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ABSTRACT

Indoor user positioning is a crucial problem in modern life. It has wide usage in health, security, smart homes, etc. Global positioning system (GPS) is used outdoors, 
and it does not work e#ectively in indoor areas since many things can degrade GPS positioning accuracy. All solutions for indoor areas aim to provide low-cost and 
high-accuracy positioning. In this study, a low-cost indoor positioning algorithm is developed. The $ngerprint signal map of the building is measured with built-in 
digital sensors in smart devices. The measurements consist of Wi-Fi, bluetooth low energy, and magnetic $eld signals called data fusion. During the positioning phase, 
the proposed model, called improved cosine similarity, uses the cosine similarity and information gain method. Digital magnetometers measure magnetic $elds with 
di#erent approaches. In the proposed method, Kalman $lter is used to reduce noise magnetic $eld signals since this variety can give rise to mistaken positioning. To 
compare the e#ectiveness of the proposed method, it was compared to K-nearest neighbor, support vector machines, linear discriminant analysis, arti$cial neural 
networks, decision trees, N-near neighbor, and binned neighbor algorithm. Based on the experimental data, it was concluded that the proposed architecture achieved 
higher accuracy rates by reducing distortion.
Index Terms—Kalman $lter, multidimensional signal processing, multiple signal classi$cation, sensor data fusion, simultaneous localization
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I. INTRODUCTION

Positioning technologies, such as global positioning system (GPS), are commonly used for out-
door locations, but their accuracy can be affected by various factors. Indoor positioning systems 
(IPS) have been developed as solutions for indoor areas using technologies like Bluetooth, Wi-Fi, 
radiofrequency identification (RFID), ultrasound, ultra-wideband (UWB), and light signals. Each 
signal type has its own advantages and disadvantages, and there is no universal standard for 
IPS. These systems have diverse applications in various fields, such as airports, shopping malls, 
offices, and hospitals, providing benefits like guiding individuals and locating personnel/equip-
ment. With the increasing popularity of location-based applications, the demand for accurate 
indoor positioning is growing. In this study, we developed a new machine learning algorithm-
based positioning system that utilizes device-embedded sensors [Wi-Fi, Bluetooth low energy 
(BLE), magnetometer] to detect users’ positions in indoor areas.

Positioning involves obtaining the geographic location information of a target using technolo-
gies like satellites, ultrasound, and UWB. Global positioning systems are commonly used for 
outdoor positioning, but their accuracy can be affected by factors like satellite geometry, atmo-
spheric conditions, and receiver quality. Global positioning system devices calculate a target’s 
position by measuring the distance from multiple GPS satellites. While GPS-enabled smart-
phones are generally accurate to within 4.9 m in open spaces, their accuracy may decrease 
near buildings, trees, and bridges. For indoor positioning, solutions based on Bluetooth, 
Wi-Fi, RFID, ultrasound, UWB, and light signals have been developed. Transmitter devices are 
installed in indoor spaces to cover the entire area, while receivers search for positions based 
on the received signal. Each signal type has its advantages and disadvantages, and there is no 
one-size-fits-all standard for IPS. Indoor positioning systems have a wide range of applications, 
from directing passengers and customers to the right locations at airports, shopping malls, 
and railway stations to finding or tracking personnel and equipment in offices, trade fairs, and 
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hospitals. With the rise of location-based applications in smart liv-
ing, positioning systems will continue to evolve to provide more 
accurate results.

Indoor positioning techniques have become more important due 
to our growing dependence on smart devices and indoor activities. 
Recent studies have proposed various technologies, including Wi-Fi 
fingerprinting, device-based systems, heterogeneous approaches, 
and visible light communication (VLC)-based systems, each evalu-
ated based on accuracy, complexity, energy efficiency, and cost. 
Researchers aim to enhance the performance and applicability of 
these technologies in diverse indoor environments through analysis 
and evaluation.

He and Chan [1] reviewed Wi-Fi-based indoor positioning technolo-
gies, highlighting Wi-Fi as a promising alternative to GPS. Xiao et al. 
[2] categorized IPS into device-based and device-free approaches. 
Yassin et  al. [3] discussed indoor positioning techniques focusing 
on methodology and concepts, while Jang and Kim [4] introduced 
offline fingerprint-free indoor positioning technologies. Zafari 
et  al. [5] explored user and device positioning techniques, and 
Guo Xiansheng et al. [6] surveyed fusion-based IPS, analyzing their 
characteristics.

The review [7] assessed indoor positioning technologies based on 
VLC, highlighting VLC’s advantages in speed, latency, and security. 
It presented existing VLC-based positioning systems, including 
light-emitting diode and camera-based approaches, evaluating 
their accuracy and complexity. The study identified challenges 
like ambient light interference and proposed solutions. Evaluation 
criteria encompassed accuracy, complexity, reliability, and energy 
efficiency.

Federated filtering is a vital technology for real-time indoor posi-
tioning, utilizing sensor data and machine learning algorithms 
to track individuals accurately by considering their unique char-
acteristics. It offers privacy and security and finds applications in 
wayfinding, security, and facility management. Additionally, a pro-
posed Voxel-Scale-Invariant Feature Transform(SIFT)-based algo-
rithm [8] aims to enhance the efficiency of Light Detection and 
Ranging registration, providing high-precision indoor navigation. 
The method combines three sensors, federated filtering, and mul-
tiple algorithms to achieve improved indoor positioning accuracy 
for mobile robots.

[9] addresses indoor positioning challenges with Global Navigation 
Satellite System by using distributed sensors and a range-azimuth 
sensor. Their method combines primary and secondary data, improv-
ing position estimates with a recursive least squares framework. 
Simulation results align with the Cramer–Rao lower bound.

Fingerprint signal mapping is a two-phase mobile positioning 
technique for indoor environments [10]. In the offline stage, sig-
nal strength measurements from wireless access points (WAPs) are 
recorded at reference points and stored in a database. During the 
online phase, a smart device captures received signal strength (RSS) 
values, which are then used by a processing unit (PU) along with a 
fingerprinting signal map and machine learning techniques to pre-
dict the user’s indoor location. The PU shares the predicted location 
with the target or building administrator.

Data fusion plays a critical role in enhancing IPS by integrating data 
from various sensors, including Wi-Fi, Bluetooth, magnetic field, and 
accelerometers [11, 12]. This approach improves the accuracy and 
robustness of positioning information in complex indoor environ-
ments, overcoming challenges like multipath and interference. Data 
fusion has broad applications, such as mobile robot navigation and 
augmented reality, and has the potential to transform indoor naviga-
tion and interaction.

Accurate positioning is the primary challenge in IPS [13]. Data fusion, 
as defined by the JDL Data Fusion Group, involves associating, corre-
lating, and combining data from various sources to refine position and 
identity estimates [13]. Data fusion is categorized into three groups: 
measurement fusion, feature-level fusion, and decision-level fusion 
[14] (Fig. 1). Measurement fusion directly combines sensor data and 
performs feature extraction, while feature-level fusion converts sen-
sor data into a single feature vector after extraction. Decision-level 
fusion utilizes different decision models for the final decision.

The JDL group categorizes data fusion processing for IPS into five lev-
els: source pre-processing, object refinement, situation assessment, 
impact assessment, and process refinement [12]. In [15], researchers 
use a fusion model that combines radio signals and pedestrian dead 
reckoning (PDR) to reduce positioning errors in an office building 
from 2.25 - 4.75 m to 1.5 m. 

[16] implemented a 2-dimensional PDR system using a smartphone 
and enhanced it with a map-matching algorithm and fusion of the 

Fig. 1. Data fusion classi$cation.



Electrica 2024; 24(1): 218-227
Üstebay et al. Indoor Target Positioning

220

smartphone’s digital barometer data, enabling a transition to a 
3-dimensional PDR system.

[17] proposed a data fusion approach using motion and body activ-
ity information for indoor localization, achieving high accuracy in 
recognizing body activity and varying localization accuracy in differ-
ent test scenarios.

[18] presented a fusion-based indoor positioning algorithm that 
incorporates Bluetooth, Wi-Fi, and RFID signals. Using cosine similar-
ity and the adaptive weighted K-nearest neighbor (KNN) algorithm, 
they achieved improved accuracy compared to single-data-based 
solutions in a test environment with multiple wireless APs, RFID tags, 
and Wi-Fi beacons.

[19] employed decision-level fusion (Fig. 1), utilizing Kalman filtering 
to reduce Wi-Fi signal distortion. They clustered reference positions 
and trained random forest models for each group, which were then 
combined for mobile user localization.

Researchers strive for accurate indoor positioning of mobile users, 
preferring machine learning algorithms that offer high accuracy with 
limited data requirements. In studies such as [20] and [21], cosine 
similarity consistently outperformed other methods when compar-
ing various similarity measurements for indoor positioning. Building 
on this, we propose an improved version of the cosine similarity 
method [22] to enhance the accuracy of indoor positioning models.

In this study, we have developed a new machine learning algorithm-
based positioning system that detects users’ positions in indoor 
areas by collecting signals with device-embedded sensors such as 
Wi-Fi, BLE, and magnetometer. To summarize, our contributions are 
as follows:

• We propose a new machine-learning algorithm to detect users’ 
positions in indoor fields by collecting signals with device-embed-
ded sensors like Wi-Fi, BLE, and magnetometer. We show that this 
algorithm can detect location with an accuracy of 93%.

• We prove that data fusion is more potent than using just one type 
of data. The performances of fusion data are analyzed in terms of 
predicting users’’ location accuracy.

• We improve the cosine similarity method by using the infor-
mation gain (IG) to weigh the impact of each data fusion. 
Our experiments indicate that the improved cosine similarity 
method can detect similarities more accurately than classic 
cosine similarity.

• We evaluate the performance of the proposed architecture using 
experimental data. Also, we use the Kalman filter to reduce dis-
torted measurement. We find that the proposed architecture can 
detect location with an accuracy rate of 93% by reducing distor-
tion, which is higher compared to the other methods.

The following sections of the paper will introduce the proposed 
model in Section II, followed by experimental results and system per-
formance in Section III. We will then analyze the results and conclude 
in Section IV and Section V, respectively.

II. MATERIAL AND METHODS

This section contains comprehensive information about the finger-
printing method, the obtained signal map, and the test environment 
structure. Also, IG, cosine similarity, and Kalman filter methods are 
described. Besides, we detail the proposed model.

A. Database
In this paper, we use the fourth floor of a university building as a test 
environment. The floor plan is shown in Fig. 2. The test environment 
covers an area of 800 m2, and its rooms are formed by using glass 
and concrete walls. Eight WAPs and four beacon devices are placed 
in different locations.

Firstly, reference points are determined in indoor fields. At this refer-
ence point, signal values are captured by using a smart device, and a 
fingerprinting signal map is obtained. The related signal map is used 
to train different machine-learning techniques for IPS. We captured 
RSS using four smart devices listed in Table I.

Received signal strength indicator (RSSI) and dBm are used for signal 
strength measurements and are different units of measurement that 
represent the same thing. While RSSI is a relative index, dBm is an 
absolute number representing power levels in mW. Received signal 
strength indicator is a term used to measure the relative quality of 
a received signal for a client device, but it does not have a definite 
value. Institute of Electrical and Electronics Engineers 802.11 stan-
dard specifies that RSSI can be on a scale from 0 to 255 and that each 
chipset manufacturer can define its own “RSSI_Max” value. In the 
test environment, Wi-Fi and Bluetooth signal measurements were 
obtained in dBm.

Beacons are Bluetooth radio-transmitter devices that operate with 
BLE specifications, have long-lasting battery consumption, and emit 
BLE signals at specific intervals. Each beacon sensor has its own cov-
erage area. We captured signal strength (dBm) and the identification 
number of the device to create the signal map.

The Earth’s magnetic field is a magnetic dipole field with an angular 
area of 11.5 degrees relative to the Earth’s axis of rotation, as if it 
were a bar magnet placed at this angle in the center of the Earth. 

Fig. 2. Test environment &oor plan.

TABLE I MOBILE DEVICE LIST

ID Company/Model Android Version

1 Sony Xperia 6.1

2  Xiaomi Mi 5 Prime 6.1

3 LG G4 6.0

4 LG G3 6.0
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If electromotive force (EMF) is measured via an application from 
built-in digital sensors, X, Y, and Z values can be collected [23]. X rep-
resents northern intensity, Y represents eastern density, and Z repre-
sents vertical density.

The approaches used to measure the magnetic signals of the Earth 
are the Hall effect, giant magnetoresistance magnetometer sensors, 
magnetic tunnel junctions method, anisotropic magneto resistance, 
and Lorentz force sensor [24]. Each approach has its advantages and 
disadvantages. Digital sensors integrated into devices use one of 
these approaches according to brand and model. Therefore, signal 
measurements made at the same point may vary according to the 
approach used in the sensor.

B. Cosine Similarity
Cosine similarity tries to determine the relationship between two 
vectors in terms of the angle they form [25]. If the vectors are the 
same, the angle between them is 0, and if the vectors are different 
from each other, the angle between them becomes 0 [26]. If α and 
β are two n-dimensional vectors, the cosine of the angle between 
them is calculated by Eq. (1).

cosine sim
i

i i
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i_ , . /! " ! " ! "# $ % # $ &
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)

*
+, , ,2 2  (1)

Since cos (0) = 1 and cos (180) = −1, the cosine value close to 1 repre-
sents the similarity of the two vectors.

C. Information Gain
The objective of the information-gaining method [27] is to find 
conditional variables that affect the decision variable in a data set 
consisting of many conditional variables. It is a measure of the use 
of multivariate analysis. An analysis is made according to entropy 
calculation. The information entropy of a random variable is used to 
measure the degree of its impairment. The entropy of class C is cal-
culated as Eq. (2).

E C p c log
c C

p c! " # ! "
$

! "! "% 2  (2)

P(c) is the probability density function for the random variable C. The 
entropy of C conditioned on A is written as E(C|A) and calculated as 
Eq. (3).

E C A a p C A a E C A a
a A

( | ) ( | ) ( | )! ! ! !
"#  (3)

The IG value between the A feature and class C is calculated as Eq. (4). 
The feature with the highest IG value is the most powerful feature of 
the decision variable in the dataset. Also, a feature reduction method 
is used for selecting the best k feature.

IG A E C E CA! " # ! " $ ! "  (4)

D. Kalman Filter
Kalman filter is the most important discovery of the 20th century. 
Although it is named a filter, we use it in linear systems to guess the 
next step. Its recursive structure (re-inputting the outputs into the 
filter) is the only filter that minimizes the estimation error in the exist-
ing filters. Kalman filter has two equations for estimation and correc-
tion [27-29] The estimation equation is shown in Eq. (5).

x Ax Bu wk k k k! " "# #1 1  (5)

The measurement value of a signal (xk) is obtained from the previ-
ous case xk-1. The control signal is named uk, and wk-1 is the noise of 
the previous measurement. A, B, and H indicate general representa-
tions of matrices. These values can be treated as numerical numbers. 
A matrix represents a state transition model, a B matrix represents 
a controlled model, and the H matrix represents the measurement 
model.

Z Hx vk k k! "  (6)

The measurable value of a signal consists of a linear combination of 
the measured values of xk, vk, and wk-1 at Eq. (6).

III. EVALUATION

The constructed fingerprinting signal map is called TestDB, and it 
consists of 1664 signal measurements from seven rooms, which are 
separated from each other through glass or concrete walls. Missing 
values (NaN) are deleted from TestDB. Each vector consists of signals 
shown in Eq. (7), Eq. (8), and Eq. (9). A combination of vectors is pre-
sented in Eq. (10).

Wifi RSS RSSn
! "#$ %&1, ...,  (7)

BLE BLE BLEm
! "#$ %&1, ...,  (8)

EMF X Y Z G! "#$ %&, , ,  (9)

SM Wifi BLE EMF! ! ! !" # #  (10)

Wifi→ represents received Wi-Fi signal strength, BLE→ represents 
received Bluetooth signal strength from 4 beacon devices, and EMF 
is signal values of digital sensors integrated into mobile phones. 
EMF→ values are precise and can easily be affected by the environ-
ment. We get different EMF→ values with two different devices at the 
same reference points under the same conditions. We assume that 
variation is caused by the digital sensor’s measurement approaches. 
SM→ shown in Eq. (10), is a fusion data vector that combines Wifi→, 
BLE→, and EMF→ signals at the same reference point. TestDB, at Eq. 
(11), encompasses 1664 fusion data vector measurements.

TestDB SM SM SM RSS G RSS Gt t t! "# $% ! & &"# $%
' ' '
1 2 1 1! !"!  (11)

The entropy of each feature (Eq. (12)) is calculated to gather the con-
tribution of distinct data to indoor positioning. Entropy values help 
us to find IG, which is broadly used for feature reduction. Entropy is a 
measure of the randomness or disorder of a system. High entropy is 
denotative that a related feature has a low impact on classification, 
or else it means high impact.

E T p log px
i

c

i i! " # $ ! "% * 2  (12)

P = [p1, p2, ... pc] is the probability distribution of the TestDB matrix, 
whose formula is shown in Eq.(13), and it is calculated according to 
class labels (c). Each column of TestDB is subdivided as T1, T2, ... T16 
to calculate the conditional entropy value of each feature. So that 
means each Tx is a feature of TestDB.

E TestDB T T
T

E Tx
i
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x
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IG TestDB T E T E TestDB Tx x x, ( | )! " # ! " $  (14)
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The impact of Tx feature on the classification is called IG, which is 
calculated as shown in Eq. (14). The γ vector [Eq. (15)] stores TestDB’s 
IG for each feature. The γ values range from 0 to 1. 1 indicates that 
the feature has a high contribution to classifying data. Conversely, 0 
means that the feature has a low contribution.

In this study, we adopt the IG method to the cosine similarity. We 
name this new method the improved cosine similarity method (I – 
Cos), which is calculated using Eq. (16).

I Cos
i i i

i i i i
ii

! "# $ % &
& &

, ,
, ,

' (
) ' (

) ( ' (2 2
 (16)

Fig. 3 shows the flow chart of the proposed positioning model. The 
model starts in the offline phase. At that phase, RSS values are cap-
tured at the reference points. We applied the Kalman filter to reduce 
the distortion of EFM signals. The output of that stage is the finger-
print fusion signal map. Target positioning is done at the online 
stage. Target’s smart device captures received signal values. These 
are sent to a positioning server. The positioning server predicts the 
target’s position using the I-Cos similarity method.

A. Results
We divide TesDB into two parts. We use the first part to train the 
model, and the second part is used to test the model. We ensure that 
both parts include all reference point measurements. Non-error rate 
(NER) for the model’s performance metric is used at the bottom.

NER TP
TP FP

!
"

 (17)

Fig. 3. Flow chart of the developed indoor localization system.

Fig. 4. Comparison of accuracy rates obtained from positioning models created with TestDB Wi-Fi signals.
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Here, TP is the number of true predicted samples, and FP is the num-
ber of false predicted ones. In the first step of the study, we want 
to demonstrate the power of the fusion data set. Therefore, TestDB 
signal sources are used separately. In the fusion data set, only Wi-Fi 
signals, BLE signals, and EFM values are used. We trained all groups 
using KNN, binned neighbor algorithm (BNN) [29], N3 [30], N-near 
neighbor, decision trees, support vector machines (SVM), linear 
discriminant analysis (LDA), and cosine similarity methods, respec-
tively. The ratio of the training data set is 80%, and the testing data 
set is 20%. Models are coded by using Python 2.7 programming 
language.

Positioning test results tested by using Wi-Fi signals are shown 
in Fig. 4. According to the different tests, the best accuracies are 
obtained with these parameters: Neighbor number is 4 for KNN, 

BNN alpha value is 2.50, and N3 alpha value is 1.25. Artificial neural 
network (ANN) hidden layer size is chosen as 16. Gaussian kernel 
function in the SVM algorithm and linear kernel function in the LDA 
algorithm are used. The highest accuracy is obtained by using the 
BNN algorithm. The same models are trained using BLE signals, and 
the results are shown in Fig. 5. The highest accuracy is obtained 
with the BNN algorithm (59% NER), and the lowest accuracy value 
is obtained by the cosine similarity method. Positioning models 
by using EFM signal test results are shown in Fig. 6. Similarly, the 
BNN algorithm retains its success with 46.94% NER. Cosine similar-
ity is the worst algorithm by 27% NER. It has been determined that 
relying on a single data source is insufficient when attempting to 
pinpoint a target within an indoor setting. Hence, the indoor posi-
tioning models should be developed using fusion data instead of 
sole data.

Fig. 5. Comparison of accuracy rates obtained from positioning models created with TestDB BLE signals.

Fig. 6. Comparison of accuracy rates obtained from positioning models created with TestDB magnetic $eld signals.
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Similar results are obtained among machine learning algorithms 
independent of the data source. The highest accuracy is obtained 
with the BNN algorithm, and the lowest accuracy is obtained with 
SVM and LDA algorithms. BNN, N3, and KNN algorithms are based on 
Euclidean distance. But BNN and N3 methods need more processing 
time than KNN. We do not recommend it for IPS.

In all three cases, the cosine similarity presents the lowest accuracy 
rates. We aimed to increase the accuracy rate of the cosine similar-
ity method. For this purpose, we have designed a three-step model. 
In the first step, the data fusion technique was selected for indoor 
mapping. Secondly, the Kalman filter is chosen to reduce the noises 
caused by measurement approaches of digital sensors. A and H 
matrices are treated as numerical values, and the values are assigned 
as A = 1 and H = 1. We ignore the B value by assigning a 0 value to it. 
The process noise is set to 1e-5, and the measurement noise is set to 
1e-2. A sample Kalman filtering result is shown in Fig. 7.

In the last step, we boost the cosine similarity method with IG. All 
results obtained are compared in Table II. Thus, a higher accuracy 
rate is obtained when the I-Cos method is applied. The results are 
shown in Fig. 8. Comparative test results are listed in Table II.

Cosine similarity and improved cosine similarity process time (micro-
seconds). Fig. 9 shows the processing time for determining the posi-
tion of the target. The horizontal axis indicates the ratio of training data 
to TestDB. The vertical axis represents the processing time in micro-
seconds to locate a target. In the improved cosine similarity method, 
the gain vector used as the weight causes an increase in process time. 
Table III shows the NER of different positioning models. The test results 

Fig. 7. Magnetic $eld noise reduction with the Kalman $lter.

TABLE II COSINE METHOD RESULTS DEVELOPED WITH TESTDB

Training 
Partition

Cosine 
Similarity I-Cos Similarity

Proposed 
Method

30% 76.469 78.617 82.626

40% 79.165 81.466 85.815

50% 81.639 83.54 88.223

60% 83.416 85.248 89.67

70% 85.521 87.152 90.547

80% 86.171 88.115 91.968

90% 87.865 89.764 93.253

Fig. 8. Accuracy results with cosine similarity, improved cosine similarity, and Kalman $lter-improved cosine similarity.
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show that data fusion provides higher positioning accuracy than a 
single data structure. The cosine similarity method with data fusion 
achieves 87% NER. The lowest accuracy value was obtained with ANN 
by 80%. Artificial neural network needs much more data for the model 
training. Creating a Fingerprinting signal map is a low-cost method 
according to the device, but it requires too much time.

IV. DISCUSSION

The test results show that the proposed method model achieves 
93% accuracy, while cosine similarity achieves 89% accuracy. We 
increased the accuracy of the model by 7%. Both have the same 
complexity. However, extra multiplications caused an increase in 

processing time. Due to this, target positioning is determined later 
than the original method. This delay can be minimized through 
the use of parallel programming techniques, such as OpenMP and 
Cuda. An indoor positioning algorithm has been tackled in [17], 
which fuses Bluetooth, Wi-Fi, and RFID data. In this paper, in addition 
to Wi-Fi and RFID, we used EMF values. In the literature, the cosine 
similarity algorithm is used as equipment dependent [19]. They use 
Kalman filter on Wi-Fi signals. However, we propose a solution for 
indoor positioning by using fusion at the decision level. We prefer 
to use Kalman filter on EMF signals because we don’t want to lose 
the original EMF signal value of the environment because of environ-
mental effects. Additionally, we did not test the proposed method 
with deep learning methods due to the size of our dataset. It can be 
considered the main limitation of the study.

V. CONCLUSION

In this study, a new classification model is proposed for IPS. This 
model is designed as a fusion of different data types. Wi-Fi, BLE, and 
EMF data were applied to the developed I-Cos method, which con-
sisted of a combination of IG and cosine similarity methods. Kalman 
filter is also used to clean noise from digital sensors that measure 
with different approaches in mobile devices. In the test environment 
created for the developed positioning system, the positions of the 
rooms are determined correctly with a 93% accuracy rate. As the sig-
nal map obtained from the test environment grows, the accuracy of 
the developed model increases. As a future study, a more extensive 
dataset is planned to be created to provide more accurate position-
ing on a centimeter basis.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – S.Ü., Z.T., Ş.D.O., M.A.A., A.S.; Design – S.Ü., 
Z.T., Ş.D.O., M.A.A., A.S.; Supervision – S.Ü., M.A.A., A.S.; Funding – S.Ü.; 
Materials  – S.Ü., Z.T.; Data Collection and/or Processing – S.Ü., Z.T.; Analysis 
and/or Interpretation – S.Ü., Z.T.; Literature Review – S.Ü., Ş.D.O.; Writing – S.Ü., 
Ş.D.O.; Critical Review – S.Ü., Ş.D.O.

Declaration of Interests: The authors have no conflict of interest to declare.

Funding: The authors declared that this study has received no financial 
support.

Fig. 9. Cosine similarity and Improved cosine similarity process time (microseconds).

TABLE III COMPARATIVE NER TEST RESULTS OF PROPOSED METHOD AND 
OTHER ML METHODS

Algorithm

Training/Testing Partition

30% 40% 50% 60% 70% 80% 90%

KNN 72 75 77 79 80 82 83

BNN 73 76 77 78 80 81 82

N3 72 74 76 77 79 79 81

ANN 72 74 76 78 78 79 80

DT 77 79 81 83 85 85 86

SVM 77 80 82 83 84 85 86

LDA 68 69 69 69 69 69 70

Cosine similarity 76 79 81 83 85 86 87

I-Cos similarity 78 81 83 85 87 88 89

Proposed method 82 85 88 89 90 91 93

Abbreviations: KNN, K-Nearest Neighbors Algorithm; BNN, Binned Neighbor 
Algorithm; N3, N-Near Neighbor; ANN, Arti$cial Neural Networks; DT, Decision 
Trees; SVM, Support Vector Machines; LDA, Linear Discriminant Analysis. 
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