neuroimaging, as well as 11 CS, are 

Fig 1. Proposed deep feature extraction-based classification of AD and CS EEG data is depicted in a flowchart. AD, Alzheimer’s disease; CS, 
control subjects; EEG, electroencephalogram; SST, synchrosqueezing transform; STFT, short-time Fourier transform; TF, time–frequency.
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collected using a Philips Alice-6 device with 19 channels and a sam-
pling frequency of 200 Hz. The data collection was undertaken at the 
Faculty of Medicine’s Neurology Department dementia clinic. For 
EEG signal recording, an international 10–20 electrode system with 
19 channels (Fp1, F7, T3, T5, O1, O2, T6, T4, F8, Fp2, F3, Fz, F4, C3, Cz, 
C4, P3, Pz, and P4) was used. In order to record EEG data, the Clinical 
Research Ethics Committee granted ethical approval. Because the 
relevance of examining distinct brain clusters independently in AD 
is underlined [8], we examined different brain clusters in our study: 
anterior (Fp1, F3, Fz, Fp2, F4), posterior (P3, O1, Pz, P4, O2), central 
(C3, Cz, C4), temporal/left (T3, T5, F7), and temporal/right (T4, T6, F8).

B. Preprocessing
During the preprocessing stage, each EEG data is subjected to a 
Butterworth type II band-pass filter with a pass band of 0.5–40 Hz to 
reduce power line interference (50 Hz) and many other artifacts, such 
as the participants’ muscle movement and eye blinking. The AD and 
CS EEG signals are then divided into non-overlapping windows with 
1000 samples (5 seconds long; a total of 250 EEG segments for AD 
and CS groups for each channel). As a result, 250 × 19 × 15 = 71 250 
EEG segments for AD patients and 250 × 19 × 11 = 52 250 EEG seg-
ments for CS are produced.

C. Time–Frequency Representation of Electroencephalogram 
segments
The classic TFR, the STFT, is efficiently employed in a variety of study 
domains, including signal analysis, digital image processing, voice 
processing, biology, and medicine, as well as EEG signal analysis. By 
moving the time window with some overlap, the signal is separated 
into numerous short-time segments in this approach, and the Fourier 
transforms of these short segments are computed. Windowing is the 
term for this procedure, and the window function “ω(·)” impacts 
the time and frequency resolution of the final TFR. In order to get 
greater temporal resolution, the narrow window function should be 
chosen, whereas a wide window function offers superior frequency 
resolution. The TF resolution is thus influenced by a variety of factors, 
including window type and length, frequency samples, and degree 
of overlap [34, 35]. The magnitude square of the STFT “X(t, ω)” is cal-
culated to produce the so-called “Spectrogram, |X(t, ω)|2”, which is 
frequently used to determine how the signal’s energy is distributed 
over a joint TF plane.
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where X(t) indicates the analyzed signal; X(t, ω) denotes the STFT; 
and ω(t) is the window function.

The synchrosqueezing transform is part of the TF reassignment meth-
ods family, which was originally designed for audio data processing 
utilizing the CWT. Eventually, STFT-based SST (FSST) was introduced 
and utilized in a number of applications for signal analysis. The SST 
approximates the ideal TFR by raising the energy concentration of an 
initial TFR estimated using conventional procedures [36, 37].

The instantaneous frequency (IF) “ω0 (t, ω)” is calculated starting with 
the STFT “X (t, ω)” as follows:
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Synchrosqueezing transform reallocates the STFT coefficients’ 
energy by merging STFT coefficients with the same instantaneous 
frequency information to improve frequency localization. Therefore, 
the FSST-based synchrosqueezing operator 
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In this study, we employ TFRs obtained by FSST and STFT in our 
deep feature extraction-based technique for classifying AD/CS EEG 
segments. Fig. 2 depicts an example TFR of AD and CS generated by 
STFT and SST approaches for a 5-second EEG segment.

D. Deep Feature Extraction
In recent years, hybrid techniques based on deep learning and ML 
have become more prominent in EEG classification approaches. 
These methods include extracting features from the deep learning 
model and feeding them into ML algorithms as an input feature set. 
These hybrid techniques outperform ML and handcrafted-based 
feature extraction approaches in terms of speed, ability to handle 
difficult computational issues, and diagnostic accuracy [4]. In this 
study, to learn features from the TFR of EEG signals and categorize 
them into AD and CS classes using ML techniques, four pretrained 
Convolutional Neural Networks (CNN) models—AlexNet, ResNet18, 
ResNet50, and GoogleNet—are employed [38, 39].

One of the extensively used deep CNN architectures, AlexNet, 
has attracted a lot of interest in the field of artificial intelligence. 
It has 8 layers, 5 of which are convolutional and 3 of which are 
fully connected (FC). In order to extract features, the “fc8” layer 
is employed, and 1000-dimensional deep feature vectors are 
produced. The ResNet-18 architecture trains images quicker 
than others without losing performance. One 7 × 7 convolu-
tional layer, two pool layers, five residual blocks, and one FC 
layer comprise this architecture. To extract features, the “fc1000” 
layer is employed, and 1000-dimensional deep feature vectors 
are generated [40]. ResNet-50 is a 50-layer residual CNN aimed 
at addressing the problem of disappearing gradients during back 
propagation by introducing shortcut links between conventional 
CNN networks. The fc1000 layer is used in the feature extraction 
procedure, and the extracted feature vector is 1000-dimensional 
[38, 39]. GoogleNet is a unique, tiny network that stands out from 
the others. The architecture is built using nine inception modules. 
The inception module is made up of a few tiny convolutional ker-
nels (such as 1 × 1, 3 × 3, and 5 × 5), which help to reduce the 
number of parameters and complexity of the model [41]. The FC 
layer was used to extract the features, and the extracted feature 
vectors are 1000-dimensional.

Different images are used as input to train the CNN network in its 
design. Convolutional layers use filters to convolve input images in 
order to create feature maps. By retaining the high-level features, 
the pooling layer then reduces the size of the image. Finally, the fully 
connected layer is used to generate the results [40]. The proposed 
work feeds the CNN architecture with TF images acquired from AD 
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and CS EEG segments utilizing SST and STFT techniques. The calcu-
lated TFRs are saved as 224 × 224 × 3 RGB color images. The TF image 
dataset is divided into 70% training images [for each channel, 2625 
images for the AD class (70% of 250 × 15 images) and 1925 images 
for the CS class (70% of 250 × 11 images)] and 30% testing images 
[1125 images for the AD class (30% of 250 × 15 images) and 825 
images for the CS class (30% of 250 × 11 images)].

E. Classification
Three separate classifiers, fine DT [8], linear SVM [13, 22, 31, 37], and 
weighted kNN [8, 22, 37], are used to classify the EEG segments of AD 
and CS in the proposed deep feature and TFR-based technique. To 

assess the performance of the suggested strategy, 10-fold cross-val-
idation is used. Several statistical metrics, including accuracy (ACC), 
sensitivity (SEN), precision (PRE), and false discovery rate (FDR), are 
used to evaluate classifier performance [22, 31, 37].

III. EXPERIMENTAL RESULTS AND DISCUSSION

Deep feature extraction is performed utilizing four distinct CNN mod-
els, namely Resnet18, Resnet50, AlexNet, and GoogleNet, after the 
EEG segments’ TFR is obtained using the STFT and SST approaches. 
Three classifiers—DT, SVM, and kNN—are then used to differentiate 
two groups of CS and AD. Classifications are performed for 19 EEG 

Fig 2. A 5-second electroencephalogram segment of (A) control subjects and (D) Alzheimer’s disease, with time–frequency representations of 
(B, E) short-time Fourier transform and (C, F) synchrosqueezing transform.

TABLE I. THE PERFORMANCE EVALUATION RESULTS OF SST AND STFT-BASED TF APPROACHES IN DIFFERENT CNN MODELS AND CLASSIFIERS

DT (%) SVM (%) kNN (%)

Methods CNN Models ACC SEN PRE ACC SEN PRE ACC SEN PRE

ResNet18 78.72 84.29 80.61 86.73 90.25 87.65 86.43 91.32 86.46

STFT ResNet50 80.09 85.80 77.01 86.95 91.55 86.73 87.07 92.35 87.66

AlexNet 77.70 82.33 73.91 84.08 90.20 84.50 84.94 90.68 85.54

GoogleNet 76.93 82.28 74.55 83.97 86.34 85.32 82.10 87.12 82.27

ResNet18 68.67 74.88 72.60 79.12 84.46 80.89 75.25 81.02 77.95

SST ResNet50 72.85 79.23 67.16 81.59 88.15 80.56 80.02 86.39 78.12

AlexNet 65.35 73.88 57.74 75.06 84.61 73.85 70.73 82.05 67.55

GoogleNet 62.34 72.97 53.43 73.42 87.18 74.69 64.89 77.57 58.24

ACC, accuracy; DT, Decision Tree; kNN, k-Nearest Neighbor; PRE, precision; SEN, sensitivity; SST, synchrosqueezing transform; STFT, short-time Fourier transform; SVM, 
Support Vector Machine; TF, time–frequency.
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channels separately, and average performances are calculated for 
each classifier and CNN model.

MATLAB R2022b has been used to implement each experiment. 
According to the experimental results given in Table I, the ResNet50 
model outperformed the other CNN models in all classifiers, obtain-
ing an accuracy of up to 87.07% for the STFT approach and 81.59% 
for the SST approach. When all CNN models are considered, the SVM 
classifier yields the best average classification performances for most 
of the cases of both STFT and SST methods.

In order to show the effectiveness of the TF-based dementia diag-
nosis method, more detailed analyses are conducted utilizing the 
ResNet50 model, considering the results given in Table I.

Table II displays the results of performance evaluation accord-
ing to three classifiers and two separate TFR approaches for 
each brain cluster (anterior, posterior, central, temporal/left, and 
temporal/right). With 89.49% ACC, 94.84% SEN, and 91.75% PRE 
from the temporal/left brain cluster, the STFT approach and kNN 
classifier perform the best in discriminating EEG segments of CS 
and AD patients. Moreover, Fig. 3 depicts the change in the aver-
age sensitivity and false discovery rate obtained by averaging 
the SEN and FDR values of the classifiers based on methods and 
brain clusters. The temporal/left brain region yields the greatest 
average SEN and lowest average FDR values (STFT: 91.25% SEN, 
13.65% FDR; SST: 86.54% SEN, 21.59% FDR) for both STFT and SST 
techniques. The STFT strategy outperformed the SST approach in 
all brain clusters.

TABLE II. RESULTS OF BRAIN CLUSTER-BASED CLASSIFICATION USING SST AND STFT TECHNIQUES FOR THE RESNET50 MODEL

DT (%) SVM (%) kNN (%)

Brain Cluster Method ACC SEN PRE ACC SEN PRE ACC SEN PRE

Anterior STFT 80.94 86.21 80.19 87.77 92.14 88.68 87.10 92.12 88.46

SST 74.98 80.50 71.96 83.87 89.03 83.79 81.46 85.97 79.94

Central STFT 77.64 87.02 72.37 84.79 93.57 85.89 85.13 94.34 87.43

SST 69.81 80.56 60.72 79.52 90.96 80.36 78.15 89.87 77.44

Temporal/Left STFT 81.17 87.38 80.14 87.50 91.53 87.17 89.49 94.84 91.75

SST 74.03 81.13 70.64 81.34 87.88 80.76 81.52 90.61 83.84

Temporal/Right STFT 80.54 82.22 72.08 88.90 90.79 86.18 87.63 90.06 83.96

SST 75.07 77.84 65.75 84.57 87.75 80.15 82.68 86.07 77.31

Posterior STFT 79.81 85.85 77.69 85.93 90.23 85.34 86.43 91.26 86.76

SST 70.51 76.87 64.96 78.92 85.97 77.60 77.22 82.37 73.78

ACC, accuracy; DT, Decision Tree; kNN, k-Nearest Neighbor; PRE, precision; SEN, sensitivity; SST, synchrosqueezing transform; STFT, short-time Fourier transform; SVM, 
Support Vector Machine; TF, time–frequency.

Fig 3. A comparison of the average sensitivity and false discovery rate values produced by STFT and SST methods, as well as the ResNet50 model, 
in accordance with distinct brain clusters. FDR, false discovery rate; SST, synchrosqueezing transform; STFT, short-time Fourier transform.
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Regarding Table II, it is worth noting that the SVM classifier outper-
forms both the SST and STFT techniques for almost all brain clusters. 
Fig. 4(A) shows the ACC values acquired for each channel using the 
SVM classifier in order to select the channels with the best CS/AD 
classification accuracy. The T6 channel provides the best AD/CS EEG 
segment classification accuracy for both methods (STFT: 92.96%, 
SST: 87.15%). Fig. 4(B)–(C) shows the confusion matrices obtained in 
Channel T6 from test pictures of the STFT and SST techniques using 
the SVM classifier. The P3 channel also provides the lowest accuracy 
(STFT: 80.46%, SST: 75.33%) in AD/CS EEG segment classification.

In addition to the above calculations, using the within-subject and 
cross-subject paradigms, classification accuracies are calculated to 
reveal the performance of the proposed approaches. During the 
within-subject paradigm, a subset of the data for each subject is 
utilized to train a model, and the remaining data are used for test-
ing. So during training, the model has a chance to capture features 
that are typical of all subjects. In contrast, in the cross-subject para-
digm, the model is trained using data from other subjects, and 
the model is tested using data from subjects that are not utilized 
in the model’s training [33]. As a result, the classification accuracy 
indicates how well the model can be applied to all types of data. A 
comparison of the proposed model’s classification accuracy for the 
within- and cross-subject paradigms and each brain cluster is shown 
in Fig. 5(A). In the within-subject paradigm, higher average classi-
fication accuracies ≥80 are obtained for all brain clusters; however, 
in the cross-subject paradigm, for all brain clusters, approximately 
10%–15% lower average classification accuracies are obtained for 
each brain cluster. The model can only learn the properties of the 
subjects that are used for training in the cross-subject paradigm, 
as there is no possibility to exchange each subject’s features for 
training and testing across subjects. As a result, the within-subject 
paradigm outperforms the cross-subject paradigm in average test 

accuracy. Fig. 5(B) shows the box plots representing the variation 
in test prediction accuracy of each individual in the cross-subject 
paradigm for each brain region. It is noteworthy that some sub-
jects have high test accuracy, while others have low test accuracy. 
These findings suggest that the huge inter-subject differences in 
brain dynamics make it challenging to estimate the EEG segments 
of unknown subjects.

The results of our proposed model are compared with the most 
recent approaches used to diagnose AD by using EEG data. Table III 
shows some details about the studies and their experimental results. 
These approaches include classical feature engineering and 
ML-based methods [8, 13, 19, 20, 22, 28] as well as DL-based [30–33] 
methods. At the classification step, deep learning methods are clas-
sified into two types depending on the models used: hybrid ML- and 
deep learning-based (proposed methods) and CNN-based [30–33] 
methods. Although the datasets used in all of the publications are 
EEG datasets, the number of AD patients and CS utilized in various 
types of literature varies. While we employ a different number of 
subjects’ datasets than the other literature, our technique obtains 
good performance regardless of whether the baseline literature 
uses more (e.g., [13]) or fewer (e.g., [32]) data. Some of the studies 
that used feature engineering and ML methods [20, 22, 28] provided 
higher accuracy values compared to those of the proposed method. 
However, calculating lots of features is mostly a time-consuming and 
tiring process. Comparing our results with approaches based on DL 
[30–33], it is seen that we have obtained almost similar or slightly 
lower success. Deep learning approaches, on the other hand, require 
a lengthy time to use in the classification stage due to their signifi-
cant iteration time. However, our proposed method includes deep 
feature extraction and a ML-based classification stage. Therefore, the 
model is promising in terms of providing rapid analysis and high AD 
detection success.

Fig 4. Channel-based accuracy values of STFT- and SST-based techniques achieved using the SVM classifier; confusion matrices created by the 
SVM classifier in the T6 channel for assessing the data of the (B) STFT and (C) SST methods. ACC, accuracy; AD, Alzheimer’s disease; CS, control 
subjects; SST, synchrosqueezing transform; STFT, short-time Fourier transform.
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Fig 5. (A) Comparison of classification accuracy of proposed ResNet50-based model for within-subjects and cross-subjects’ paradigm and (B) 
box plots depicting the accuracy patterns for each subject in the cross-subject paradigm for five brain clusters. ACC, accuracy; SST, synchrosqueezing 
transform; STFT, short-time Fourier transform.

TABLE III. PERFORMANCE EVALUATION OF CS VERSUS AD PATIENT EEG SIGNAL CATEGORIZATION STUDIES

Ref Subjects Number Feature Classifier Performance (%)

[8] 14 AD/10 CS Statistical and spectral ML 91.77% ACC

[20] 50 AD 50 CS Wavelet-, spectral-, and complexity-based feature ML 88%–96% ACC

[13] 79 AD/82 CS Higuchi fractal dimension and spectral entropy ML 66%–77% ACC

[22] 35 CS/20 AD EMD and DWT-based features ML 97.64% ACC

[19] 11 AD/11 CS Lempel-Ziv complexity ML 77.27%–78.25% ACC

[28] 15 AD/11 CS EMD, EEMD, and DWT-based Features ML 91.8%–95.2% ACC

[30] 63 AD/23 CS CWT based TFR CNN 85% ACC

[31] 63 AD/63 CS PSD of EEG CNN 81.41%–92.95% ACC

[32] 4 AD/4 CS EEG spectral images CNN 78.33%–95.04% ACC

[33] 39 AD/52 CS Time domain EEG CNN 98.7%–100% ACC

Proposed 15 AD/11 CS STFT- and SST-based TFR CNN + ML 79.56%–92.96% ACC

ACC, accuracy; AD, Alzheimer’s disease; CNN, Convolutional Neural Networks; CWT, continuous wavelet transforms; CS, control subjects; DWT, discrete wavelet 
transform; EEMD, ensemble empirical mode decomposition; EMD, empirical mode decomposition; EEG, electroencephalogram; ML, machine learning; PSD, Power 
Spectral Density; SST, synchrosqueezing transform; STFT, short-time Fourier transform; TFR, time–frequency representation. 
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IV. CONCLUSION

A deep feature extraction strategy based on TFRs of EEG segments 
is described in order to classify AD patients and control participants. 
To generate TFRs of EEG data, a traditional TF approach, STFT, and 
the currently discovered SST method, which ensures superior resolu-
tion in the combined TF domain, are utilized. The resulting TFRs are 
treated as color images and fed into the Resnet-50 CNN architecture. 
The CNN model is used to extract deep features, which are subse-
quently classified using three popular ML algorithms: DT, SVM, and 
kNN. Short-time Fourier transform, which generally produces poor 
TF localization owing to fixed bandwidth analysis, outperformed the 
highly localized SST method in categorizing EEG segments of AD 
patients and control individuals.

Calculating informative features for ML algorithms takes time and 
frequently results in computational costs. A promising alternative to 
manual feature extraction is automatic feature extraction by deep 
networks. Deep learning approaches, on the other hand, require a 
long time in the classification stage due to their lengthy iteration 
time. As a result, this study provides a hybrid technique for classify-
ing AD and CS EEG segments that combine deep TF feature extrac-
tion with standard ML algorithms for classification.
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