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ABSTRACT

In the !eld of science and engineering, signi!cant attention can be observed recently for system identi!cation as a complex optimization problem. As the in!nite 
impulse response (IIR) models can achieve more accurate models of physical plants for real-world applications, they are mostly preferred over !nite impulse response 
models. Despite the latter advantage of the IIR structures, it is not straightforward to minimize the related cost functions as they tend to generate multimodal error 
surfaces. Metaheuristic algorithms have already been shown for their excellent promise to deal with such di"culties as they operate independent of the nature of 
the problem. In this regard, this work aims to demonstrate the excellent promise of a novel developed metaheuristic algorithm named pattern search ameliorated 
arithmetic optimization algorithm. The proposed algorithm integrates the original form of the arithmetic optimization algorithm (for exploration) with the pattern 
search algorithm (for exploitation) such that a better-performing metaheuristic structure is achieved. The excellent ability of the proposed pattern search ameliorated 
arithmetic optimization algorithm is demonstrated against the original arithmetic optimization algorithm by using well-known classical benchmark functions and 
welded beam design problem. A signi!cant improvement is achieved for benchmark functions, and an improvement of up to 25% is obtained for the optimal cost of 
the welded beam design. Then, di#erent IIR model identi!cation problems are considered, and a comparative assessment is performed using di#erent metaheuristic 
optimization techniques: particle swarm optimization algorithm, arti!cial bee colony algorithm, electromagnetism-like optimization algorithm, cuckoo search 
algorithm, and $ower pollination algorithm. The obtained statistical results from di#erent systems con!rm that the pattern search ameliorated arithmetic optimization 
algorithm can achieve better accuracy and robustness in terms of IIR model identi!cation.
Index Terms— Arithmetic optimization algorithm, digital IIR !lters, engineering optimization, pattern search, swarm-based optimization, system identi!cation.
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I. INTRODUCTION

Researchers in the fields of science and engineering have recently paid great attention to one of 
the complex optimization problems known as system identification. The significance of system 
identification can be observed in the fields of parameter estimation [1], power systems [2], robot-
ics [3], signal processing, communication, and control [4]. In system identification, an optimizer is 
used to minimize an error function (between the candidate model’s output and the actual plant’s 
output) for obtaining an optimal model for the unknown plant [5]. It is feasible to achieve an opti-
mal model by effectively reducing the error function. Meanwhile, the sufficiency of the estimated 
model depends on the structure of the adaptive model and the characteristics of the input and 
output data as well as the optimizer.

Infinite impulse response (IIR) models can better represent the systems as they more accu-
rately mimic the physical plants compared to their equivalent finite impulse response models 
[6]. Moreover, fewer parameters are required for IIR models in order to meet the performance 
specifications. Nevertheless, the structures of these models have difficult cost functions to mini-
mize as they tend to generate errors with multimodal surfaces [7]. To deal with such difficulties, 
metaheuristic optimizers have recently been used as promising candidates, as they have been 
demonstrated to achieve better results in terms of accuracy and robustness [7–9]. In this regard, 
several metaheuristic algorithm examples for the IIR system identification problem can be found 
in the literature [10]. For example, a metaheuristic algorithm called average differential evolution 
with local search was proposed for identifying optimal coefficients of unknown IIR systems [11]. 
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By minimizing the error between the unknown system output and 
the adaptive IIR filter output, the proposed algorithm enables rapid 
convergence to global solutions in system identification problems, 
resulting in the precise prediction of filter coefficients on multimodal 
error surfaces. The performance of average differential evolution 
with local search algorithm was demonstrated through compari-
sons with other methods, showing its efficiency in terms of conver-
gence rate and mean square error value. It is feasible to extend the 
examples such as firefly algorithm [4], teacher-learner-based optimi-
zation algorithm [6], whale optimization algorithm [7], selfish herd 
optimization algorithm, [8] and bat algorithm [12] as metaheuristic 
approaches reported for the IIR system identification problem.

This study aims to demonstrate the promise of another recently 
reported metaheuristic algorithm for IIR system identification by 
considering the fact that no optimizers can solve all existing prob-
lems competitively [13]. Therefore, in this work, the promise of the 
arithmetic optimization algorithm (AOA) [14] is comparatively pre-
sented for IIR model identification. The reason for the employment 
of the AOA arises from its demonstrated capability for several other 
applications [15–19]. This study also develops a novel metaheuris-
tic algorithm as an excellent candidate for IIR model identification. 
The developed algorithm is an improved version of the AOA, which 
is constructed via appropriate integration of the pattern search algo-
rithm [20].

In the proposed pattern search ameliorated AOA, the original AOA 
deals with the global search (exploration), while the pattern search 
algorithm takes care of the local search (exploitation). The more 
excellent ability of the proposed pattern search ameliorated AOA is 
demonstrated against the original AOA using 23 well-known clas-
sical benchmark functions. Here, the comparisons with the original 
AOA are evaluated to be sufficient, as the latter one has already been 
demonstrated for its promise comparatively against other available 
recent and well-performing metaheuristic algorithms [14]. Welded 
beam design problem is also adopted to further showcase the per-
formance of the proposed methodology against the competitive 
approaches reported in the literature.

The abilities of the proposed pattern search ameliorated AOA and 
the original form of the AOA are then evaluated for IIR model iden-
tification. In this regard, a second-order plant with a first-order IIR 
model, a second-order plant with a second-order IIR model, and 
a high-order plant with a high-order IIR model are examined in 
order to demonstrate the more excellent promise of the proposed 
algorithm for IIR model identification. In terms of the compari-
sons, the popular optimizers of particle swarm optimization [21], 
artificial bee colony algorithm [22], and the electromagnetism-
like optimization algorithm [23] together with other competitive 
optimizers of cuckoo search algorithm [24] and the flower pollina-
tion algorithm [25] are employed as the reported examples in the 
literature. The obtained results clearly demonstrate the excellent 
structure of the proposed pattern search ameliorated AOA for the 
IIR model identification. The key contributions of this work can be 
highlighted as follows:

• A novel algorithm that integrates the global search capabilities of 
the AOA with the local search capabilities of the pattern search 
algorithm is described.

• The proposed pattern search ameliorated AOA is evaluated 
against benchmark functions and its enhanced ability compared 
to the original AOA.

• Superiority of the proposed approach is further demonstrated 
using welded beam design problem as a real-world engineering 
optimization in order to further showcasing the performance of 
the proposed algorithm.

• The promise of the pattern search ameliorated AOA is presented 
for IIR model identification using various plant and model configu-
rations through rigorous evaluations and comparisons with popu-
lar optimizers.

The remainder of this paper is organized as follows: Section 2 delves 
into the structure of the proposed pattern search ameliorated AOA, 
which is comprised of three key components: the AOA (Section 2.1), 
the pattern search algorithm (Section 2.2), and the proposed pat-
tern search ameliorated AOA (Section 2.3). In Section 3, we conduct 
a thorough performance assessment of the pattern search amelio-
rated AOA against classical benchmark functions and welded beam 
design problem. Section 4 focuses on the application of the algo-
rithm to IIR system identification and filter design. Moving on to 
Section 5, we present the simulation results obtained and engage 
in insightful discussions. Finally, in Section 6, we draw conclusions 
based on our findings and discuss potential future directions for 
research in this field.

II. THE STRUCTURE OF THE PROPOSED PATTERN SEARCH 
AMELIORATED ARITHMETIC OPTIMIZATION ALGORITHM

A. Arithmetic Optimization Algorithm
The AOA uses the arithmetic operators to construct a metaheuristic 
optimizer [14]. It starts with the generation of a matrix that consists 
of a set of random solutions. Then, the exploration and exploitation 
tasks are performed based on the following function:
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In here, MOA(t) represents the current iteration’s function value, tc 
denotes the current iteration, and tmax is the maximum number of 
iterations, whereas Min and Max are respectively the minimum and 
maximum values of the MOA (math optimizer accelerated) function. 
The exploration is performed for r1 > MOA where r1 is a random num-
ber. In this stage, the multiplication (Mult) and division (Div) opera-
tors are used, which are defined in (2).
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Here, the jth position of solution i for current iteration is represented 
by xi,j(tc), the solution of i in the next iteration is denoted by xi(tc + 1), 
the best solution’s jth position (obtained so far) is shown by best (xj), 
● is a small integer number, and µ is a control parameter adjusting 
the search process, whereas UBj and LBj are respectively the upper 
and lower bounds of the jth position. r2 represents another random 
number used for the position update. The Mult operator is used for r2 
> 0.5, otherwise the Div operator is employed. The MOP function is 
calculated as given in (3).
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where α is the exploitation accuracy. For r1 < MOA, the exploitation 
stage takes place where the addition (Add) and subtraction (Sub) 
operators are employed using the following definition: The Add 
operator performs for r3 > 0.5, and the Sub is used for r3 < 0.5, where 
r3 stands for a random number. The flowchart of the AOA is provided 
in Fig. 1.
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B. Pattern Search Algorithm
The pattern search algorithm has a derivative-free mechanism 
that allows to reach better exploitation ability [20]. This algorithm 
starts to perform by generating a point that may or may not be 
close to the solution [26]. Around the generated point, the pat-
tern search algorithm creates a collection of points named mesh, 
which is updated if a new point with a lower objective function 
value in the mesh is found in the next iteration of the algorithm 
[27]. A starting point, X0, for the search is defined by the user, and 
the size of the mesh is considered as 1 in the first iteration. This is 
followed by constructing the pattern vectors as X0 + [0 1], X0 + [1 
0], X0 + [−1 0], and X0 + [0 – 1] to produce the new mesh points. The 
calculation of the objective functions of these points continues 
until a smaller value than X0 is found. The source point is relocated 
in case of finding a smaller value, e.g., f(X1) < f(X0), which is called 
successful poll. The following iteration of the pattern search algo-
rithm (expanding stage) is performed by multiplying the current 

mesh size by 2 after successful poll [28]. That means the following 
new points are created as X1 + 2 × [0 1], X1 + 2 × [1 0], X1 + 2 × [−1 
0] and X1 + 2 × [0 −1]. The latter stage continues until a newer 
point with lower objective function is found; otherwise, the mesh 
size is reduced by multiplying it with 0.5 (reduction factor). This is 
called the contracting stage. The overall process continues until 
the termination condition is met. Fig. 2 illustrates the representa-
tion of the mesh points and the direction in the pattern search 
algorithm.

Fig. 1. Flowchart for arithmetic optimization algorithm.

Fig. 2. Pattern search mesh points and the pattern.
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C. The Proposed Pattern Search Ameliorated Arithmetic 
Optimization Algorithm
The proposed pattern search ameliorated AOA was constructed 
with the aim of reaching better exploration (global search) and 
exploitation (local search) capabilities. In this regard, the original 
structure of AOA was employed for exploration while the pat-
tern search algorithm was integrated for exploitation. The pro-
posed  pattern search ameliorated AOA starts its operation with 
the original form of the AOA initially for the purpose of explora-
tion. Then, the pattern search algorithm is run for the exploita-
tion. However, the pattern search algorithm is called after every 
ten iterations throughout the process and for each call it runs for 
total number of iterations. This latter procedure was determined 
in order to reach a good balance between the exploration and 
exploitation stages. The overall procedure is repeated until the 
termination condition (total number of iterations) is satisfied. 
Fig. 3 provides a detailed flowchart of the proposed pattern 
search ameliorated AOA.

III. PERFORMANCE ASSESSMENT OF THE PATTERN SEARCH 
AMELIORATED ARITHMETIC OPTIMIZATION ALGORITHM

The performance assessment of the constructed pattern search 
ameliorated AOA was initially carried out using the benchmark func-
tions listed in Table I [29]. For the evaluations, the following param-
eters were used for the pattern search and the AOAs.

Pattern Search Algorithm: initial mesh size = 1, mesh expansion fac-
tor = 2, mesh contraction factor = 0.5, all tolerances = 10−6.

Arithmetic Optimization Algorithm: sensitive parameter α = 5, 
control parameter µ = 0.4975, Min = 0.2, Max = 1.

Apart from the above-listed parameters regarding the algorithms, all 
algorithms were run 30 times with a maximum iteration tmax = 500 
and population size N = 30 for the optimization of all test functions.

The obtained results for the used test functions are provided in 
Table II. It is worth noting that the comparisons were only performed 

Fig. 3. Flowchart of proposed pattern search ameliorated arithmetic 
optimization algorithm.

TABLE I. EMPLOYED BENCHMARK FUNCTIONS

ID Name Dimension Search Range Fmin

F1 Sphere 30 [−100, 100] 0

F2 Schwefel 2.2 30 [−10, 10] 0

F3 Schwefel 1.2 30 [−100, 100] 0

F4 Schwefel 2.21 30 [−100, 100] 0

F5 Rosenbrock 30 [−30, 30] 0

F6 Step 30 [−100, 100] 0

F7 Quartic 30 [−1.28, 1.28] 0

F8 Schwefel 30 [−500, 500] −1.2569E+04

F9 Rastrigin 30 [−5.12, 5.12] 0

F10 Ackley 30 [−32, 32] 0

F11 Griewank 30 [−600, 600] 0

F12 Penalized 30 [−50, 50] 0

F13 Penalized2 30 [−50, 50] 0

F14 Foxholes 2 [−65.536, 
65.536]

0.998

F15 Kowalik 4 [−5, 5] 3.0749E−04

F16 Six-hump camel 2 [−5, 5] −1.0316

F17 Branin 2 [−5, 10] × [0, 15] 0.39789

F18 Goldstein-price 2 [−2, 2] 3

F19 Hartman 3 [0, 1] −3.8628

F20 Hartman 6 6 [0, 1] −3.322

F21 Shekel 5 4 [0, 10] −10.1532

F22 Shekel 7 4 [0, 10] −10.4029

F23 Shekel 10 4 [0, 10] −10.5364



Electrica 2024; 24(1): 119-130
Ekinci and Izci. AOA-PS for Optimization and IIR Identi!cation

123

TABLE II. STATISTICAL RESULTS FOR THE USED BENCHARK FUNCTIONS

ID Algorithm Average Standard Deviation Minimum Maximum

F1 Arithmetic optimization algorithm 5.5888E−03 1.3545E−02 7.0990E−62 6.2354E−02

Pattern search ameliorated arithmetic optimization algorithm 7.2395E−26 4.6741E−26 0 1.7879E−25

F2 Arithmetic optimization algorithm 1.0078E−166 0 3.6927E−293 3.0234E−165

Pattern search ameliorated arithmetic optimization algorithm 2.9146E−211 0 1.2603E−304 8.6877E−210

F3 Arithmetic optimization algorithm 9.4005E−01 1.2370E+00 2.2040E−04 4.8821E+00

Pattern search ameliorated arithmetic optimization algorithm 4.3903E−01 5.5961E−01 6.9546E−13 2.4339E+00

F4 Arithmetic optimization algorithm 1.6322E−01 9.0308E−02 4.2518E−03 3.8891E−01

Pattern search ameliorated arithmetic optimization algorithm 2.2118E−14 4.0884E−14 2.5535E−15 2.2027E−13

F5 Arithmetic optimization algorithm 2.8656E+01 3.0276E−01 2.8088E+01 2.9022E+01

Pattern search ameliorated arithmetic optimization algorithm 2.3515E+00 5.3589E−01 9.1267E−01 3.4357E+00

F6 Arithmetic optimization algorithm 3.7921E+00 2.9646E−01 3.1680E+00 4.5528E+00

Pattern search ameliorated arithmetic optimization algorithm 1.1634E−12 3.2163E−13 5.9145E−13 2.1522E−12

F7 Arithmetic optimization algorithm 9.7396E−05 8.9538E−05 7.5463E−06 3.4752E−04

Pattern search ameliorated arithmetic optimization algorithm 3.7979E−05 3.1375E−05 9.5038E−07 1.2071E−04

F8 Arithmetic optimization algorithm −8.1498E+03 5.2109E+02 −9.1468E+03 −6.8502E+03

Pattern searchameliorated arithmetic optimization algorithm −8.1852E+03 5.0727E+02 −9.2920E+03 −7.3668E+03

F9 Arithmetic optimization algorithm 0 0 0 0

Pattern search ameliorated arithmetic optimization algorithm 0 0 0 0

F10 Arithmetic optimization algorithm 8.8818E−16 0 8.8818E−16 8.8818E−16

Pattern search ameliorated arithmetic optimization algorithm 8.8818E−16 0 8.8818E−16 8.8818E−16

F11 Arithmetic optimization algorithm 1.9237E+02 5.5001E+01 3.2363E+01 3.0140E+02

Pattern search ameliorated arithmetic optimization algorithm 9.0186E−15 4.5979E−14 0 2.5235E−13

F12 Arithmetic optimization algorithm 2.8641E−01 4.3314E−02 2.1061E−01 4.1247E−01

Pattern search ameliorated arithmetic optimization algorithm 1.9003E−13 1.5979E−13 1.8251E−14 5.8831E−13

F13 Arithmetic optimization algorithm 2.5472E+00 1.6996E−01 2.1305E+00 2.8367E+00

Pattern search ameliorated arithmetic optimization algorithm 2.0724E−02 4.7140E−02 1.0411E−13 2.0724E−01

F14 Arithmetic optimization algorithm 6.7934E+00 2.5465E+00 1.9920E+00 1.2671E+01

Pattern search ameliorated arithmetic optimization algorithm 2.0458E+00 2.5010E+00 9.9800E−01 1.0763E+01

F15 Arithmetic optimization algorithm 2.0470E−02 2.9965E−02 3.5276E−04 1.0144E−01

Pattern search ameliorated arithmetic optimization algorithm 6.2146E−04 9.4035E−04 3.0749E−04 5.4515E−03

F16 Arithmetic optimization algorithm −1.0316E+00 0 −1.0316E+00 −1.0316E+00

Pattern search ameliorated arithmetic optimization algorithm −1.0316E+00 0 −1.0316E+00 −1.0316E+00

F17 Arithmetic optimization algorithm 4.1299E−01 1.1040E−02 3.9854E−01 4.4280E−01

Pattern search ameliorated arithmetic optimization algorithm 3.9789E−01 0 3.9789E−01 3.9789E−01

F18 Arithmetic optimization algorithm 1.2176E+01 1.5334E+01 3 6.2268E+01

Pattern search ameliorated arithmetic optimization algorithm 3 0 3 3

(Continued)
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against the original AOA, as it has already been demonstrated to be 
more excellent compared to other recent and capable metaheuristic 
algorithms [14]. The presented results in Table II, on the other hand, 
shows more excellent capability of the proposed pattern search 
ameliorated AOA proposed in this study, as it reaches far better or 
optimum results for the used test functions.

For further assessment and performance showcase, the proposed 
pattern search ameliorated AOA was also used to solve a real-world 
engineering optimization problem known as welded beam design 
problem. The main objective of this problem is to find the minimum 
fabrication cost by defining the optimal value of the given variables, 
which are four optimization variables named length of attached part 
of bar (l), thickness of weld (h), the height of the bar (t), and thickness 
of the bar (b). The given variables need to be satisfied with relevant 
constraints. As the objective is to minimize the fabrication cost, the 
cost function can be defined as cost = w1 × (A × l + B × h + C × t + D 
× b), which is subject to the constraints of l > = l_min; l < = l_max; h 
> = h_min; h < = h_max; t > = t_min; t < = t_max; b > = b_min and b 
< = b_max where A, B, C, D are weights associated with the lengths 
and thicknesses, respectively; l_min, l_max are minimum and 
maximum allowable values for l; h_min, h_max are minimum and 
maximum allowable values for h; t_min, t_max are minimum and 

maximum allowable values for t and b_min, b_max are minimum 
and maximum allowable values for b. In this formulation, the cost 
function represents the fabrication cost of the welded beam design, 
considering the lengths and thicknesses of different components. 
The objective is to minimize this cost while satisfying the given con-
straints related to the values of l, h, t, and b within their respective 
allowable ranges.

By utilizing the cost function and metaheuristic algorithms, the 
design space can effectively be explored, promising solutions can be 
identified, and ultimately converge towards an optimal design that 
meets the desired cost criteria while satisfying the specified con-
straints can be achieved. The proposed pattern search ameliorated 
AOA was applied for solving the welded beam design and compared 
with several optimization algorithms published in the literature 
(genetic algorithm [30], harmony search algorithm [31], whale opti-
mization algorithm [32], gravitational search algorithm [33], mul-
tiverse optimizer [33] and the original AOA [14]). Table III provides 
the adopted algorithms for comparisons and the respective optimal 
costs achieved by them. As can be concluded from the presented 
results, the proposed pattern search ameliorated AOA is capable of 
reaching the best optimal cost (highlighted in bold), declaring its 
efficacy for real-world engineering design problems.

ID Algorithm Average Standard Deviation Minimum Maximum

F19 Arithmetic optimization algorithm −3.8511E+00 4.3328E−03 −3.8585E+00 −3.8382E+00

Pattern search ameliorated arithmetic optimization algorithm −3.8628E+00 0 −3.8628E+00 −3.8628E+00

F20 Arithmetic optimization algorithm −3.0158E+00 1.2254E−01 −3.2440E+00 −2.6474E+00

Pattern search ameliorated arithmetic optimization algorithm −3.2943E+00 5.1149E−02 −3.3220E+00 −3.2031E+00

F21 Arithmetic optimization algorithm −3.7069E+00 1.3780E+00 −6.9692E+00 −1.4605E+00

Pattern search ameliorated arithmetic optimization algorithm −8.4786E+00 3.1151E+00 −1.0153E+01 −2.6305E+00

F22 Arithmetic optimization algorithm −3.3648E+00 1.0538E+00 −5.1110E+00 −1.3028E+00

Pattern search ameliorated arithmetic optimization algorithm −8.6984E+00 3.1679E+00 −1.0403E+01 −2.7659E+00

F23 Arithmetic optimization algorithm −4.1793E+00 1.3834E+00 −7.8578E+00 −1.5451E+00

Pattern search ameliorated arithmetic optimization algorithm −1.0021E+01 1.9610E+00 −1.0536e+01 −2.8066E+00

TABLE III. RESULTS OF THE COMPARATIVE ALGORITHMS FOR SOLVING THE WELDED BEAM DESIGN PROBLEM

Algorithm

Optimal Values for Variables

Optimal CostH l t b

Genetic algorithm 0.2489 6.1730 8.1789 0.2533 2.4300

Harmony search algorithm 0.2442 6.2231 8.2915 0.2400 2.3807

Whale optimization algorithm 0.205396 3.484293 9.037426 0.206276 1.730499

Gravitational search algorithm 0.182129 3.856979 10.000 0.202376 1.87995

Multi-verse optimizer 0.205463 3.473193 9.044502 0.205695 1.72645

Arithmetic optimization algorithm 0.194475 2.57092 10.000 0.201827 1.7164

Pattern search ameliorated arithmetic optimization algorithm (proposed) 0.203202 3.300884 9.028726 0.206090 1.699337

TABLE II. STATISTICAL RESULTS FOR THE USED BENCHARK FUNCTIONS (CONTINUED)
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IV. INFINITE IMPULSE RESPONSE SYSTEM IDENTIFICATION 
AND FILTER DESIGN

System identification refers to the representation of an unknown sys-
tem mathematically by considering input and output data. An opti-
mization algorithm is used to minimize an error function (between 
the candidate model’s output and the actual plant’s output) in order 
to obtain an optimal model for the unknown plant. On the other 
hand, fewer model parameters can be used via IIR models to meet 
the performance specifications and produce a more accurate repre-
sentation of physical plants for real-world applications [25]. An arbi-
trary system’s IIR identification model is illustrated in Fig. 4 where 
y(t) and d(t), respectively, represent the output of the IIR filter and 
the unknown plant. On the other hand, x(t) stands for the applied 
input signal, whereas m and n are, respectively, the coefficients of 
the numerator and denominator.

In the light of the information provided in Fig. 4, the following form 
represents the transfer function of an IIR system.
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Here, the pole and zero parameters of the IIR model are denoted by 
ai and bj where i = 1, 2, …, n and j = 0, 1, …, m. The difference equa-
tion form of the transfer function given in (5) can be written as:

y t a y t i b x t j
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where x (t) and y (t) represent the input and the output of the filter, 
respectively. Fig. 5 demonstrates the block diagram of an adaptive 
IIR filter designed via the arithmetic optimization and the proposed 
pattern search ameliorated AOA for the system identification 
purpose.

In here, e(t) represents the error between the model and the actual 
plant as e(t) = d(t) − y(t), which can be used for considering the infi-
nite impulse response model identification problem as a minimiza-
tion problem described by the following function.

f
W

d t y t
t

W

!" # $ " # % " #" #
$
&1

1

2
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In here, W represents the number of samples employed in the simu-
lation. With the adjustment of θ, it is aimed to minimize the f (θ) cost 
function.

V. SIMULATION RESULTS AND DISCUSSIONS

In this work, three experiments were considered. In the first experi-
ment, a second-order plant with a first order IIR model was examined, 

Fig. 4. In!nite impulse response !lter structure.

Fig. 5. Block diagram of adaptive in!nite impulse response !lter 
designed via AOA and AOA-PS algorithms for system identi!cation.
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whereas in the second and third experiments a second-order plant 
with a second order IIR model and a high-order plant with a high-
order model were respectively considered. In this work, the obtained 
results with the original form of the AOA together with the proposed 
pattern search ameliorated AOA were compared with the reported 
works based on particle swarm optimization, artificial bee colony 
algorithm, electromagnetism-like optimization algorithm, cuckoo 
search algorithm, and flower pollination algorithm. In the experi-
ments, the parameters of the algorithm were set as presented in 
Table IV. Besides, for all simulations, input signal (x (t)) is white noise 
sequence (zero mean, variance 0.1) with W = 100. As can be observed 
from the table, the proposed pattern search ameliorated AOA per-
formed with the lower total number of iterations. Nonetheless, it has 
found good solutions, as will be observed from the experimental 
results that are presented in the following subsections, indicating its 
superior performance for versatile complex problems.

A. First Experiment
In the first experiment, it was aimed to identify a second-order plant 
through a first-order IIR model. The transfer functions given in eqs. 
(8) and (9) are used for the unknown plant (HP) and the IIR model (HM) 
for such a case.

H z z
z zP

!
!

! !" # $ !
! %

1
1

1 2
0 05 0 4

1 1 1314 0 25
. .

. .
 (8)

H z b
azM

!
!" # $ !

1
11

 (9)

Table V reports the performance assessment (the best param-
eter  values of a and b, the average value and the standard 
deviation  of f (θ) cost function) results obtained after 50 
executions.

As demonstrated in Table V, the proposed pattern search amelio-
rated AOA achieved the best results for the average and standard 
deviation values compared to the algorithms of the original AOA, 
particle swarm optimization, artificial bee colony algorithm, electro-
magnetism-like optimization algorithm, cuckoo search algorithm, 
and flower pollination algorithm. Therefore, the proposed pattern 
search ameliorated AOA is able to maintain a significant precision 
and robustness due to the lowest average and standard deviation 
values of f (θ) cost function. This can also be observed from the con-
vergence curve provided in Fig. 6.

B. Second Experiment
In the second experiment, it was aimed to identify a second-order 
plant through a second-order IIR model. The transfer functions given 
in eqs. (10) and (11) are used for the unknown plant (HP) and the IIR 
model (HM) for the second experiment.

TABLE IV. PARAMETER SETTINGS OF THE ADOPTED ALGORITHMS FOR COMPARISONS

Algorithm
Total Iteration 

Number
Population 

Size Other Parameters

Pattern search ameliorated arithmetic optimization algorithm 
(proposed)

500 25 α = 5, µ = 0.4975, initial mesh size = 1, mesh expansion 
factor = 2, mesh contraction factor = 0.5, all tolerances = 10−6

Arithmetic optimization algorithm (proposed) 500 25 α = 5, µ = 0.4975

Particle swarm optimization 3000 25 C1 = 2, c2 = 2, weight factor decreases linearly from 0.9 to 0.2

Arti!cial bee colony algorithm 3000 25 limit = 100

Electromagnetism-like optimization algorithm 3000 25 δ = 0.001, LSITER = 4

Cuckoo search algorithm 3000 25 pa = 0.25,

Flower pollination algorithm 3000 25 p = 0.8

TABLE V. FIRST EXPERIMENT’S PERFORMANCE RESULTS

Algorithm

Parameter Statistical Metric

a b Average Value Standard Deviation

Pattern search ameliorated arithmetic optimization algorithm (proposed) 0.9014 −0.3364 9.6212E−03 1.0777E−04

Arithmetic optimization algorithm (proposed) 0.8991 −0.3246 9.8775E−03 1.2584E−04

Particle swarm optimization 0.9125 −0.3012 0.0284 0.0105

Arti!cial bee colony algorithm 0.1420 −0.3525 0.0197 0.0015

Electromagnetism-like optimization algorithm 0.9034 0.3030 0.0165 0.0012

Cuckoo search algorithm 0.9173 −0.2382 0.0101 3.118E−04

Flower pollination algorithm 0.9364 −0.2001 0.0105 5.103E−04

Bold values are signifying the best values.
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Similar to the first experiment, the results for this experiment were 
obtained after 50 executions. The respective numerical values are 
reported in Table VI. The related results show that the original AOA, 
cuckoo search algorithm, and the proposed pattern search amelio-
rated AOA perform better compared to particle swarm optimization, 
artificial bee colony algorithm, electromagnetism-like optimization 
algorithm, and flower pollination algorithm, demonstrating highly 
competitive performance of the proposed pattern search amelio-
rated AOA. This can also be observed from the convergence curve 
provided in Fig. 7.

C. Third Experiment
In the last experiment, it was aimed to identify a superior-order plant 
through a high-order IIR model. The transfer functions given in eqs. 
(12) and (13) are used for the unknown plant (HP) and the IIR model 
(HM) for the last experiment.

H z z z z
z zP

!
! ! !

! !" # $ ! ! %
! ! %

1
2 4 6

2 4
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. . .
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Table VII lists the comparative best parameters obtained and the sta-
tistical metrics for cost function. As seen in the respective table, the 
proposed pattern search ameliorated AOA achieves far better results 
compared to original AOA, particle swarm optimization, artificial bee 
colony algorithm, electromagnetism-like optimization algorithm, 
cuckoo search algorithm, and flower pollination algorithm, dem-
onstrating its significant capability to present better precision and 
robustness for such a higher-order model. This can also be observed 
from the convergence curve provided in Fig. 8.

D. E"ect of Measurement Noise on Performance of the Proposed 
Algorithm
The last assessment of the pattern search ameliorated AOA-based 
IIR system identification is performed to observe the effect of the 
measurement noise on its performance for the first, second, and 

Fig. 6. Convergence curve of the pattern search ameliorated 
arithmetic optimization algorithm for the !rst experiment.

Fig. 7. Convergence curve of the pattern search ameliorated 
arithmetic optimization algorithm for the second experiment.

TABLE VI. SECOND EXPERIMENT’S PERFORMANCE RESULTS

Algorithm

Parameter Statistical Metric

a1 a2 b Average Value Standard Deviation

Pattern search ameliorated arithmetic optimization 
algorithm (proposed)

−1.4000 0.4900 1.0000 0.0000 0.0000

Arithmetic optimization algorithm (proposed) −1.4000 0.4900 1.0000 0.0000 0.0000

Particle swarm optimization −1.4024 0.4925 0.9706 4.0035E−05 1.3970E−05

Arti!cial bee colony algorithm −1.2138 0.6850 0.2736 0.3584 0.1987

Electromagnetism-like optimization algorithm −1.0301 0.4802 1.0091 3.9648E−05 8.7077E−05

Cuckoo search algorithm −1.4000 0.4900 1.0000 0.0000 0.0000

Flower pollination algorithm −1.4000 0.4900 1.0000 4.6246E−32 2.7360E−31

The bold values are signifying the best values.
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third experiments. The measurement noise for the implementation 
is taken as a Gaussian white signal with variance 10−3. Table VIII pro-
vides the statistical results of f(θ) cost function values for the first, 

second, and third experiments (with and without noise). Looking at 
the numerical results of the statistical metrics provided in Table VIII, 
one can observe that there is no significant difference between all 
the systems with and without noise. As the proposed pattern search 
ameliorated AOA is not affected significantly by the measurement 
noise, it is robust against disturbance effects.

VI. CONCLUSION

This paper discusses the construction of a novel pattern search 
ameliorated AOA and presents its promise comparatively in terms 
of IIR-based model identification. The proposed algorithm adopts 
the original AOA for global search and appropriately integrates the 
pattern search algorithm to reach a better local search. The more 
excellent promise of the proposed pattern search ameliorated AOA 
is demonstrated through well-known classical benchmark functions 
by comparatively presenting the statistical results using the original 
AOA. The welded beam design problem is also adopted as a real-
world optimization problem to further demonstrate the greater 
capacity of the proposed algorithm by comparing the performance 
of the proposed approach with the reported ones in the literature. 
In terms of the IIR model, the identification task is considered as an 
optimization problem. Different systems with different ranges, such 
as second-order plant with a first-order IIR model, second-order 
plant with a second-order IIR model, and high-order plant with a 
high-order model, are respectively considered. Then, a comparative 
assessment is performed by using popular and promising meta-
heuristic optimizers of AOA, particle swarm optimization, artificial 
bee colony algorithm, electromagnetism-like optimization algo-
rithm, cuckoo search algorithm, and flower pollination algorithm. 
The statistical results obtained from the assessments confirm the 
excellent ability of the proposed pattern search- ameliorated AOA in 
terms of achieving better accuracy and robustness for the identifica-
tion of the IIR model.

In addition to demonstrating the effectiveness of the proposed 
pattern search ameliorated AOA in the identification of IIR models, 
there are several potential avenues for future work in this area. One 

TABLE VII. THIRD EXPERIMENT’S PERFORMANCE RESULTS

Algorithm

Parameter Statistical Metric

a1 a2 a3 a4 b0 b1 b2 b3 b4

Average 
Value

Standard 
Deviation

Pattern search ameliorated 
arithmetic optimization 
algorithm (proposed)

−0.0033 0.0062 0.0024 −0.8595 0.9991 −0.0183 0.3675 −0.0078 −0.3737 4.4689E−05 9.0969E−07

Arithmetic optimization 
algorithm (proposed)

−0.0326 0.0220 0.0478 −0.8725 0.9945 −0.0417 0.4048 0.0578 −0.3930 2.3952E−04 4.7217E−06

Particle swarm optimization 0.3683 −0.7043 0.2807 0.3818 0.9939 −0.6601 −0.8520 0.2275 −1.4990 5.8843 3.4812

Arti!cial bee colony algorithm −1.1634 −0.6354 −1.5182 0.6923 0.5214 −1.2703 0.3520 1.1816 −1.9411 7.3067 4.3194

Electromagnetism-like 
optimization algorithm

−0.4950 −0.7049 0.5656 −0.2691 1.0335 −0.6670 −0.4682 0.6961 −0.0673 0.0140 0.0064

Cuckoo search algorithm 0.9599 0.0248 0.0368 −0.0002 −0.2377 0.0031 −0.3579 0.0011 −0.5330 6.7515E−04 4.1451E−04

Flower pollination algorithm 0.0328 −0.1059 −0.0243 −0.7619 1.0171 0.0038 0.2374 0.0259 −0.3365 0.0018 0.0020

Bold values are signifying the best values.

TABLE VIII. STATISTICAL RESULTS OF COST FUNCTION VALUES FOR THE 
FIRST, SECOND AND THIRD EXPERIMENTS (WITH AND WITHOUT NOISE)

Test system Metric Without Noise With Noise

First 
experiment

Average 9.6212E−03 9.9799E−03

Standard deviation 1.0777E−04 1.1307E−04

Second 
experiment

Average 0 4.3503E−03

Standard deviation 0 6.2116E−03

Third 
experiment

Average 4.4689E−05 4.6860E−05

Standard deviation 9.0969E−07 9.7955E−07

Fig. 8. Convergence curve of the pattern search ameliorated 
arithmetic optimization algorithm for the third experiment.
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possible direction is to explore the application of the algorithm in 
other complex optimization problems and evaluate its performance 
against existing metaheuristic optimizers. Furthermore, investigat-
ing the algorithm’s scalability and adaptability to handle larger 
and more diverse systems can contribute to its practical applica-
bility. Additionally, incorporating additional enhancements, such 
as hybridization with other optimization techniques or integrat-
ing machine learning approaches, could further improve the algo-
rithm’s performance. Overall, these future research directions have 
the potential to expand the understanding and applicability of the 
pattern search ameliorated AOA in various domains.
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