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ABSTRACT

In this study, a novel method called the Continuous–Discrete Student Psychology-Based Optimization (CD-SPBO) is introduced. The technique is designed to address 
the simultaneous allocation of renewable distributed generators (DGs) and distribution static compensators (D-STATCOMs). A novel multi-objective function is formed 
by combining indices concerning the active power loss, voltage profile, voltage stability and cost consisting of investment, penalty for violation of environmental 
limits, and energy loss, which are combined through analytic hierarchical process. The CD-SPBO algorithm is used for solving the multi-objective allocation problem 
for non-dispatchable solar PV-DGs, dispatchable biomass DGs, D-STATCOMs, and their combinations. The superiority of the CD-SPBO algorithm was both numerically 
and statistically established by comparing its results with other state of the art methods such as Gorilla Troop Optimizer, Artificial Humming Bird Optimizer, and Harris 
Hawk Optimizer for simultaneous allocation of one, two, and three pairs of DGs and D-STATCOMs on 33-bus and 118-bus test systems. Further, the simulation findings 
involving seven distinct planning scenarios for the allocation of DGs and D-STATCOMs supported the CD-SPBO algorithm's effective execution for simultaneous 
optimal allocation of dispatchable DGs, non-dispatchable DGs, and D-STATCOMS. The suitability of different planning scenarios for improving the overall performance 
of the distribution system are analyzed in detail. The research insights may prove beneficial for network planners in determining the best combination of devices to 
meet their needs.
Index Terms—Discrete–student psychology-based optimization algorithm, distributed generators, distribution static compensators (D-STATCOMs), power distribution 
network
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I. INTRODUCTION

Distribution utilities (DUs) are currently confronted with the challenge of meeting soaring energy 
demand arising from the installation of huge industrial loads and many battery charging loads 
for adopting e-mobility. Therefore, efficient and economic grid management without sacrificing 
the quality and security of power supply to end users is a major concern for the DUs. With the 
allocation of active devices like distributed generators (DGs) or distribution flexible transmission 
(D-FACTS) devices, the distribution system is evolving to be an active power distribution network 
(APDN). Distributed generators are small-scale power generating units, and distribution static 
compensators (D-STATCOM) are the D-FACTS devices tailor-made for the distribution level, that 
can act as the sources of alternate active and reactive power sources. Distributed generators may 
be powered by solar, wind, tidal, biomass, and other sources. Among these renewable energy 
technologies, solar energy is the most popular and widely used due to its wide range of applica-
tions, including solar pumps, kitchen applications, Electric Vehicle charging stations, and lighting 
[1], and its ability to meet demand in remote and grid-connected locations [2]. However, power 
output from the renewable DG is highly susceptible to meteorological conditions. In this regard, 
biomass-based DGs (BM-DG) are being preferred as they can be dispatchable, have low invest-
ment cost, and are portable [3]. Distribution static compensators offers better operational flex-
ibility in terms of continually variable reactive power support, reduced power quality concerns, 
extended lifespan, but is highly sophisticated and costlier. Distributed generators, on the other 
hand, offer numerous benefits to the DUs, including reduced real power loss, improved volt-
age profile, increased voltage stability margin, and reduced transmission burden. Therefore, it is 
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essential to determine the optimal assignment of these devices so as 
to provide the necessary technical benefits to the DUs at an afford-
able investment cost [4].

Several studies have been carried out to select the optimal capacity 
and position of these active devices individually as well as concur-
rently to improve the performance of the APDN [1,5]. An equilibrium 
optimization algorithm-based BM-DG allocation is presented in [6] 
considering four different loading scenarios with a goal to maximize 
DUs’ benefit in terms of active power loss (APL) reduction and curb-
ing pollutant gas emission. An artificial hummingbird optimization 
(AHO) is suggested in [7] to mitigate the issues of APL and voltage 
deviation (VD) by optimally placing BM-DGs. A gravitational search 
algorithm with improvisation is applied to optimally allocate thin 
film monocrystalline PV-DGs with the objective of reducing various 
costs [8]. In another approach, APL reduction is achieved by opti-
mally allocating PV-DGs using a new student psychology-based 
optimization (SPBO) algorithm in [9]. The allocation of renewable 
DGs such as PV-DGs and wind turbine DGs is discussed in [10] consid-
ering the uncertainty in the DG power generation and variations in 
load demand using AHO. The authors in [11] proposed an improved 
bacterial foraging algorithm to improve the performance of the 
DN by optimally allocating D-STATCOMs. The simultaneous sizing 
of DGs and D-STATCOMs using different metaheuristic approaches 
such as modified flower pollination algorithm [12], cuckoo search 
algorithm [13], whale optimization algorithm [14], and a combina-
tion of lightning search and simplex methods [15] are proposed 
where the potential bus locations for DG and D-STATCOMs are first 
selected using sensitivity-based approaches. Recently, researchers 
have proposed new metaheuristic methods, both with and without 
improvisations, to effectively allocate exclusive DGs [16-19], exclu-
sive D-STATCOMs [20, 21], simultaneous DGs and shunt capacitors 
(SCs) [22-24], simultaneous DGs and D-STATCOMs [25], as well as 
combinations of DGs, SCs, static var compensators, and D-STATCOMs 
to enhance the performance of the DN.

The simultaneous location and sizing of both DGs and D-STATCOMs 
(optimal allocation DGs and D-STATCOMs (OADD)), using a multiob-
jective formulation, presents a challenging engineering optimiza-
tion problem that can be efficiently addressed using metaheuristic 
methodologies. While metaheuristic techniques possess flexibility 
and adaptability, they frequently necessitate the adjustment of spe-
cific control parameters. The improper parameter settings resulted in 
being trapped in local optima and a reduced pace of convergence. 
On the other hand, the SPBO algorithm [26], which is a newly intro-
duced metaheuristic approach, has the ability to efficiently find the 
best possible solutions at a faster rate without the need for any con-
trol parameters, except for the initial population size and the maxi-
mum number of function evaluations [27]. Therefore, the authors 
of this study utilized the SPBO method with a continuous discrete 
formulation to tackle the issue of allocating simultaneous DGs and 
D-STATCOMs.

Table I presents a summary of newly proposed approaches for 
optimal planning of DN that involve the allocation of DGs and 
D-STATCOMs. The studies [6, 9, 16, 19, 20, 28] defined the allocation 
problem as a single objective, with a focus on either technical perfor-
mance [9,16] or economic factors [6, 19, 20, 28]. The allocation prob-
lems are also portrayed as a multiobjective formulation, where many 
technical elements are combined using predetermined weights. It 
is noteworthy that in the majority of multiobjective formulations, 

with the exception of [18], many objectives are merged using prede-
termined weights, which are frequently chosen based on intuition. 
Since weights have a significant impact on achieving the best pos-
sible outcomes, they must be set carefully. The literature analysis also 
indicates that the placement of DGs or D-STATCOMs is frequently 
determined in advance utilizing sensitivity techniques, which may 
not result in the most effective option. The insufficient treatment of 
both continuous and discrete formulations in addressing continuous 
decision variables (device capacity) and discrete decision variables 
(device placement) is also evident from the literature review. Hence, 
in light of the above discussion the major contributions of the work 
are outlined below.

(1) The successful implementation of the CD-SPBO algorithm for 
solving the simultaneous multiobjective optimal allocation of 
PV DGs, BM DGs, and D-STATCOMs.

(2) The superiority of the CD-SPBO algorithm both numerically and 
statistically is established by comparing its results with other 
state-of-the-art methods such as gorilla troop optimizer, AHO 
and Harris hawk optimizer for the simultaneous allocation of 
one, two, and three pairs of DGs and D-STATCOMs on a 33-bus 
and 118-bus test systems.

(3) The multiobjective formulation consists of index of active 
power loss, the index of overall VD (OVD), the index of minimum 
voltage stability value, and the index of system annual cost with 
analytic hierarchical process (AHP)-based optimized weights.

(4) The selection of the suitable combination of PV DGs, BM DGs 
with D-STATCOMs considering the above proposed indices, 
neglecting the load variations, is analyzed first.

(5) Finally, the performance of the APDN due to load volatility is 
assessed in the presence of optimally allocated PV DGs and BM 
DGs with D-STATCOMs.

II. PROBLEM FORMULATION

Fig. 1 shows a part of an APDN with DGs and D-STATCOM connected 
to different buses.

A. Active Power Loss Index
The reduction in APL results in financial savings for the utilities, as 
well as it can improve the reliability of the system. From Fig. 1, APL of 
the APDN can be computed using (1)

P I j R jloss m

j

nbus

m� � � �
�
� 2

1

( )  (1)

where Im and Rm are the feeder current and resistance, respectively, 
and nbus is the total number of buses of the APDN. The APL index 
(fAPL) is formulated as the ratio of the APL of the APDN with devices 
(Ploss

device
) to the APL of APDN (Ploss

base
) in the base case.

f
P

P
APL

loss

loss

device

base=  (2)

B. Overall Bus Voltage Deviation Index
Voltage fluctuations are a common phenomenon for long radial 
feeders and intermittent power injection by renewable DGs. The 
voltage fluctuates in the distribution buses. For sensitive loads, it is 
essential to control the voltage of the APDN within regulatory limits. 
Hence, the OVD of the APDN is calculated using (3).
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TABLE I. SUMMARY OF RECENTLY PROPOSED METHODS FOR OPTIMAL PLANNING OF THE DISTRIBUTION NETWORK

Ref. Year Methods

Objectives

AHP CD Devices Salient FeaturesRPL VD VSI Cost

[7] 2021 EA x x x √ x x Biomass DGs Optimal allocation of varying numbers of biomass DGs is achieved using EA 
to maximize the utility benefit and reduce the capital cost of DGs

[10] 2021 SPBO √ x x x x x PV DGs SPBO algorithm is implemented to solve allocation of PV DGs aiming to 
minimize RPL.

[17] 2022 IWHO √ x x x x x DGs IWHO is considered for optimally integrating DGs to improve system reliability. 
IWHO shows improved balance between exploration and exploitation phase 
which is essential for solving complex optimization problem

[18] 2022 MOPSO √ √ √ x x x DGs Proposed MOPSO integrated with MATPOWER to optimally assign DGs for 
improvement of various technical performance of the distribution grid.

[19] 2023 mFBI √ √ √ √ √ x PV DG and WT 
DG

mFBI is proposed to decide the optimal allocation of DGs with a goal of 
improving both technical and economic factors. AHP is introduced to 
tackle the multicriteria decision making.

[20] 2023 ISSO x x x √ x x PV DG and WT 
DG

Cost towards power loss and reliability is optimized using ISSO for deciding 
the optimal allocation of renewable DGs along with network 
reconfiguration.

[12] 2022 IBFA √ √ √ x x x D-STATCOM The performance of the practical Quha feeder is improved by optimally 
assigning D-STATCOM using IBFA. The results obtained by IBFA are 
compared against BFA.

[21] 2022 CD-CSA x x x √ x √ D-STATCOM Optimal size and location of the D-STATCOMs are determined by a 
continuous discrete codification integrated with the sine cosine algorithm 
with an objective to reduce annual operative cost.

[22] 2023 SMICM x x x √ x x D-STATCOM Annual installation and operating cost of the 33-bus, 69- bus, and 85-bus 
test systems are minimized by optimally assigning grid connected 
D-STATCOMs.

[13] 2018 mFP √ √ √ x x x PV DGs, NR and 
D-STATCOMs

The optimal sizing of DGs and D-STATCOMs are accomplished by mFP 
algorithm at strategic locations determined using voltage stability index.

[14] 2018 CSA √ √ x x x x DGs and 
D-STATCOMs

Location of DGs and D-STATCOMs is first determined using sensitivity 
approaches followed by optimal sizing using CSA.

[15] 2020 WOA √ x x √ x x DGs and 
D-STATCOMs

Simultaneous optimal capacities of DGs and D-STATCOMs are computed to 
minimize loss and operating cost. Loss sensitivity factor is used to locate 
the placements of devices.

[23] 2022 BES √ √ √ x x x DGs, SC, 
D-STATCOM, 
SVC

The performance of the 33-bus and 118- bus systems is improved through 
optimal allocation of DGs and different shunt reactive compensators like 
D-STATCOM, SVC, and shunt capacitor. BES is implemented to decide the 
location and sizes of the devices.

[24] 2023 IGJO √ √ √ x x x Type-I and 
Type-III DGs, SC

IGJO is proposed to optimally allocate DGs and capacitors at 
predetermined locations as obtained by a sensitivity approach to enhance 
the performance of the distribution system.

[25] 2023 LTCO √ √ √ x x x DGs and SC Sensitivity indices are used to predetermine the potential buses for DG and SC 
injections. LTCO is proposed for the distribution network planning in presence 
of DGs and SCs considering different voltage dependent load models.

[26] 2023 MGSA-EE √ √ x x x x DGs and SC Optimal allocation of DGs and SCs is solved using MGSA-EE to minimize 
power loss and voltage deviation.

[27] 2023 DMO √ √ x x x x DGs and 
D-STATCOMs

DMO is proposed to optimally allocate DGs and D-STATCOMs to enhance 
the technical performance of the distribution network where the locations 
of DG and SC are predetermined using a sensitivity approach.

AHP, analytic hierarchical process; BES, bald eagle search; CD-CSA, continuous–discrete sine cosine algorithm; CSA, cuckoo search algorithm; DMO, dwarf mongoose 
optimization; D-STATCOM, distribution static compensators; EA, equilibrium algorithm; IBFA, improved bacterial foraging search algorithm; IGJO, improved golden jackal 
optimization; ISSO improved salp swarm optimization; IWHO, improved wild horse optimization; LTCO, Lichtenberg and thermal exchange optimization; MGSA-EE, 
modified gravitational search with expert experience; mFBI, modified forensic based investigation; NR, network reconfiguration; RPL, real power loss; SC, shunt 
capacitor; SMICM, stochastic mixed-integer convex model; SPBO, student psychology-based optimization; SVC, static voltage compensator; VSI, voltage stability index. 
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t

nbus
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1

 (3)

where Vt and Vs are the voltage magnitudes of tth bus and substation 
bus, respectively. To assess the impact of the allocation of the devices 
on the OVD of the APDN, the OVD index (fOVD) is defined in (4).

f
OVD
OVD

OVD

device

ba= se  (4)

where OVDdevice and OVDbase are the VD of the APDN with and without 
installation of devices respectively.

C. Critical Voltage Stability Index
Large reactive power demands caused by the addition of nonlinear 
loads can jeopardize the stability of the APDN. The voltage stability 
index (VSI) is used to assess the stability of the DN, which is com-
puted using Equation (5).

VSI t V P X Q R P R Qt t
eff

m t
eff

m t
eff

m t
e( )� � � � � ��� �� � � �� � � �1 4 4

4
1 1

2
1 1

fff
m tX V��� ��

2
 

(5)

where Xm is the reactance of the feeder; Pteff+1 and Qt
eff
+1 are the effec-

tive real and reactive power injection at bus (t+1) as shown in Fig. 1.

The bus having minimum VSI is designated as the critical bus, and 
the corresponding VSI value is labeled as critical VSI (CVSI) which is 
computed using (6).

CVSI VSI t t nbus� � � �min( ( )) , ,1 1 2 3 1  (6)

The factor of critical VSI (fCVSI) is formulated in (7) to assess the impact 
of device allocations on the stability of the APDN.

f
CVSI
CVSI

CVSI

devics

base=
1
1
/
/

 (7)

where CVSIdevics and CVSIbase are respectively the CVSI with and with-
out allocation of devices.

D. System Annual Cost index
The DUs purchase power from the upstream grid and generate rev-
enue by selling it directly to the consumer. Assuming the power 

purchased by the DUs is generated by burning of fossil fuels, it incurs 
additional penalty cost towards emission of greenhouse gases. 
Hence, when no devices are put in the APDN, the annual cost of DU 
(ACbase) includes the annual cost of power purchased by DU (PCsub

base) 
and emission penalty cost (ECsub

base) for resulting emissions as demon-
strated in (8, 9,10).

AC PC ECbase
sub
base

sub
base� �  (8)

PC k P k Qsub
base

sub
real

sub
base

sub
reac

sub
base� � � � �8760  (9)

EC E k Psub
base

sub em
sub

sub
base� � � �8760  (10)

where ksub
real  and ksub

reac are the cost coefficients in USD/kW and USD/
kVAr, respectively; Psubbase and Qsub

base are the substation real and reac-
tive power; Esub is the emission caused by the substation; and ksub

em  
is the emission cost coefficient of the substation. The factor 8760 
accounts for the total number of hours per year.

However, when new devices (DGs or D-STATCOMs) are added, the 
DU must share the capital cost as well as the operation and mainte-
nance costs of the equipment (Cdevice), in addition to the power pur-
chase cost (PCdevice) and emission cost (ECdevice) for power drawl from 
the grid as outlined in (11, 12, 13, 14).

AC C PC ECdevice device device device� � �  (11)

PC k P k Qdevice
sub
real

sub
device

sub
reac

sub
device� � � � �8760  (12)

EC E k P E k Pdevice
sub
em em

sub
device

DG
em em

sub
device� � � � � � � �8760 87760  (13)

C
IC
LS

OMdevice
device

device
device� �  (14)

where Psub
device and Qsub

device  are the substation real and reactive 
power in presence of DGs and D-STATCOMs; kdg

em  is the emission 
cost coefficient of the substation; E DG  is the emission caused by 
biomass DG; ICdevice, OMdeviceand LSdevice are the installation cost, 
operation and maintenance cost, and life span of the devices 
respectively.

Undoubtedly, the inclusion of the devices reduces the cost towards 
energy purchase and emissions, resulting in a net annual cost reduc-
tion as compared to the base case which can be assessed by the sys-
tem annual cost index (fSAC) as defined in (15).

Fig. 1. A part of APDN with DGs and D-STATCOM.
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f
AC
AC

SAC

device

base=  (15)

E. Formulation of Multi-Objective Function
To determine the optimal allocation of the devices, the multi-objec-
tive function (MOF) consisting of the above techno-economic indi-
ces is formulated as expressed in (16).

f w f w f w f w fAPL ovd cvsi SAC� � � �min( ).1 2 3 4  (16)

The MOF combines the four indices using weighting factors (w1, w2, 

w3, and w4) which play a decisive role in the final optimal solution. In 
this work, these weighting factors are judiciously selected using the 
AHP [29].

F. Constraints
The following constraints were considered while optimizing the 
MOF:

1) Power Balance Constraint
The net real and reactive power available at the substation, including 
power import from the upstream grid and that supplied by DGs and 
D-STATCOMs, must be balanced by the net real and reactive demand 
of the APDN, including losses as expressed in (17–18).

P P P Pslack DG j

j

ndg

l t loss

t

nbus

� � �
� �
� �, ,

1 1

 (17)

Q Q Q Qslack DSTATCOM j

j

ndstat

l t loss

t

nbus

� � �
� �
� �, ,

1 1

 (18)

where PDG and QDSTATCOM are the sizes of DG and D-STATCOM, respec-
tively; ndg and ndstat are the number of DGs and D-STATCOMs to be 
connected to the APDN, respectively.

2) Bus Voltage Constraint
The bus voltage is regulated using the following constraint to ensure 
the voltage at all buses stays within the regulatory limits of 0.95 p.u. 
to 1.05 p.u.

0 95 1 05. .< <Vt   (19)

3) Device Capacity Constraints
The total sizes of DGs and D-STATCOMs must be lower than the total 
real and reactive power demand of the APDN, which are ensured by 
implementing the following capacity constraints.

Q QDSTATCOM j

j

ndstat

l t

t

nbus

, ,

� �
� ��

1 1

 (20)

P PDG j

j

ndg

l t

t

nbus

, ,

� �
� ��

1 1

 (21)

III. OPTIMIZATION ALGORITHM

In this work, a new SPBO algorithm with continuous discrete codi-
fication is proposed to solve the simultaneous allocation of DGs 
and D-STATCOMs. In SPBOA, the psychology of students to retain 
or become the top scorer of the class resembles the optimization 

process. Similar to other metaheuristic approaches, SPBOA also 
begins with an initial population (termed as class) which consists of 
a set of student performances (search agent) in different subjects 
(decision variables). The initial population is then iteratively evolved, 
governed by the performance improvement of students belonging 
to aforementioned groups, in order to reach the global optima. Since 
the locations of devices are discrete variables, a Euclidian norm-
based codification is adopted to discretize the location variables 
in each iteration before the fitness evaluation. The detailed steps 
for implementation of the proposed continuous–discrete student 
psychology-based optimization algorithm (CD-SPBOA) for solving 
simultaneous OADD are described below.

A. Generation of Initial Population
The initial population is constructed using (22).

P

p p p
p p p

p p p

D

D

N N ND

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

11 12 1

21 22 2

1 2

K

K

M M O M

K

 (22)

where D and N denote the number of decision variables and 
population size of the optimization problem, respectively. In this 
article, each row of the population, P, contains the sizes (sizedevice,1 … 
sizedevice, n) and locations (locdevice,1 … locdevice, n) of the devices as 
per (23).

P size size loc loci device device n device device� , , ,, ..., , , ...,1 1 ,,n�� ��  (23)

The sizes of the devices are modeled as continuous variables, 
whereas the locations are modeled as discrete variables. Therefore, 
each component of the initial population is generated randomly to 
distribute over the entire search space of the optimization problem 
using (24–25).

size size rand size sizedevice j, min max min( )� � �  (24)

loc loc rand loc locdevice j, min max min( )� � �  (25)

where sizemax and sizemin are the maximum and minimum capaci-
ties of the devices and locmax and locmin are the maximum and mini-
mum allowable positions of the devices respectively. To discretize 
the locations, the Euclidian norm-based, nearest vortex approach 
is employed. The discrete variables are usually expressed as sets of 
ordered pairs, which constitutes a hypercube as expressed in (26).

loc loc loc loc jdevice j
H

device j
L

device j
H

device j, , , ,, | ,� � � � �¢ 1,, ,...,2 n� �  (26)

Where loc device j
H

,  and loc device j
L

,  are respectively the upper and the 
lower range of the jth variable in the hypercube loc device j

H
, . The floor 

and ceiling functions as described in (2728) are then used to describe 
the upper and the lower limits in the hypercube.

loc loc loc locdevice j
H

j j device j, ,max |� � �� ��¢  (27)

loc loc loc locdevice j
L

j j device j, ,min |� � �� ��¢  (28)

where ¢+ is the set of integers. Now, the discrete variable is com-
puted using (34).
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loc

loc if loc loc

, ,

, ,,

�
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(29)

B. Evolution of the Population
In recognition of the various ways in which students may enhance 
their performance, the entire class is randomly divided into four 
groups, taking into account the distinct psychological characteristics 
of each student. The first group consists of the top-performing stu-
dent (typically the student with the highest score in the evaluation). 
The second group comprises students who excel in specific subjects. 
The third group consists of students who put in average effort to 
improve their performance. The fourth group consists of students 
who have no structured approach to enhance their performance and 
are below average. The performance improvement of students from 
the aforementioned groups is described below.

1) Performance improvement of the best student
A best student secures the highest total mark by performing better 
than any student in the class as demonstrated in (30)

p p rand p pbest j
k

best j
k

best j
k

rj
k

, , ,( )� � � � � � �� �1 1 �  (30)

For the jth subject, the marks secured by the best student and any 
other student of the class are denoted as pbest j

k
,  and prj

k  respectively. 
rand is a random number in the range [0,1]. a can be 1 or 2.

2) Performance improvement of good students
Few good students will be influenced by the best student and there-
fore try to perform similarly to the best student as modeled in (31). 
Others, on the other hand, may try to perform better than the aver-
age students of the class and at the same time try to chase the per-
formance of the best student as modeled in (32).

p p rand p pi j
k

best j
k

best j
k

i j
k

, , , ,
� � � � �� �1  (31)

p p rand p p rand p pi j
k

i j
k

best j
k

i j
k

i j
k

avg
k

, , , , ,
� � � � �� � � � �� �1  (32)

where pi j
k
,  corresponds to the marks obtained by the ith student in 

the jth subject and pavg
k denotes the average marks of the class for 

the jth subject

3) Performance improvement of average students
Since efforts made by students are contingent upon their interest in 
the respective subjects, they offer an average try to the subject that 
has little interest for them. While they may put additional effort into 
other subjects to boost their overall grades. So, an average student 
may improve his performance as per equation (33)

p p rand p pi j
k

i j
k

avg
k

i j
k

, , ,
� � � � �� �1  (33)

4) Performance improvement of below average students
Below average students. attempt to enliven their overall score arbi-
trarily. Their performance improvement can be signified as:

p p rand p pi j
k

j j j,
min max min� � � � �� ��

�
�
�

1  (34)

where p j
max and p j

min corresponds to the legitimate range of maxi-
mum and minimum score against the subject under consideration.

IV. METHODOLOGY

In this work, the CD-SPBOA is proposed to determine the simulta-
neous OADD considering a MOF to improve the performance of 
the APDN. To select the economically viable appropriate combina-
tions of devices for facilitating the performance improvement of the 
APDN, seven different planning schemes (PS) excluding the base 
case are generated.

PS-I: APDN with three optimally allocated D-STATCOMs

PS-II: APDN with three optimally allocated PV-DGs

PS-III: APDN with three optimally allocated BM-DGs

PS-IV: APDN with simultaneous optimally allocated three 
D-STATCOMs and three PV-DGs

PS-V: APDN with simultaneous optimally allocated three D-STATCOMs 
and three BM-DGs

PS-VI: APDN with simultaneous optimally allocated three 
D-STATCOMs, two PV-DGs, and one BM-DG

PS-VII: APDN with simultaneous optimally allocated three 
D-STATCOMs, one PV-DG, and two BM-DGs.

The detailed flowchart for the implementation of CD-SPBOA for 
obtaining the optimal PS considering allocation of different combi-
nations of D-STATCOMs, PV DGs, and BM DGs is presented in Fig. 2.

V. RESULTS AND DISCUSSION

To validate the proposed methodology for simultaneous alloca-
tion of DGs and D-STATCOMs, a standard 33-bus APDN [30] and 
a larger 118-bus test system have been considered. When no 
devices are installed, the 33-bus system has a real and reactive 
power loss of 210 kW and 143 kVAr, respectively, and the 18th 
bus registers a minimum bus voltage of 0.9038 p.u., which is far 
below the regulatory limit of 0.95 p.u. Similarly, the real and reac-
tive power losses of the 118-bus system are 12981 kW and 978.7 
kVAr, respectively, and the minimum bus voltage is 0.8688 p.u. for 
the uncompensated system. The maximum capacity of DGs and 
D-STATCOMs considered in the analysis is 2000 kW and 2000 kVAr 
for the 33-bus system and 4000 kW and 3000 kVAr for the 118-
bus test system respectively. The best results from 30 independent 
trial runs of the CD-SPBO algorithm have been reported. The pop-
ulation size and the maximum number of iterations of CD-SPBOA 
were set at 50 and 100, respectively, for all the studied planning 
scenarios for both test systems. A forward–backward sweep load 
flow [31] is utilized to capture the snapshot of the APDN with and 
without allocation of devices for calculation of MOF. All the simu-
lation work is carried out using MATLAB software. The technical, 
economic, and environmental parameters of the substation, DGs, 
and D-STATCOMs are described in Table II. Results of interest are 
boldfaced in respective tables.

A. Validation of CD-SPBOA for Solving OADD
Table III compares the results obtained by CD-SPBO and other com-
peting algorithms in addressing OADD to minimize real power loss 
on a 33-bus test system taking into account different combinations 
of the devices. From Table III, it may be noted that the real power 
loss (RPL) reported by CD-SPBOA is the minimum for simultaneous 
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allocations of a combination of one and two pairs of the devices. 
However, for the allocation of three DGs and D-STATCOMs, the RPL 
obtained by whale optimization and loss sensitive factor [14] is mar-
ginally better compared to CD-SPBOA. However, the performance of 
the CD-SPBOA can be considered superior as it simultaneously opti-
mizes both the location and sizes of the devices in contrast to opti-
mizing only the sizes of the devices at pre-located buses as reported 
in [12-14, 32, 33]. Similarly, the allocation of different combinations 
of DGs and D-STATCOMs to minimize RPL in a 118-bus test system 
is depicted in Table IV. In terms of minimum RPL, the performance 
of the CD-SPBOA is far superior compared to the recently surfaced 

metaheuristic approaches like gorilla troop optimizer (GTO), Harris 
hawk optimizer (HHO), and AHO.

The convergence characteristics of CD-SPBO against GTO, HHO, and 
AHO for solving simultaneous DG and D-STATCOM allocation con-
sidering different combinations of the devices are shown in Figs. 3–5 
for the 33-bus test systems and in Fig. 6 to Fig. 8 for the 118-bus test 
systems respectively. From these figures, it may be noted that with 
an increase in the number of devices as well as for the larger test sys-
tem, the proposed CD-SPBO outperforms the remaining algorithms 
in terms of faster convergence and the capability to reach the mini-
mum objective value.

Further, for statistical validation, box plots of the results obtained 
by CD-SPBO, GTO, HHO, and AHO for solving simultaneous OADD 
in a 33-bus and 118-bus test systems are presented in Figs. 9–14. It 
may be seen from these plots that the box plot corresponding to the 
CD-SPBO is smaller compared to the remaining approaches, which 
statistically proves the superiority and robustness of the proposed 
CD-SPBO for solving the simultaneous OADD against the compared 
approaches.

B. Optimal Planning of APDN using CD-SPBOA
It is evident from the previous section that the proposed CD-SPBOA 
is both numerically and statistically promising to solve the simul-
taneous OADD problem. Therefore, in this section, the allocation 
of non-dispatchable PV-DGs, dispatchable BM-DGs, D-STATCOMs, 
and their combinations are optimally allocated using the proposed 
CD-SPBOA for deciding the optimal planning of the APDN with the 
goal of enhancing the technical performance and minimizing the 
annual cost of the DUs. Hence, for all the planning scenarios, both 
the sizes and locations of the devices are simultaneously optimized 
where the sizes of the devices are treated as continuous variables 
and the locations of the devices are considered to be discrete. The 
proposed methodology for optimal APDN planning is also validated 
considering a 33-bus and a bigger 118-bus test systems. In this work, 
PV DGs and BM-DGs are considered to operate at unity power fac-
tor and combined load power factor respectively. Hence, PV DGs 

Fig. 2. Implementation of proposed CD-SPBOA for optimal SPDN 
planning. MOF, multi-objective function; SPDN, Smart Power 
Distribution Network.

TABLE II. SUBSTATION, DG, AND D-STATCOM PARAMETERS

Parameters

Parameter Value

Substation

Photovoltaic 
Distributed 
Generator 

(PV-DG)
BM-
DG D-STATCOM

ksub
real  USD/MWh 78 - - -

ksub
reac  USD/MVAr 5230 - - -

kem USD/TonCO2 10 - 10 -

E Esub
em

DG
em,  (TonCO2/MWh) 0.910 - 0.773 -

ICdevice (USD/kVA) - 2000 1.030 50

OMdevice (USD/kVA) - 1% of IC 0.085 5% of IC

LSdevice years - 30 10 30

BM-DG, Bio-mass-based distributed generator; D-STATCOM, distribution static 
compensators; PV-DG, Photovoltaic Distributed Generator.
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TABLE III. RESULT COMPARISON OF CD-SPBOA AGAINST OTHER COMPETITIVE APPROACHES FOR SOLVING OADD ON A 33-BUS SYSTEM

Devices Method PDG, kW LDG QDSTAT, kVAr LDSTAT Ploss, kW Qloss, kVAr Vmin p.u. CVSI p.u.

1 DG + 1 DSTATCOM GTO 2000 7 1000 30 57.3096 41.7881 0.9549 0.8314

HHO 1.9950 7 0.9938 30 57.4816 41.8582 0.9548 0.8310

AHO 1.9992 7 0.9972 30 57.3698 41.8188 0.9549 0.8313

CD-SPBO 2000 7 1000 30 57.3096 41.7881 0.9549 0.8314

LSF [33] 1000 30 1500 30 86.26 - 0.9503 -

FP & CS [13] 1323.6 33 1481 31 65.7 - 0.9612 -

2 DGs + 2 DSTATCOMs GTO 0.8106 14 0.4688 12 29.8556 21.4390 0.9803 0.9236

1.2460 30 0.8592 30

HHO 0.9121 13 0.6615 9 29.5403 20.8882 0.9804 0.9238

1.0342 30 0.9128 30

AHO 1.0857 30 0.5828 9 29.4810 20.7849 0.9799 0.9220

0.7349 14 0.9925 30

CD-SPBO 1.1332 30 1.0000 30 28.5224 20.3363 0.9803 0.9235

0.8414 13 0.4699 12

3 DGs + 3 DSTATCOMs GTO 1.2070 24 0.3547 14 15.0594 11.6482 0.9924 0.9697

1.0153 12 0.9824 30

0.7338 31 0.9823 3

HHO 0.6249 13 0.5236 5 16.4771 13.5047 0.9815 0.9282

1.1343 29 0.1244 16

1.0334 24 0.9566 30

AHO 1.1176 30 0.2684 13 15.1386 12.3360 0.9881 0.9532

0.9625 25 0.7153 30

0.6846 13 0.6137 6

CD-SPBO 1.0853 24 0.3714 13 11.6630 9.6484 0.9919 0.9660

0.7543 14 0.4787 24

1.0212 30 1.0000 30

CS & LSF [14] 750 14 420 11 12 - 0.9910 0.9584

1100 24 460 24

1000 30 970 30

WO & LSF 
[15]

710 14 380 11 11.56 - 0.9913 0.9596

1040 24 480 24

1020 30 980 30

MODE [33] 1072 14 521 12 12.95 - 0.9911 -

742 25 476 25

947 30 1018 30

AHO, artificial hummingbird optimizer; CD-SPBO, continuous–discrete student psychology-based optimization; CS, clonal selection; CSO, cuckoo search optimization; 
CVSI, critical voltage stability index; D-STATCOM, distribution static compensators; FP, flower pollination; GTO, gorilla troop optimizer; HHO, Harris hawk optimizer; 
LDG, DG connected bus; LDSTAT, D-STATCOM connected bus; LSF, loss sensitive factor; MODE, multiobjective differential evolution; PDG, real power injected by DG; 
Ploss, real power loss; QDSTAT, reactive power injected by D-STATCOM; Qloss, reactive power loss; Vmin, minimum bus voltage; WO, whale optimization. Bold values 
represent the best values.



Electrica 2024; 24(2): 284-303
Dash and Mishra. CD SPBO Algorithm for Optimal Planning of DGs and D-STATCOMs

292

can support active power only whereas BM-DGs can inject reactive 
power in addition to active power.

1) 33-bus APDN
The results obtained by CD-SPBOA for minimizing the proposed 
MOF considering different planning scenarios for a 33-bus APDN are 
presented in Table V. From Table V, it may be noted that the reduc-
tion in APL and improvement in voltage profile is better and more or 
less similar for planning scenarios involving simultaneous allocation 
of both DGs and D-STATCOMs (PS-IV to PS-VII) owing to the concur-
rent real and reactive power injection compared to exclusive device 
allocation. Furthermore, in PS-V, additional reactive power is also 
supported by BM-DGs in addition to that of D-STATCOMs, leading to 
maximum APL reduction and enhanced voltage profile compared to 

the remaining scenarios. However, in terms of overall performance 
improvement, PS-IV has delivered the best, followed by PS-VI, as 
indicated by the least MOF values reported in Table V.

The convergence characteristics of CD-SPBOA for minimizing the 
proposed MOF considering different planning scenarios are depicted 
in Fig. 15. It shows that CD-SPBOA converges swiftly to the optimal 
value for all planning scenarios and attains the minimum MOF for 
PS-IV followed by PS-VI. The voltage profile of the 33-bus APDN cor-
responding to all planning scenarios is also compared in Fig. 16. It 
displays that the base case voltage profile of the 33-bus APDN is not 
acceptable as many of the bus’s voltage magnitudes are less than the 
regulatory limits of 0.95 p.u. However, for planning scenarios PS-III to 
PS-VII, the voltage profile of the network is significantly improved. 

TABLE IV. RESULT COMPARISON OF CD-SPBOA AGAINST OTHER COMPETITIVE APPROACHES FOR SOLVING OADD ON THE 118-BUS SYSTEM

Devices Method PDG, kW LDG QDSTAT, kVAr LDSTAT Ploss, kW Qloss, kVAr Vmin p.u. CVSI p.u.

1 DG + 1 DSTATCOM GTO 3.0879 71 2.3334 110 872.8667 698.0170 0.9095 0.6842

HHO 2.9567 71 2.5141 110 871.9511 697.9022 0.9095 0.6842

AHO 3.0264 71 2.5506 110 872.0580 697.1431 0.9095 0.6842

CD-SPBO 2.9786 71 2.4973 110 871.9319 697.7693 0.9095 0.6842

2 DGs + 2 DSTATCOMs GTO 2.7134 110 2.3565 50 601.3990 474.0103 0.9447 0.7966

3.0709 71 1.3471 74

HHO 2.5975 110 2.6396 49 578.4101 475.1972 0.9467 0.8032

3.1466 70 2.1702 111

AHO 3.0716 72 1.7258 110 579.4776 477.8930 0.9484 0.8089

2.5991 110 2.6033 50

CD-SPBO 2.9785 71 2.3226 110 567.1219 468.6860 0.9501 0.8150

2.7998 110 2.7266 50

3 DGs + 3 DSTATCOMs GTO 3.1176 35 1.4949 110 432.0416 308.6070 0.9537 0.8272

2.9245 71 2.7987 52

2.0664 107 2.0481 70

HHO 2.3647 52 1.5492 71 378.4673 286.9929 0.9585 0.8442

2.1752 110 2.6154 50

2.7517 74 2.6387 110

AHO 3.7086 109 2.1145 106 421.0834 307.5153 0.9523 0.8225

1.8710 71 2.8594 50

3.1144 48 1.3535 75

CD-SPBO 2.9315 71 2.5935 50 344.3700 259.2236 0.9600 0.8495

2.7997 110 1.8310 72

2.8744 50 2.3219 110

AHO, artificial hummingbird optimizer; CD-SPBO, continuous–discrete student psychology-based optimization; CVSI, critical voltage stability index; GTO, gorilla troop 
optimizer; D-STATCOM, distribution static compensators; HHO, Harris hawk optimizer; LDG, DG connected bus; LDSTAT, D-STATCOM connected bus; PDG, real power 
injected by DG; Ploss, real power loss; QDSTAT, reactive power injected by D-STATCOM; Qloss, reactive power loss; Vmin, minimum bus voltage. Bold values represent the 
best values.
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Fig. 3. Comparison of the convergence characteristic for optimal 
allocation of one DG and one D-STATCOM in a 33-bus system. AHO, 
artificial hummingbird optimizer; CD-SPBO, continuous–discrete 
student psychology-based optimization; GTO, gorilla troop 
optimizer; HHO, Harris hawk optimizer.

Fig. 4. Comparison of the convergence characteristic for optimal 
allocation of two DGs and two D-STATCOMs in a 33-bus system. 
AHO, artificial hummingbird optimizer; CD-SPBO, continuous–
discrete student psychology-based optimization; GTO, gorilla troop 
optimizer; HHO, Harris hawk optimizer.

Fig. 5. Comparison of the convergence characteristic for optimal 
allocation of three DGs and three D-STATCOMs in a 33-bus system. 
AHO, artificial hummingbird optimizer; CD-SPBO, continuous–
discrete student psychology-based optimization; GTO, gorilla troop 
optimizer; HHO, Harris hawk optimizer.

Fig. 6. Comparison of the convergence characteristic for optimal 
allocation of one DG and one D-STATCOM in a 118-bus system. AHO, 
artificial hummingbird optimizer; CD-SPBO, continuous–discrete 
student psychology-based optimization; GTO, gorilla troop 
optimizer; HHO, Harris hawk optimizer.

Fig. 8. Comparison of the convergence characteristic for optimal 
allocation of three DGs and three D-STATCOMs in a 118-bus system. 
AHO, artificial hummingbird optimizer; CD-SPBO, continuous–
discrete student psychology-based optimization; GTO, gorilla troop 
optimizer; HHO, Harris hawk optimizer.

Fig. 7. Comparison of the convergence characteristic for optimal 
allocation of two DGs and two D-STATCOMs in a 118-bus system. 
AHO, artificial hummingbird optimizer; CD-SPBO, continuous–
discrete student psychology-based optimization; GTO, gorilla troop 
optimizer; HHO, Harris hawk optimizer.
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Fig. 9. Box plot for optimal allocation of one DG and one D-STATCOM in a 33-bus system. AHO, artificial hummingbird optimizer; CD-SPBO, 
continuous–discrete student psychology-based optimization; GTO, gorilla troop optimizer; HHO, Harris hawk optimizer.

Fig. 10. Box plot for optimal allocation of two DGs and two D-STATCOMs in a 33-bus system. AHO, artificial hummingbird optimizer; CD-SPBO, 
continuous–discrete student psychology-based optimization; GTO, gorilla troop optimizer; HHO, Harris hawk optimizer.

Fig. 11. Box plot for optimal allocation of three DGs and three D-STATCOMs in a 33-bus system. AHO, artificial hummingbird optimizer; CD-SPBO, 
continuous–discrete student psychology-based optimization; GTO, gorilla troop optimizer; HHO, Harris hawk optimizer.
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Fig. 12. Box plot for optimal allocation of one DG and one D-STATCOM in a 118-bus system. AHO, artificial hummingbird optimizer; CD-SPBO, 
continuous–discrete student psychology-based optimization; GTO, gorilla troop optimizer; HHO, Harris hawk optimizer.

Fig. 13. Box plot for optimal allocation of two DGs and two D-STATCOMs in a 118-bus system. AHO, artificial hummingbird optimizer; CD-SPBO, 
continuous–discrete student psychology-based optimization; GTO, gorilla troop optimizer; HHO, Harris hawk optimizer.

Fig. 14. Box plot for optimal allocation of three DGs and three D-STATCOMs in a 118-bus system. AHO, artificial hummingbird optimizer; CD-SPBO, 
continuous–discrete student psychology-based optimization; GTO, gorilla troop optimizer; HHO, Harris hawk optimizer.
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Similarly, the variation of the VSI of the 33-bus APDN for all planning 
scenarios is shown in Fig. 17. This figure also suggests that the 33-bus 
APDN is more immune to voltage collapse for planning scenarios 
PS-III to PS-VII, as indicated by VSI values closer to unity.

In order to select the best planning scenario for 33-bus APDN, a com-
parison of techno-economic indices defined in the earlier sections, 

namely fAPL, fOVD, fCVSI, and fSAC are compared in Fig. 18. It may be noted 
that the higher the value of these indices, the lesser are their impact 
on the performance enhancement of the APDN. Considering the 
value of fAPL as obtained for different scenarios, it is obvious that PS-I 
has the least impact on APL reduction, followed by PS-II. However, 
for planning scenarios PS-IV to PS-VII, fAPL values are closer to 0.05 
indicating APL reduction of more than 95%. In terms of fOVD, PS-I 

TABLE V. PERFORMANCE COMPARISON OF 33-BUS APDN FOR DIFFERENT PLANNING SCENARIOS

Items PS-I PS-II PS -III PS -IV PS -V PS -VI PS -VII

PDG, kW - 1.3114 1.0915 1.1474 1.0814 1.2583 1.2310

1.3384 1.3138 0.9677 0.8108 0.9603 1.0075

0.9363 0.8425 0.8326 1.0657 0.8065 0.8148

LDG - 24 24 24 30 24 24

30 30 30 13 30 30

13 13 13 24 13 13

QDSTAT, kVAr 0.8167 - - 0.4219 0.1221 0.3886 0.3544

0.9799 0.4862 0.4485 0.8920 0.3790

0.5465 1.0000 0.2837 0.3569 0.3690

LDSTAT 7 - - 25 21 7 31

30 12 7 30 25

15 30 32 25 7

Ploss, kW 146.5795 78.6331 18.9542 12.3286 11.2484 11.8232 11.4939

Vmin p.u.. 0.9496 0.9803 0.9941 0.9940 0.9956 0.9941 0.9941

MOF, p.u. 0.6201 0.2735 0.1350 0.0656 0.1050 0.0734 0.0892

LDG, DG connected bus; LDSTAT, D-STATCOM connected bus; MOF, multi-objective function; PDG, Real power injected by DG; Ploss, real power loss; PS, planning 
scenario; QDSTAT, reactive power injected by D-STATCOM; Vmin, minimum bus voltage. Bold values represent the best values.

Fig. 15. Comparison of the convergence characteristics of CD-SPBO for the 33-bus system for different planning scenarios. PS, planning scenario.



Electrica 2024; 24(2): 284-303
Dash and Mishra. CD SPBO Algorithm for Optimal Planning of DGs and D-STATCOMs

297

has the least impact, followed by PS-II, and for the remaining sce-
narios, diminishingly small fOVD indicates an almost flat voltage pro-
file. Further, observing the variation of fCVSI, once again, PS-I and PS-II 
can be readily discarded, whereas the remaining planning scenarios 
are inseparable with PS-V being marginally better in that lot. In con-
trast to the technical factors, the graph of fSAC reveals some interest-
ing facts, which along with the technical factors, can be decisive in 

selecting the best planning scenario. It is obvious from the plot that 
PS-I, which impacts the least in terms of technical factors, appears to 
be the best in terms of fSAC. In contrast, PS-V, which has adjudged the 
best planning scenario in terms of technical factors, has performed 
the worst in terms of fSAC because of incurring additional penalty 
cost for pollution caused by BM-DGs. Hence, both PS-I and PS-V 
are not suitable for concurrently optimizing the techno-economic 

Fig. 16. Comparison of voltage profile of 33-bus system for different planning scenarios. PS, planning scenario.

Fig. 17. Comparison of voltage stability index of the 33-bus system for different planning scenarios. PS, planning scenario.
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Fig. 18. Comparison of performance indices of 33-bus system for different planning scenarios. APL, active power loss; CVSI, critical voltage 
stability index; OVD, overall voltage deviation; PS, planning scenario; SAC, system annual cost.

TABLE VI. PERFORMANCE COMPARISON OF 118-BUS APDN FOR DIFFERENT PLANNING SCENARIOS

Items PS-I PS-II PS -III PS -IV PS -V PS -VI PS -VII

PDG, kW - 3.8704 3.5252 1.1474 1.0814 1.2583 1.2310

3.4615 3.2370 0.9677 0.8108 0.9603 1.0075

3.0589 3.0190 0.8326 1.0657 0.8065 0.8148

LDG - 49 50 24 30 24 24

71 71 30 13 30 30

110 110 13 24 13 13

QDSTAT, kVAr 2.7412 - - 0.4219 0.1221 0.3886 0.3544

3.0000 0.4862 0.4485 0.8920 0.3790

3.0000 1.0000 0.2837 0.3569 0.3690

LDSTAT 110 - - 25 21 7 31

71 12 7 30 25

50 30 32 25 7

Ploss, kW 936.3917 686.0218 384.4106 12.3286 11.2484 11.8232 11.4939

Vmin p.u. 0.9178 0.9561 0.9603 0.9940 0.9956 0.9941 0.9941

MOF, p.u. 0.6825 0.4652 0.3634 0.0656 0.1050 0.0734 0.0892

LDG, DG connected bus; LDSTAT, D-STATCOM connected bus; MOF, multi-objective function; PDG, real power injected by DG; Ploss, real power loss; PS, planning 
scenario; QDSTAT, reactive power injected by D-STATCOM; Vmin, minimum bus voltage. Bold values represent the best values
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performance of the APDN. However, considering both technical and 
economic feasibility, PS-VI, IV, and PS-VII are more favorable for the 
DUs, with PS-IV being comparatively more economical and PS-VII 
being comparatively more technically promising.

2) 118-bus APDN
The results obtained by CD-SPBOA for minimizing the proposed MOF 
considering different planning scenarios for a 118-bus APDN are pre-
sented in Table VI. From Table VI, it may be noted that the reduction 
in APL and improvement in voltage profile is better and more or less 
similar for planning scenarios involving simultaneous allocation of 
both DGs and D-STATCOMs (PS-IV to PS-VII) owing to the concurrent 

real and reactive power injection compared to exclusive device allo-
cation. Furthermore, in PS-V, additional reactive power is also sup-
ported by BM-DGs in addition to that of D-STATCOMs, leading to 
maximum APL reduction and enhanced voltage profile compared to 
the remaining scenarios. However, in terms of overall performance 
improvement, PS-IV has delivered the best, followed by PS-VI, as 
indicated by the least MOF values reported in Table VI.

The convergence characteristics of CD-SPBOA for minimizing the 
proposed MOF considering different planning scenarios for 118-bus 
are depicted in Fig. 19. It shows that CD-SPBOA converges swiftly to 
the optimal value for all planning scenarios and attains the minimum 

Fig. 19. Comparison of the convergence characteristics of CD-SPBO for the 118-bus system for different planning scenarios. PS, planning 
scenario.

Fig. 20. Comparison of voltage profile of 118-bus system for different planning scenarios. PS, planning scenario.
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MOF for PS-IV followed by PS-VI. The voltage profile of 118-bus APDN 
corresponding to all planning scenarios is also compared in Fig. 20. 
It displays that the base case voltage profile of 118-bus APDN is not 
acceptable as many of the bus’s voltage magnitudes are less than 
the regulatory limits of 0.95 p.u. However, for planning scenarios 
PS-III to PS-VII, the voltage profile of the network is significantly 
improved. Similarly, the variation of the VSI of the 118-bus APDN 

for all planning scenarios is shown in Fig. 21. This figure also sug-
gests that the 118-bus APDN is more immune to voltage collapse for 
planning scenarios PS-III to PS-VII, as indicated by VSI values closer 
to unity.

A comparison of techno-economic indices defined in the earlier sec-
tions, namely fAPL, fOVD, fCVSI, and fSAC are compared in Fig. 22 for 118-bus 

Fig. 21. Comparison of voltage stability index of the 118-bus system for different planning scenarios. PS, planning scenario.

Fig. 22. Comparison of performance indices of the 118-bus system for different planning scenarios. APL, active power loss; CVSI, critical voltage 
stability index; OVD, overall voltage deviation; PS, planning scenario; SAC, system annual cost.
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APDN. Considering the value of fAPL as obtained for different scenar-
ios, it is obvious that PS-I and PS-II are not promising to curb APL, as 
for both scenarios, fAPL is more than 0.5. For the remaining scenarios, 
fAPL ranges within 0.3 to 0.2, indicating a loss reduction of (70 to 80) % 
compared to the base case.

In terms of fOVD, PS-I has the least impact, followed by PS-II, and for 
the remaining scenarios except PS-V, fOVD values are slightly higher 
than 0.1, whereas for PS-V it is lesser than 0.1, ensuring a more flat 
voltage profile. Further, observing the variation of fCVSI, once again, 
PS-I and PS-II can be readily discarded, whereas the remaining plan-
ning scenarios are in close agreement with PS-V being marginally 
better in that lot. In contrast to the technical factors, the graph of 
fSAC reveals some interesting facts, which along with the technical 
factors, can be decisive in selecting the best planning scenario. It is 
obvious from the plot that PS-I, which impacts the least in terms of 
technical factors, appears to be the best in terms of fSAC. In contrast, 
the planning scenarios PS-V and PS-VII are economically infeasible 
as their fSAC values are greater than unity. However, considering both 
technical and economic feasibility, PS-IV may be considered as the 
optimal planning scenario for 118-bus APDN.

D. Effect of Load Variation on Performance of APDN for OADD
In this section, the effect of load variation on optimal planning 
scenarios is discussed. Therefore, the loads across all feeders were 
uniformly increased from 50% of nominal loading to 120% of the 
nominal loading in steps of 10%. As it is established in an earlier sec-
tion, planning scenarios PS-IV, PS-VI, and PS-VII are more favorable 
for overall performance enhancement of the 33-bus APDN. Table VII 
compares the variation of Vmin and power loss with respect to varia-
tion in load factor for the said planning scenarios, including base 
case. As evident from the table, the APL reduction for loading sce-
narios is significantly better for PS-IV, PS-VI, and PS-VII as compared 
to the base case. Additionally, the voltage profile is well within the 
regulatory limits for PS-IV, PS-VI, and PS-VII as compared to the base 
case.

VI. CONCLUSION

In this paper, optimum planning techniques for active DNs in the 
presence of solar PV DGs, BM DGs, and D-STATCOMs have been 

carried out. The proposed CD-SPBO algorithm has been validated by 
considering the simultaneous allocation of one, two, and three pairs 
of DGs and D-STATCOMs for minimizing real power loss of a 33-bus 
and a bigger 118-bus test system comparing its results with both 
state-of-the-art methods as well as recently surfaced metaheuristic 
approaches such as GTO, AHO, and HHO, the comparison reveals 
that numerical and statistical performance (convergence speed, 
robustness through box plots, and avoidance of local optima) of the 
proposed CD-SPBO is superior for optimal planning of the DN.

Further, a novel MOF has been developed to account for techno-
logical, economic, and environmental benefits. The weights of the 
various indices utilized in the MOF, such as fAPL, fOVD, fCVSI, and fSAC, 
have been generated from AHP in order to restrict their influence 
on the final optimization outcomes using the proposed CD-SPBO 
algorithm. The best allocation techniques for DGs and D-STATCOMs 
have been determined using the proposed CD-SPBO algorithm. 
Seven separate scenarios have been used to demonstrate the 
usefulness of the suggested solution approach for 33-bus and 
118-bus APDN. The results reveal that the exclusive allocation of 
D-STATCOMs, PV-DGs, and BM-DGs has a reduced effect on both 
technical and economic performance of the studied test systems 
compared to concurrent optimal allocation of devices. It has been 
observed that considerable improvements in technical perfor-
mance, as well as economic and environmental issues, occur when 
two PV-DGs, one BM-DG, and three D-STATCOMs are allocated con-
currently. Additionally, the results indicate that when two PV-DGs, 
one BM-DG, and three D-STATCOMs are appropriately placed, the 
influence of incremental load changes is minimized for the consid-
ered APDNs. So, it can be concluded that the proposed methodol-
ogy can be beneficial for network planners in determining the best 
combination of devices to meet their needs. This work can further 
be extended for stochastic DN planning considering generation 
and load uncertainties.
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TABLE VII. VARIATION OF VMIN AND PLOSS WITH LOAD FACTOR OF THE 33-BUS SYSTEM

Load Factor

Base Case PS-IV PS-VI PS-VII

Vmin p.u. Ploss kW Vmin p.u. Ploss kW Vmin p.u. Ploss kW Vmin p.u. Ploss kW

0.5 0.9540 48.7853 0.9836 9.8094 0.9825 9.5689 0.9813 10.2280

0.6 0.9443 71.3029 0.9836 10.5414 0.9830 10.1078 0.9819 10.5911

0.7 0.9345 98.5338 0.9847 10.5856 0.9848 9.9592 0.9840 10.1533

0.8 0.9244 130.7165 0.9870 10.3803 0.9879 9.6236 0.9875 9.4996

0.9 0.9142 168.1063 0.9903 10.6295 0.9909 9.8843 0.9920 9.5365

1.0 0.9038 210.9824 0.9940 12.2821 0.9941 11.7827 0.9941 11.4619

1.1 0.8931 259.6507 0.9917 15.0459 0.9919 14.3642 0.9935 13.9469

1.2 0.8822 314.4989 0.9883 19.2834 0.9889 18.0271 0.9928 16.9604

Ploss, real power loss; PS, planning scenario; Vmin, minimum bus voltage.
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