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ABSTRACT

The need for electricity has increased as the population, electrical appliances, electric cars, and industrialization have grown. Therefore, an accurate short-term 
electricity forecasting is required because it is helpful in day-to-day scheduling activities of utility companies like transmission and generation of electric energy. It 
can make the power grid safe, reduce electricity production costs, and fulfil user needs and economic and environment benefits. A single model may not be able to 
solve the electricity consumption problem because it contains linear and non-linear data. In this study, a two-phase hybrid machine learning model is developed for 
electricity utilisation prediction at a residential level. In the first phase, two algorithms, namely extreme gradient-boosting and linear regression are combined to learn 
the trend, seasonality, randomness, and cyclic components of the data. In the second phase, a voting ensemble model optimized is applied considering the best three 
models from 11 baseline models and weight parameter of the models is optimized using genetic algorithm. The developed model outperformed all models (baseline 
and state-of-the-art) considering four performance parameters over the individual household electric power consumption dataset. The proposed model has given 
Mean Squared Error (MSE) value of 0.025, Room Mean Squared Error (RMSE) value of 0.162, Mean Absolute Error (MAE) value of 0.129, and Mean Absolute Percentage 
Error (MAPE) value of 15.61 on a daily-level dataset. The proposed model has given a 0.159 MSE value, 0.387 RMSE value, 0.283 MAE value, and 25.07 MAPE value on an 
hourly-level dataset. Analysis of variance one-way statistical test is applied to show that results are statistically significant.
Index Terms— Electricity load forecasting, ensemble voting regressor, genetic algorithm, GRU, LSTM
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I. INTRODUCTION

Electricity is today’s world’s lifeline. Almost every modern-day activity depends on electricity. 
Due to the increase in population, electrical appliances, electric vehicles, and industrialization, 
the electricity demand has increased [1]. As per World Energy Outlook 2021, by 2050, the world 
electricity demand will increase by almost 80% [2]. Residential electricity consumption accounts 
for 26.9% of overall electricity consumption [3] and substantially impacts total power usage. The 
total electricity produced over a period should be equal to electricity consumption or electric-
ity wastage due to technical or non-technical losses [4]. If this balance is not maintained for a 
while, the power grid can even collapse or face security issues [5]. Electricity demand forecasting 
can help in deciding how much electricity should be produced in the future. Accurate electricity 
forecasting can help in providing a stable power supply and have environmental benefits. Ten 
thousand megawatts of electricity and 1.6 million dollars can be saved if the error is reduced by 
1% in the prediction model [6].

Electricity consumption forecasting can be performed at four levels: short-term, real-time, 
medium-term, and long-term. Generally, real-time load forecasting is over 1 minute; the short 
term is over 1 hour to 1 week; medium term is over 1 to 10 weeks, and the long term is for 1 to 
20 years. Accurate short-term electricity forecasting is helpful in day-to-day scheduling activities 
of utility companies like transmission and generation of electric energy. It can make the power 
grid safe, reduce electricity production costs, and fulfill user needs and economic benefits [7]. 
Medium-term forecasting is useful in deciding how much fuel needs to be purchased, planning 
maintenance activities, and utility assessment. Long-term forecasting is useful in determining 
strategic planning, how many new power generation houses need to be constructed, and the 
changes required in the supply process. Short-term electricity forecasting is difficult due to 
external factors like holidays, weather, temperature, economy, etc., which play an important 
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role in electricity consumption. Electricity consumption forecasting 
is a multivariate time series problem because power consumption 
depends on multiple variables. The data collected through sensors 
can have missing values, redundancy, uncertainty, etc. [8, 9]. The 
electricity consumption pattern can be decomposed into four com-
ponents: seasonal, residual, observed, and trend factor, as shown 
in Fig. 1. Time series decomposition gives helpful visuals for better 
understanding the difficulty of analyzing and forecasting energy use 
in general.

Due to advancements in technology like IoT and smart meters, 
electricity consumption data can be monitored easily. Data col-
lected through smart meters can be processed using Machine 
Learning (ML) models to predict electricity demand [10, 11]. In 
the current scenario, mainly three types of methods, namely, 
machine learning, statistical, and deep learning, are applied for 
the prediction of electricity consumption. Statistical methods like 
AutoRegressive Integrated Moving Average (ARIMA), Seasonal 
AutoRegressive Integrated Moving Average (SARIMA), exponential 
smoothing, etc. assume a linear relationship between time series 
data, which is not the case in electricity consumption data. These 
models can learn features related to time series but cannot learn 
nonlinear features, and the generalization ability of unseen data 
is not good [12]. Electricity consumption prediction based on 
machine learning models can capture nonlinear features efficiently 
and generalize well to unseen data. Many researchers in the past 
have used machine learning and deep learning models for elec-
tricity consumption tasks. The XGBoost model performed better 
than machine learning and deep learning models in electricity 
consumption prediction tasks [13]. The limitation of the XGBoost 
model is that it cannot extrapolate trend components of electricity 
consumption data. The ensemble model performs better than the 
single regression model [14] because the regression model has to 
perform a local search to minimize the objective function. An indi-
vidual model has a chance of being caught in local minima while 
multiple models have a lower probability of being stuck in local 
minima because each model has different starting points. Voting is 
a superior ensemble strategy for the electricity consumption fore-
casting problem [15].

In this study, we have proposed a two-phase hybrid machine learning 
model. In the first phase, the linear regression and XGBoost models 

are combined, linear regression to learn the trend component and 
the XGBoost model to learn the remaining three components. In the 
second phase, the genetic algorithm optimizes a voting ensemble 
regression model, considering the three models out of 11 baseline 
models, and applies the hybrid model designed in phase one.

The major contributions are as follows:

(i) The dataset is cleaned by replacing missing values with the 
backward direction interpolation method, and outliers are 
detected and removed by the interquartile range method. Min-
max scaler is used to scale the data from 0 to 1, and the data is 
resampled at an hourly and daily level.

(ii) A novel two-phase hybrid model is developed to forecast elec-
tricity utilization at the short-term level in residential buildings. 
At the first level, linear regression and gradient-boosting are 
combined to learn the different components (trend, seasonality, 
randomness, and noise) of the electricity consumption dataset. 
In the second level, the three models from the 11 baseline mod-
els and the hybrid model designed in phase 1 are combined 
using the voting ensemble technique, and the weight hyperpa-
rameter of the models is tuned with the genetic algorithm.

(iii) The proposed hybrid model outperformed 11 baseline models 
(eight machine learning and three deep learning) and exist-
ing models at daily and hourly levels considering performance 
parameters: MAE, RMSE, MSE, and MAPE.

The paper is organized into the following sections: relevant research 
on electricity consumption is presented in section II. The developed 
approach is given in section III. The dataset description, its cleaning, 
experimental setup, evaluation measures, comparison with baseline 
models and state-of-the-art approaches, discussion, and limitations 
are given in section IV. The conclusion of this study and future scope 
are given in section V.

II. RELATED WORK

Many techniques have been developed for electrical energy con-
sumption forecasting in the past. These have been divided into 
mainly two kinds: (i) machine learning-based and (ii) deep learning-
based. These two types of techniques are as follows:

A. Machine Learning Based
Banga, Alisha, et al. [16] have applied 15 models (machine learning 
and classical) to forecast the electricity consumption of household 
appliances at the hourly and daily levels. They found that the stack-
ing ensemble model have outperformed all models. Fumo, Nelson, 
et  al. [17] have applied simple quadratic regression models and 
multiple linear regression for energy consumption prediction of a 
house at the daily and hourly levels. They concluded that the data’s 
time range affects the model’s performance. They have found that 
temperature and solar radiation are important features in evaluat-
ing the model’s efficacy. Vantuch, Tomas, et  al. [18] have applied 
five machine learning models, XGBoost, ANN, SVR, RF, and FNT, to 
forecast electricity load at short-term and long-term levels. They 
extracted features from the dataset using the Pearson correlation 
coefficient, analog ensemble application, and maximal informa-
tion coefficient. They have also considered temperatures outside 
the building as a feature. They have used the grid search technique 
for hyperparameter tuning. They have concluded from the results 
that the XGBoost model is the best-performing model among all 
models applied.

Fig. 1. Different components of electricity consumption parameter 
(global active power).
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B. Deep Learning Models
Kim, Tae-Young, et al. [19] have proposed a hybrid model involving 
Convolutional Neural Networks (CNN) and Long Short Term Memory 
(LSTM) models to predict electricity consumption at the residential 
level. CNN is used to extract features affecting energy consump-
tion. The LSTM model is used to model temporal data with erratic 
trends. They have considered four machine learning (LR, DT, RF, and 
MLP) and four deep learning algorithms (LSTM, GRU, Bi-LSTM, and 
Attention LSTM) as baseline models. Ozcan, Le, Tuong, et  al. [20] 
have proposed a hybrid model involving CNN and Bi-LSTM models 
called EECP-CBL to forecast electricity consumption at the residen-
tial level. They have compared their approach with linear regression, 
LSTM, and CNN-LSTM models. Their model outperformed all other 
models applied in their study. Kim, Jin-Young, et  al. [21] have pro-
posed a model in which energy demand is predicted based on the 
current situation using the autoencoder model. The model consists 
of a projector that defines the system state based on the current situ-
ation and a predictor, which anticipates the energy demand based 
on the defined state. They have explained the results using the 
t-SNE algorithm by visualization of the state. They have compared 
their model with LR, MLP, RF, DT, LSTM, and stacked LSTM. Bu Seok-
Jun et al. [22] have proposed a model involving CNN, LSTM, and a 
multi-head attention mechanism. Multi-headed attention is used to 
extract spatiotemporal features. They have compared their model 
with Logistic Regression (LR), Random Forest (RF), Decision Tree (DT), 
Support Vector Regression (SVR), ARIMA, MLP, Convolutional Neural 
Networks- Long Short Term Memory (CNN-LSTM), CNN, LSTM, and 
approaches reported in the past. They have computed the impact of 
different attention mechanisms on various neural networks. Sajjad, 
Muhammad, et al. [23] have proposed a model involving CNN and 
GRU, called the CNN-GRU model, to forecast electricity consumption 
at the short-term level. They have compared their approach with LR, 
SVR, DT, CNN, LSTM, and CNN-LSTM models. They have considered 
two standard datasets, namely, individual household electric power 
consumption (IHEPC) and American Electric Power (AEP). Their 
approach outperformed all models applied in their study and mod-
els reported in the literature. Khan, Zulfiqar Ahmad, et al. [24] have 
proposed a model involving CNN and Long Short Term Memory 
Autoencoder (LSTM-AE) models called CNN-LSTM-AE to forecast 
electricity consumption in commercial and residential buildings. The 
CNN model extracts the features from the dataset, which are passed 
to the LSTM encoder, producing encoded sequences to the LSTM 
decoder for energy prediction. Zhang, Junfeng, et al. [25] have pro-
posed a hybrid model involving a transformer and a k-means model 
to predict power consumption. They applied the k-means algorithm 
to find a data cluster that contributes more to the predicted value, 
thus improving the performance of the transformer model. They have 
compared their approach with LSTM and k-means models. Ullah, 
Fath U. Min et al. [26] have proposed a hybrid model involving CNN 
and multilayer Bi-LSTM models called Multilayer Bidirectional Long 
Short Term Memory (M-BDLSTM) to forecast electricity consump-
tion at the residential level. They have compared their approach with 
LSTM, BDLSTM, CNN-LSTM, and models reported in the literature 
and found that their approach performed better among all. Marino, 
Daniel L et al. [27] have investigated two neural networks, namely, 
seque nce-t o-seq uence -base d LSTM and standard LSTM, to forecast 
the energy load at the building level. They have concluded from the 
results that the seq2seq-based LSTM model has performed better 
among the two. Mocanu, Elena, et  al. [28] have explored two sto-
chastic models: Conditional Restricted Boltzmann Machine (CRBM) 
and Factored Conditional Restricted Boltzmann Machine (FCRBM). 

They have found that FCRBM model has performed better than SVM, 
CRBM, ANN, and RNN models. Sinha, Ayush, et  al. [29] have pro-
posed a hybrid model, Vector Auto Regre ssor- Convo lutio nal Neural 
Networks-Long Short Term Memory (VACL), which combines VAR, 
CNN, and LSTM models. The VAR model separates the linear patterns 
from the time series data, the CNN model extracts complex features, 
and the LSTM model is used for temporal information. They have 
compared their approach with CNN-LSTM, CNN, MV-KWNN, LSTM, 
MLP, MV-ANN, VAR, and ARIMAX models. To forecast electricity use 
at the short-term level, Phyo, Pyae-Pyae, et  al. [15] examined 17 
machine learning algorithms. They selected the best five performing 
models out of 17 and applied a voting ensemble regressor to predict 
electricity consumption. They compared the voting ensemble with 
the best five ML models and found that the voting ensemble per-
formed better among all models. Januschowski, Tim, et al. [30] have 
demonstrated why gradient-boosting models have outperformed 
deep learning models on various forecasting completions like M5, 
M4, and Kaggle forecasting competitions. The reasons are: a (i) gradi-
ent-boosting is more robust than deep learning models and can be 
used as a black box learner, (ii) tree-based models have built-in func-
tionality to handle real-world data complications like missing values 
or categorical features, (iii) a wide range of loss functions are avail-
able with tree-based models as compared to deep learning models, 
and (iv) tree-based models are faster to train and more interpretable 
as compared to deep learning models. Ribeiro, Andrea Maria NC, 
et  al. [13] have explored three machine learning (SVR, gradient-
boosting, RF), three deep learning (LSTM, GRU, CNN), and one sta-
tistical method (ARIMA) for forecasting electricity consumption of a 
warehouse at a short-term level and very short-term level. They have 
concluded from the results that the gradient-boosting algorithm 
has outperformed all the machine learning, deep learning, and sta-
tistical method applied. Elsayed, Shereen, et al. [31] have compared 
the gradient-boosting regression model with eight deep learning 
models on the time series problem considering nine datasets. They 
have found that the gradient-boosting model outperformed all the 
deep learning models. Abbasi, Raza Abid, et al. [32] have applied a 
gradient-boosting model to forecast load at a short-term level. They 
have found that the gradient-boosting model has performed better 
in terms of computing time and memory resources. Aguilar Madrid 
et al. [33] have applied five machine learning models (KNN, SVR, RF, 
MLR, and gradient-boosting) to forecast load at the short-term level. 
They have concluded that the gradient-boosting algorithm has per-
formed better.

In the past, researchers have applied various machine learning, 
hybrid models, and deep learning models to forecast electricity con-
sumption. It is observed that the XGBoost and ensemble model have 
outperformed all the models. The XGBoost model is more robust, 
takes less training time, and handles real-world data complications 
easily as compared to deep learning models [30]. XGBoost is not 
able to extrapolate trends, so the linear regression model, which can 
extrapolate trends, is combined with the XGBoost model in Phase 
1. The linear regression model is used to learn the trend compo-
nent, and the remaining components (seasonality, cyclic, and ran-
domness) are learned by the XGBoost model. The voting ensemble 
method has proved its efficacy in short-term electricity consumption 
forecasting tasks [15]. But the authors have not applied hyperparam-
eter tuning, which can improve the performance of the model fur-
ther. In the second phase, the genetic algorithm-optimized voting 
ensemble regression model is applied, considering the three models 
out of 11 baseline models and the model designed in phase 1.
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III. PROPOSED APPROACH

The architecture of the developed model is given in Fig. 2. It has two 
phases; in the first phase, a hybrid of linear regression and extreme 
gradient-boosting is developed as shown in Fig. 3; in the second 
phase, the three models are selected, and the genetic algorithm 
optimizes a voting ensemble regression model is applied. The two 
phases of the hybrid model are as follows:

A. Phase 1: Ensemble of Linear Regression with XGBoost Model
Ensemble learning is the process of merging different models to 
generate a new model. The combined model has performed bet-
ter than individual models on electricity consumption forecasting, 
and many more tasks [16, 34]. Time series data contains four com-
ponents namely, trend, seasonality, cycles, and randomness. One 
model can be applied to learn all these components simultane-
ously. Another way is that one model can be applied to learn one 
component and another model for the remaining components. In 
this phase, linear regression and XGBoost models are combined to 
learn the different components of electricity consumption data. 
Linear regression models are also best suited for time series fore-
casting because they require fewer assumptions, are easy to inter-
pret, handle data drift efficiently, and take less time to train. The 
linear regression model is used to learn the relationship between 
the response variable (global active power) and independent vari-
ables, as shown in equation 1.

y va bi i�
�
�
i 1

6

*  (1)

Where y is the response variable, va1 to va6 va to va1 6  are the inde-
pendent variables (given in dataset description Section 4.1), b1 to b6 
are regression coefficients, and a is the intercept. The ordinary least 
squares method is used to find the weights to minimize the sum of 
residuals, as given in equation 2.

min S av pv
i

n

� � � �� �
�
�

1

2
 (2)

Where S is the sum of squared residuals, av is the actual value, and pv 
is the predicted value.

1) XGBoost Model
XGBoost is an improved version of the gradient-boosting decision 
tree. XGBoost uses Taylor expansion to increase the speed of opti-
mization and overcomes the problem of overfitting using the com-
plexity of tree models in regularization terms. The XGBoost model 
supports parallel processing, which is faster to train and deploy. 
XGBoost combines multiple models (also called weak learners) 
sequentially to form a strong learner. As a weak learner, Classification 
and Regression Tree (CART) model is used. A new model is created 
on the errors generated by the previous model and reduces the 
errors. All the models are combined to make the final prediction as 
given in equation 3. The XGBoost model can learn feature interaction 
and nonlinearity in the data efficiently as compared to artificial intel-
ligence models [35]. Whereas F = {f1, f2, f3, f4…fn} is the set of base 
learners, yi is the predicted value of the ith sample, n is the number 
of CART models, and ft(pi) is the predicted value by the tth tree for 
the ith sample.

Fig. 2. Voting ensemble model optimized with genetic algorithm (proposed model).



Electrica 2024; 24(2): 272-283
Banga and Sharma. Residential Electricity Consumption Forecasting

276

y f pi f Fi

t

n

t t� � � �
�
�

1

 (3)

XGBoost has been used by various researchers in the past for elec-
tricity consumption forecasting problems and has produced excel-
lent results.

The electricity consumption dataset consists of four components, 
namely, trend, seasonality, observed, and random factors. The 
linear regression model can extrapolate trends but cannot learn 
interactions, while gradient-boosting can learn interactions and 
non-linearity but cannot extrapolate trends. Therefore, these two 
models are combined to overcome their limitations. Firstly, the linear 
regression model is applied to learn the trend. The target variable 
is transformed to remove the trend learned by the linear regression 
model. A gradient-boosting algorithm (XGBoost) is applied to the 
detrended residuals. The models learn the different components 
separately, and their predictions are combined. The overall predic-
tion is the sum of predictions generated by the XGBoost model and 
linear regression, as shown in Fig. 3.

B. Phase 2: Genetic Algorithm Optimized Voting Ensemble 
Regressor
The weighted average voting regression has shown its efficacy in the 
electricity consumption problem [15]. A voting regressor is a meta-esti-
mator ensemble that fits numerous base regressor models to the entire 
dataset. There are two types of voting ensemble: average voting and 
weighted average voting. In average voting, the weight of every model 
is the same, and the average of all predictions is the final predicted 
value. Different weights are assigned to the models in the weighted 
average method. The final value produced is the weighted average of 
all values predicted by different models, as given in equation 4.

fpv pv w
i

n

i i�
�
�

1

*  (4)

Where fpv, the final is the predicted value, pvi is the predicted value 
by the ith model, and Wi is the weight of the ith model. The best two 
models are selected as base regressors based on performance from 
the 11 baseline models, and applies the hybrid model designed in 
phase 1 is given as input to the weighted average voting regression 

model. The machine learning model’s performance depends upon 
data quality, quantity, and hyperparameter setting. The hyperparam-
eters of a model are tuned using Bayesian optimization, grid search, 
genetic algorithm, and random search. The genetic algorithm has 
performed better and takes less time in hyperparameter settings [36, 
37]. The weight of each base regressor is a hyperparameter and is 
tuned using a genetic algorithm [38]. It is a population-based search 
algorithm. This algorithm begins with the population, which consists 
of possible solutions called chromosomes. The population contains 
the possible weights assigned to different models. The elements in 
the chromosome are called genes.

Fitness Value
Root Mean Square Error

_ =
1

 (5)

The fitness value of the voting ensemble model is evaluated consider-
ing weights {(1,1,1), (1,2,1), (1,1,2), (1,2,2), (2,1,1), (2,2,1), (2,2,2), (2,1,2)}. 
Based on the root mean square value, the fitness value is computed 
for each model as given in equation 5. In the next step called selec-
tion, the models which produced better fitness value are selected as 
parents, which mate and recombine together to produce offspring 
for the next generation. The parents are selected with the tourna-
ment selection technique in this study. In the tournament selection 
technique, k individuals from the population are randomly selected, 
and the best individual out of these is taken as a parent. In the same 
way, the next parent is selected. The next step is a crossover, in which 
two parents are selected to produce offspring using the genetic prop-
erties of the parents. A multipoint crossover strategy is used in which 
alternate segments are swapped to produce the offspring. The next 
step is a mutation, which is a random tweak in the chromosomes to 
produce new individuals in the population. The random resetting 
approach is used for mutation in this study. These steps are repeated 
until 100 iterations are reached or there is no improvement in the 
population. Table I shows the parameters used in the genetic algo-
rithm as well as the optimum weights obtained for each model.

IV. EXPERIMENTAL RESULTS

This section discusses the dataset considered, data cleaning process, 
baseline models considered (machine learning and deep learning), 
experimental setup, evaluation measures, and comparative study 
with baseline and SOA models at daily and hourly levels.

Fig. 3. Phase 1 (hybrid of linear regression and XGBoost model).
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A. Dataset Description and Cleaning
Individual household electric power consumption [39] is consid-
ered in this study. The dataset consists of the electricity consump-
tion of a house located in Sceaux near France at the minute level 
over 47 months (16 December 2006 to 26 November 2010). The 
dataset description is given in Table II. It is observed at the minute 

level, which has been resampled at the hourly and daily levels, rep-
resenting short-term load prediction, as shown in Fig. 4. The dataset 
considered has various abnormalities like missing values and outliers 
that may impact the performance of the models. Missing values are 
filled with the backward direction interpolation method, and outli-
ers are detected using the interquartile range and removed from 
the dataset. Further, a min-max scalar is applied to the data to scale 
it from 0 to 1, as given in equation 6. Whereas Xmin is the minimum 
value, Xmax is the maximum value, and Xscaled is the scaled value.

x
x x

x x
scaled

min

max min
�

�
�

 (6)

B. Baseline Models
The most frequently used deep learning and machine learn-
ing algorithms for electricity consumption prediction [40, 41] 
are selected as baseline models. The machine learning models 
considered are as follows: (i) Linear Regression (ii) Decision Tree 
(‘min _weig ht_fr actio n_lea f’: 0.1, ‘min_samples_leaf’: 2, ‘max_
leaf_nodes’: 40, ‘max_depth’: 5), (iii) Support Vector Regressor 
(kernel = ‘rbf’, degree = 1) (iv) Random Forest Regressor (‘min_
samples_split’: 10, ‘n_estimators’: 400, ‘min_samples_leaf’: 4) (v)
ML P(hid den_l ayer_ sizes  = (150,100,50), activation = ‘relu’,max_
iter = 300,solver = ‘adam ’)(vi )KNN( n_nei ghbor s = 3)(vi i)Bag ging( 
base_ estim ator = RandomForestRegressor, n_estimators = 10, ran-
dom_state = 0) and (viii) Gradient Boosting (min_samples_split = 2, 
n_estimators = 100, learning_rate = 0.1, min_samples_leaf = 1, 
min_w eight _frac tion_ leaf = 0.0, max_depth = 3). The deep learn-
ing models considered are as follows: (i) CNN (2 layers of Conv1D 
with kernel_size = 2, filter = 64, activation = relu, maxpooling1D, 
dropout = 0.5, pool_size = 2) (ii) LSTM (number of units = 100, drop-
out = 0.2, loss = mse, optimizer = Adam) and (iii) GRU (number of 
units = 100, dropout = 0.2, loss = mse, optimizer = Adam). The grid 

TABLE I. GENETIC ALGORITHM PARAMETERS AND OPTIMIZED WEIGHT 
VALUE OOBTAINED

Parameter Value

Population size 8

Mutation rate 0.25

Tournament size 5

Crossover rate 0.25

Maximum number of generations 100

Optimized weight of models at the hourly level are (1, 2, 2),and at the daily level 
are (1, 1, 2).

TABLE II. METADATA ABOUT THE DATASET USED

Name Duration Attributes

IHEPC 
dataset

December 16, 2006 to 
November 26, 2010 
(around four years). Per-
minute observation - total 
2 075 259 measurements

Date, time, voltage (volt), sub 
metering 1, global intensity (Ampere), 
sub metering 3, global reactive 
power (kilowatt), global active power 
(kilowatt), sub metering 2

IHEPC, individual household electric power consumption.

Fig. 4. Electricity consumption data at hourly and daily resolution.
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search strategy is used to tune the hyperparameters of these mod-
els and optimized parameters are presented.

C. Experimental Setup and Results Analysis
The experiments were performed on Google Colab with the fol-
lowing configuration: central processing unit (CPU) (Intel(R) 
Xeon(R) CPU @ 2.20GHz) and 13 GB RAM. The models were imple-
mented using the Python language (version 3.6.9), Niapy (version 
2.0.0rc18), sklearn (version 1.0.2), Numpy, Seaborn, Keras (V2 2.4), 
and Tensorflow (version 2.8.0) libraries. The dataset was sampled 
at a minute level and then resampled at an hourly and daily level. 
The dataset was recorded over four years, with the first three years 
of data used for training and for testing remaining one year of data 
is used. The four metrics, namely, root mean square error, mean 
squared error, mean absolute error, and mean absolute percentage 
error, as given in equations 7 to 10, were used to evaluate the mod-
els. These four metrics are the most commonly used measures for 
electricity load forecasting [40].
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Where N is the sample count, fv is the predicted value, and av is the 
actual value.

1) Results Analysis on Hourly Level Dataset
To validate the effectiveness and robustness of the proposed model, 
experiments considering 11 baseline models were conducted on 
hourly level data. The results of machine learning, deep learning, 
and state-of-the-art models are given in Table III. It is observed from 
the results that our approach (genetic algorithm optimizes a voting 
ensemble regressor) has outperformed all the baseline models and 
models reported in the literature with an MSE value of 0.159, RMSE 
value of 0.387, MAE value of 0.283, and MAPE value of 25.07. In the vot-
ing ensemble, the three best-performing models (XGboost, Bagging, 
and phase 1 model) are taken into consideration as shown in Fig. 5. The 
XGboost model has given an MSE value of 0.173, RMSE value of 0.416, 
MAE value of 0.311, and MAPE value of 47.01. The bagging (with the 
random forest as the base estimator) has given an MSE value of 0.177, 
RMSE value of 0.421, MAE value of 0.315, and MAPE value of 48.65. The 
model designed in phase 1 (linear regression + XGboost) has given an 
MSE value of 0.166, an RMSE value of 0.403, MAE value of 0.285, and 
MAPE value of 44.71. The weight parameter of these three models is 
optimized using a genetic algorithm. The decision tree algorithm has 
performed poorly among all the models with an MSE value of 0.583, 
RMSE value of 0.764, MAE value of 0.540, and MAPE value of 91.48.

2) Results Analysis on Daily Level Dataset
The results of deep learning, machine learning, existing models, 
and the developed method on the daily level dataset are given in 

Table IV. It is observed from the results that our approach has out-
performed all the baseline models and models reported in the lit-
erature with an MSE value of 0.025, an RMSE value of 0.162, an MAE 
value of 0.129, and an MAPE value of 15.61. In the voting ensemble 
model, three best performing models namely, the phase 1 model 
(combination of XGboost, and linear regression), XGBoost, and lin-
ear regression are considered as shown in Fig. 6. The weight param-
eters of these three models are optimized with a genetic algorithm. 
XGboost has given an MSE value of 0.032, RMSE value of 0.182, MAE 
value of 0.146, and MAPE value of 17.48. The linear regression model 
has given an MSE value of 0.035, RMSE value of 0.186, MAE value of 
0.148, and MAPE value of 18.36. The hybrid of linear regression and 
XGboost has improved the performance with an MSE value of 0.028, 

TABLE III. COMPARISON OF DEEP LEARNING, MACHINE LEARNING, 
EXISTING MODELS, AND THE DEVELOPED APPROACH AT THE HOURLY LEVEL 

Models MSE RMSE MAE MAPE

Machine Learning Models

Support vector regressor 0.298 0.546 0.454 98.81

Random forest regressor 0.270 0.520 0.413 80.68

Linear regression 0.221 0.470 0.366 49.86

Decision tree 0.583 0.764 0.540 91.48

MLP 0.231 0.481 0.379 74.37

K-NN 0.236 0.486 0.345 49.88

XGBoost 0.173 0.416 0.311 47.01

Bagging (RF) 0.177 0.421 0.315 48.65

Linear regression + XGBoost 0.166 0.403 0.285 44.71

Deep Learning Models

CNN 0.345 0.587 0.511 91.86

LSTM 0.182 0.427 0.335 48.36

GRU 0.182 0.426 0.333 54.15

Comparison with Existing Models

Kim, Tae-Young et al. [19] 0.3549 0.5957 0.3317 32.83

Le, Tuong, et al. [20] 0.298 0.546 0.392 50.09

Kim, Jin-Young et al. [21] 0.384 - 0.3953 -

Bu Seok-Jun et al. [22] 0.262 - - -

Sajjad, Muhammad et al. [23] 0.22 0.47 0.33 -

Khan, Zulfiqar Ahmad et al. [24] 0.19 0.31 0.47 0.76

Zhang, Junfeng, et al. [25] - 0.74 - -

Ullah, Fath U. Min et al. [26] 0.3193 0.565 0.3469 0.291

Marino, Daniel L et al. [27] - 0.625 - -

Mocanu, Elena et al. [28] - 0.663 - -

Sinha, Ayush, et al. [29] 0.210 0.458 0.317 -

Our Work 0.159 0.387 0.283 25.07
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RMSE value of 0.176, MAE value of 0.139, and MAPE value of 16.69. 
The decision tree algorithm has performed poorly among all with 
an MSE value of 0.102, RMSE value of 0.319, MAE value of 0.238, and 
MAPE value of 28.06.

XGBoost model has performed better among the baseline models 
considered, and the decision tree model performed poorly among 
all the baseline models on both datasets (hourly and daily). The 
XGBoost model has given better performance because it computes 
second-order gradients to find out the gradient direction and uses L1 
and L2 regularization approaches to avoid overfitting. The decision 

tree model has given poor performance because it divides the data 
into smaller subsets without considering the correlation between 
features. The decision tree model is sensitive to small changes in 
data, as this is the case in our dataset in which electricity consump-
tion data keeps changing with the season, holidays, and weather.

The proposed approach has performed better than all the baseline 
and state-of-the-art models considering datasets at the hourly and 
daily levels. So, the developed model can be recommended in the 
intelligent electricity management system to forecast electricity 
consumption.

Analysis of variance one-way test: This test is used to check 
whether the results produced are statistically significant or not. The 
null hypothesis is that models have not performed statistically sig-
nificantly, and the alternative hypothesis is that models performed 
statistically significantly. Analysis of variance test gives P-value and 
F-statistics as an output. If the P-value obtained is less than α (signifi-
cance level, considered 0.05 in this study), then the null hypothesis 
is rejected [42]. This test is applied considering four performance 
parameters, namely MAPE, MSE, RMSE, and MAE, using the statsmo-
dels python library. The P-values obtained corresponding to these 
four performance parameters are 0.0397, 0.0245, 0.0326, and 0.0309, 
as given in Table V, which is less than 0.05. Hence, the null hypothesis 
is rejected, and we can conclude that the machine learning, deep 
learning, existing approaches, and proposed models performed sta-
tistically significant.

D. Discussion
The developed hybrid model was compared with existing mod-
els on the same dataset at an hourly and daily level as given in 
Tables III and IV respectively. The proposed method results were 
compared with references [19-29] at the hourly level on the same 
dataset. The proposed model has achieved the best values in terms 
of MSE (0.159), MAE (0.283), and MAPE (25.07) which is around 3%, 
5%, and 7% better respectively than existing approaches. The pro-
posed approach results at the daily level were compared with ref-
erences [19, 20, and 22] and achieved the best values in terms of 
MSE (0.025), RMSE (0.162), MAE (0.129), and MAPE (15.61) which is 
4%, 9%, 6%, and 3% better than existing approaches. The authors 
[19-29] have applied deep learning models to forecast electricity 
consumption, but gradient boosting model has outperformed 
deep learning model in the forecasting problem [30]. It is observed 
from the results that the XGBoost model, which is tree-based, has 
outperformed all the baseline deep learning and machine learning 
models applied to both the datasets. XGBoost is not able to extrap-
olate trends and learn interactions and non-linearity in the data. 
Linear regression can extrapolate trends. So, these two models 
are combined, and the results showed that the ensemble of linear 

Fig. 5. Hourly level voting ensemble technique.

TABLE IV. COMPARISON OF DEEP LEARNING, MACHINE LEARNING, 
EXISTING MODELS, AND THE DEVELOPED APPROACH AT THE DAILY LEVEL

Models MSE RMSE MAE MAPE

Machine Learning Models

Support vector regressor 0.046 0.215 0.170 21.81

Random forest regressor 0.041 0.202 0.157 18.66

Linear regression 0.035 0.186 0.148 18.36

Decision tree 0.102 0.319 0.238 28.06

Multilayer Perceptron (MLP) 0.042 0.206 0.157 19.88

Bagging (RF) 0.038 0.195 0.151 18.15

Exteme Gradient Boosting 0.032 0.182 0.146 17.48

K-Nearest Neighbors (K-NN) 0.053 0.230 0.181 21.10

Linear Regression +XGBoost 0.028 0.176 0.139 16.69

Deep Learning Models

Convolutional Neural Networks (CNN) 0.082 0.287 0.228 26.65

Long Short Term Memory (LSTM) 0.043 0.207 0.161 17.92

Gated Recurrent Unit (GRU) 0.040 0.201 0.157 18.02

Comparison with Existing Models

Kim, Tae-Young et al. [19] 0.1037 0.3221 0.2569 31.83

Le, Tuong, et al. [20] 0.065 0.255 0.191 19.15

Bu Seok-Jun et al. [22] 0.0969 - - -

Our Work 0.025 0.162 0.129 15.61

Fig. 6. Daily level voting ensemble technique.
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regression and gradient boosting decreases the error of electric-
ity consumption forecasting on both hourly and daily datasets. The 
major outcome is that the combination of linear regression and 
XGBoost has performed better than baseline machine learning and 
deep learning models. Another outcome is that voting ensemble 

regression further decreases the error of electricity consump-
tion forecasting, and hyperparameter tuning further decreases 
the forecasting error. The decision tree algorithm has performed 
poorly among all because it cannot extrapolate the trend compo-
nent which is present in the dataset considered. Figs. 7 and 8 show 

TABLE V. ANALYSIS OF VARIANCE TEST (ONE-WAY) RESULTS

Source DF Sum_sq Mean_sq F PR (>F)

Considering MAPE (Hourly Level Data)

Models 3.0 4197.948424 1399.316141 3.709069 0.039788

Residual 13.0 4904.494600 377.268815 NaN NaN

Considering MSE (Daily Level Data)

Models 3.0 0.005938 0.001979 4.371318 0.024579

Residual 13.0 0.005886 0.000453 NaN NaN

Considering RMSE (Daily Level Data)

Models 3.0 0.020132 0.006711 3.975868 0.032639

Residual 13.0 0.021942 0.001688 NaN NaN

Considering MAE (Daily Level Data)

Models 3.0 0.011795 0.003932 4.050784 0.030904

Residual 13.0 0.012618 0.000971 NaN NaN

Fig. 7. Actual vs. predicted values at the hourly level on the test dataset.

Fig. 8. Actual vs. predicted values at the daily level on the test dataset.
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the difference between the actual value and the anticipated value 
by the proposed model at the hourly and daily test datasets. It is 
observed that the proposed model prediction followed the real 
value pattern.

F. Limitations

(i) Meteorological information is not considered in this study, 
which also plays an important role in electricity consumption in 
residential buildings.

(ii) In this study, electricity consumption forecasting is done only 
at an hourly and daily level. The electricity consumption predic-
tion at monthly and yearly levels can help utility companies plan 
how much infrastructure needs to be expanded (new power 
generation houses are required), strategic planning, and modifi-
cations in the supply system.

V. CONCLUSION

In this study, we discussed the significance of predicting electricity 
consumption and developed an efficient hybrid model to address 
it. Existing methods were not able to handle linearity and non-
linearity in the dataset. Our model is capable of learning linearity 
and non-linearity in electricity consumption dataset. An individual 
model has a chance of being caught in local minima while multiple 
models have a lower probability of being stuck in local minima 
because each model has different starting points. Therefore, we 
have also combined three best models from two different catego-
ries (machine learning and deep learning) using the voting ensem-
ble technique. The efficacy of the proposed model is evaluated on 
the IHEPC dataset, publicly available on the University of California 
Irvine (UCI) machine learning repository. First, the data is pre-pro-
cessed by removing outliers, filling in missing values, and scaling in 
the range of zero to one. Furthermore, the two-phase hybrid model 
is applied to predict electricity consumption at the residential level. 
The linear regression model is combined with the gradient descent 
model in the first phase. The voting ensemble model is applied in 
the second level, considering the best three models out of 11 and 
the hybrid model designed in phase 1. The weight hyperparam-
eter of each model is tuned using the genetic algorithm. The pro-
posed model is compared with eight machine learning, three deep 
learning, and state-of-the-art models. The results showed that 
the hybrid model proposed in phase 1 performed better among 
all machine and deep learning models applied. The second-level 
hybrid model further improved the performance, and hyperparam-
eter tuning also improved the performance further. The decision 
tree algorithm has given the worst performance among all models. 
In the future, electricity forecasting can be done at the medium-
term and long-term levels. A hybrid of gradient boosting and other 
models from deep learning, such as transformers, can be applied 
to forecast electricity consumption. The features from different 
domains like statistical, temporal, and spectral can be combined 
to predict future electricity consumption. Transformer models 
(LogTrans, Pyraformer, etc.) can be applied to forecast electricity 
consumption.
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