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ABSTRACT

The two different motion behaviors of seahorses in nature served as inspiration for the seahorse optimization (SHO) method, which is a new metaheuristic swarm 
intelligence-based approach to solving fundamental engineering problems. In this study, the propo rtion al-in tegra l-der ivati ve (PID) parameters for the simplified speed 
control of the manipulator joint using squirrel-cage induction motors were calculated with the SHO algorithm. As a result of these calculations, Kp, Ki, and Kd values 
were obtained as 0.0430, 0.00474, and 0.03254, respectively. Then, the time for the squirrel-cage motor to reach 50 rpm (revolutions per minute) and 90 rpm was 
calculated with the help of SHO. In PID + SHO operation, the squirrel-cage electric motor reached 50 rpm in 3 seconds and 90 rpm in 8 seconds. In this study, in which 
the SHO optimization method was used, it was calculated that the acceleration of the squirrel-cage motor and reaching the desired value gave 50% better results 
compared to the particle swarm optimization algorithm.
Index Terms— Optimization, propo rtion al-in tegra l-der ivati ve (PID), particle swarm optimization (PSO), seahorse, squirrel cage motors
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I. INTRODUCTION

In 2022, S. Zhao, T. Zhang, S. Ma, and M. Wang were first to propose the seahorse optimization 
(SHO) method [1]. Seahorse optimization is a new herd intelligence-based meta-heuristic tech-
nique called seahorse optimizer that is modeled after seahorses’ movement, hunting, and breed-
ing behavior in nature. It also obtains the best solution to the problems at the optimal value 
under certain constraints. In comparison to conventional techniques of optimization, it does not 
claim that every solution will be more optimal but helps improve results in global solutions.

Seahorse optimization can also be used to solve fundamental engineering problems such as 
the design problem for compression springs, design based problems for reducers, solutions for 
design problem of expansion vessel, beam-console design problem, and design problem for 
welded beams [2]. In addition, it gives good results in evaluations on 23 functions and CEC2014 
benchmarking standard accepted in the literature. The CEC2014 suite is the generic name for 
modern algorithms with strong testing capabilities for all types of algorithms. Due to the com-
plexity and dynamics of these benchmark functions, the proposed SHO is extremely suitable for 
improving the optimization performance [3].

Convergence analysis, statistical analysis, Friedman and Wilcoxon tests were used to calculate 
and evaluate the optimization performance of SHO, and empirical results show that SHO gives 
better results than the six most advanced meta-heuristic algorithms [4]. Moreover, SHO can also 
be applied to higher-dimensional problems. Optimizing at higher dimensions is more difficult 
due to the complexity of the functions. To cope with these problems, the performance of the 
algorithm has a more stable structure from 100 dimensions to 500 dimensions when evaluated 
according to CEC2014 standards [5]. Furthermore, SHO is used to solve real world problems of 
optimization and engineering problems such as particle swarm optimization (PSO) problem for 
cloud scheduling in computing field, design optimization for performance in buildings, boxing 
design problem, and parameter optimization in PID controllers [6-10].
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In recent years, advances have been made in many techniques for 
process control in industry [11-13]. Studies have been carried out 
by considering many control methods such as adaptive-fuzzy con-
trol and neural control [14]. In industry, propo rtion al-in tegra l-der 
ivati ve (PID) controllers are more preferred for process controls with 
their most common and robust performance [15-17]. However, it 
is extremely difficult to adjust the gains of PID controllers [18]. This 
difficulty arises from problems such as high order, time delays, and 
nonlinearity in many engineering problems [19-22].

Propo rtion al-in tegra l-der ivati ve controller is widely used in control 
engineering. The reason for this is the simplicity in architecture, 
mature theoretical analysis, and simple application methods [23]. 
Until now, a new control approach has been developed so far, it is 
still widely used as a result in industry and control systems. There 
are three different adjustable gain parameters for the PID controller; 
proportional gain Kp, integral gain Ki, and derivative gain Kd, respec-
tively. Adjusting the gain parameters appropriately is one of the fac-
tors that increase the efficiency of the system [24].

Propo rtion al-in tegra l-der ivati ve control mechanisms are also used 
in the industrial field and robotics and autonomous driving systems. 
Propo rtion al-in tegra l-der ivati ve has a say in more than 90% of these 
applications [25]. Propo rtion al-in tegra l-der ivati ve measures the dif-
ference between the output and the input, and the value it mea-
sures is called the error rate. The error rate is denoted by e (t). It then 
applies a proportional correction. Then the integral and derivative 
operations are done. These fix steps are called P, I, and D [26].

In the last 20 years, a well-known method has been proposed to set 
the parameters of PID controllers to appropriate values. Ziegler–
Nichols method and frequency and time domain method are the 
early solutions [27]. Later, with the development of computer and 
artificial intelligence (AI), intellectual algorithms were developed to 
optimally tune PID controllers such as PSO and genetic algorithm 
(GA) [28]. These algorithms are extremely important in terms of giv-
ing more useful and realistic results compared to other solutions [29].

In this context, it is aimed to optimally analyze the coefficients of 
PID parameters and to reach the desired stability region of the elec-
tric motor in a less time than other approaches. From the literature 
review, it has been observed that the error rates of classical optimiza-
tion methods in PID control are high and delays are experienced in 
reaching the desired stability region. This problem shows that logis-
tics and production-oriented companies experience delays in pro-
cess control and process operation times. Delays affect the number 
of input and output products. In these production-oriented places, 
PID control should be performed appropriately to ensure efficient 
operation and increase production. In this context, PID parameters 
are reconsidered with eahorse algorithm with the purpose of mini-
mizing the error rate. When the results of classical algorithms such 
as PSO and GA are examined in the literature, it has been examined 
that the process error rates are higher than the work done with 
seahorse and an effective speed in production is not revealed. In 
order to overcome this deficiency in the studies, it was necessary to 
recalculate the PID parameters with SHO method. The calculation 
of PID parameters for the simplified speed control of the manipu-
lator joint using squirrel-cage induction motors, on which different 
algorithms are currently being worked on, uses the SHO algorithm 
instead of the PSO algorithm for tuning the PID controller. Then, 50 
and 90 rpm acceleration times of the motor were investigated with 
the PID controller and calculated with PSO and SHO algorithms.  

The objectives and innovative aspects of the proposed SHO 
method are highlighted as follows:

(i) In the calculation of PID parameters, a different optimiza-
tion approach is used to ensure that the results are handled 
comparatively.

(ii) Contrary to known classical methods, a new meta-heuristic 
technique provides a better global PID solution.

(iii) It is provided to examine the results of new optimization meth-
ods, such as SHO, against basic engineering problems.

(iv) In industry, PID controllers ensure that the motors operate at 
rated power and rated rotation value. Setting the parameters 
of PID controllers is still done by trial and error methods. These 
methods increase the error rates. In the literature, classical PSO, 
GA, and AI algorithms are used to minimize error rates. On the 
contrary, our study implemented the seahorse algorithm, which 
successfully minimized error rates in industrial processes to an 
acceptable extent than other existing algorithms, and also con-
tributed to the existing literature by achieving lower error rates.

(v) Electric motor control with seahorse has lower computational 
cost compared to other optimization methods in the literature.

(vi) This work with seahorse can be extended to more degrees of 
freedom.

(vii) In process control, settling time has a very important place 
in terms of saving time. This study reduces the settling time 
by 50%, enabling more product input and more output to be 
obtained with minimum error. A faster settling time than classi-
cal optimization methods was achieved with seahorse.

This study is aims to present an alternative method for calculating 
the parameters of the PID controller, which is one of the basic engi-
neering problems. The main purpose here is to alleviate the difficul-
ties in the solution process. The method proposed in this study aims 
to address these barriers in the following ways:

(i) To ensure that fundamental engineering problems are reconsid-
ered with an up-to-date optimization algorithm and to alleviate 
solution process difficulties

(ii) To reduce the error rate by enabling the parameters of the PID 
controller to be calculated more closely to the real

The remainder of the work is organized as follows: Section II pro-
vides a background for the SHO algorithm and covers the steps of 
the work, Section III contains PID implementations of the SHO algo-
rithm. Experimental results and discussion are presented in Section 
IV and the Section V provides the conclusion.

II. BACKGROUND

In this section, an overview of SHO is provided, and then SHO instal-
lation and movement behaviors of seahorses for this research are 
presented. Each one is presented next.

A. Seahorse Optimizer
Seahorses belong to the genus Hippocampus. These creatures, which 
like to live in warm waters, belong to the small fish family. Seahorses 
live widely in subtropical, tropical, and temperate shallow waters 
[30]. There are about 80 species of seahorses. Some of these have 
not yet been discovered and named. The seahorse presented in Fig. 1 
got this name because its head resembles that of a horse. In gen-
eral, the length of the seahorse is known as a maximum of 30 cm 
and a minimum of 2 cm [31]. The shortest of the seahorse species, 
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the pygmy seahorse is only 2 cm tall when it reaches adulthood, but 
the adult Hippocampus abdominalis can be up to 30 cm long. The 
nose of seahorses is like a pipe [32]. The fact that its nose is this long 
affects the rotation of its head and is considered to be closely related 
to nutrition [33].

Seahorses feed mainly on small brine shrimp and zooplanktons and 
small crustaceans. During feeding, it uses its tubular nose to reach for 
food and puffs up its cheeks. In order to take the food, it is enough to 
just open its mouth [34]. A seahorse needs fins on its back to be able 
to move. These fins are located between the tail and the body. Also, 
the seahorse does not have a ventral or caudal fin. Its entire body is 
covered with a specialized bone structure [35].

B. Installation
In this study, the SHO algorithm consists of two important compo-
nents: Spiral and Brownian motion. The mathematical models that 
emerged with these components were applied to the PID control-
ler, and the necessary parameter values were obtained. In the SHO 
method, the studies start with the initialization first. Equation 1 
expresses the entire population of seahorses.

Seahorse
x x

x x

Dim

pop pop
Dim

=
1
1

1

1

L

M O M

L

 (1)

Here, pop refers to the size of the population, and Dim refers to the 
size of the variable. Resolutions occur between LB and UB. Here UB 
is the upper limit and LB is the lower limit. The expression of the ith 
individual Xi in the search space LB and UB is as follows:

X x xi i i
Dim� �� ��

1, ,  (2)

x rand x UB LB LBi
j j j j� �� � �  (3)

Where rand denotes the random value in [0, 1]. Xi
j denotes the jth 

dimension in the ith individual. i is a positive integer ranging from 
1 to pop and j is a positive integer in the range [1, Dim]. xi

j  Both 
values are included in the calculation in integer format. UBj and 
LBj indicate that the optimized problem is j. expresses the upper 
and lower bounds of the variable. Xelite here is the minimum fit 
individual, taking the problem as an example. Equation 4 allows to 
obtain Xelite.

Xelite = argmin(f(Xi)  (4)

Here f (x) is the objective function of the problem.

C. Movement Behaviors of Seahorses
Seahorses have two distinct behaviors. The first behavior is the 
movement behavior against the whirlpool in the sea. it is known as a 
Levy flight [36]. The second behavior is Brownian movement against 
waves [37]. Equation 5 is used for the first movement.

X t t Levy X t t xyz X tnew elite elite
1 1� � � �� � �� � � � � � � � � �� �( )�  (5)

Here, x = ρ × cos(θ), y = ρ × sin(θ), and z = ρ × θ, show the compo-
nents of the positions of the three-dimensional search agents, which 
helps to update the coordinates (x, y, z) under helical motion respec-
tively. Spiral constants given as ρ = u × eθv vary logarithmically and 
represent the length of the stems defined by u and v (u value set to 
0.05 and v value 0.05). θ is a random value between 0 and 2π. The 
Levy (z) function belongs to the Lévy distribution and is calculated 
by Equation 6.
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The value of λ in Equation 6 is a random number chosen between 0 
and 2. In this study, λ was determined as 1.5. s is taken as a coefficient 
with a value of 0.01. The w and k values are also random numbers 
chosen between 0 and 1. σ can be calculated by the equation given 
below.
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In the second movement, the Brownian behavior is presented with 
Equation 8.

X t X t rand l t Xnew i t t elite
1 1� � � �� � � � � �* * * *(� �  (8)

In Equation 8, 1 is the constant coefficient (in this paper it is set to 
1 = 0.05). βt is the random walk coefficient of the Brownian move-
ment and takes a random value. Equation 9 expresses the computa-
tion of this random walk.
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These two states are added together to obtain the new position 
of the seahorse at the end of iteration t and can be formulated as 
follows.

X t
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 (10)

Fig. 1. Seahorse.
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Here r1 is assigned as randn () and it is a random value. Fig. 2 shows 
the position update diagram of the seahorse following two types 
of different styles of movement, Brownian or spiral movement, and 
both show the random movement of the seahorse.

III. THE IMPLEMENTATION PROCESS OF SHO

Seahorse optimization was preferred as the main optimization 
method of this article because it was more stable and gave good 
results in the tests made with CEC2014 standards [3]. In addition, 
the successful results in studies on stability analysis such as Wilcoxon 
and Friedman test, convergence analysis and statistical analysis [38] 
made it preferred in this article.

This part of the study includes how the SHO optimization algorithm 
is used in the calculation of PID parameters. Firstly, the PID transfer 
function of the simplified speed control of the manipulator joint 
using squirrel-cage induction motors was recompiled in the MATLAB 
R2021b. This transfer function is inserted into the SHO algorithm as 
a new equation. This equation has been added among other equa-
tions called Benchmark function. The transfer function is given by 
algorithm 1 presented below.

Algorithm 1. PID transfer function

% f(x) PID transfer function
function o = F(x)
num = x (1), x (2), x (3);
den = 1;
o = tf(num, den)
end

In the SHO algorithm, LB is 0 for x (1), x (2) and x (3). UB is 1 for three 
variables. These values selected with Algorithm 2 have been added 
to the SHO software.

Algorithm 2. LB and UB value assignment

% f(obj) PID transfer function
function [LB, UB, Dim, fobj] = BenchmarkFunctions(F)
Case f(x)
  fobj= @f(x);
  LB =[ 0, 0, 0];
  UB = [1, 1, 1,];
  UB=UB,;
  LB=LB,;
  Dim= 3;
  end

In order to start the SHO optimization, the population and iteration 
(number of repetitions) values must also be selected. In this study, 

the population was determined to be 100, and the maximum itera-
tion was determined to be 1500. When the optimization was started 
with the MATLAB software, the optimal output was presented in Fig. 
3 after a total of 1500 iterations.

In Fig. 3, the best score was obtained as 0.032 after the maximum 
iteration. Kp, Ki, and Kd values were calculated as 0.0430, 0.00474, 
and 0.03254, respectively.

IV. RESULTS AND DISCUSSION

In this study, the parameters of the PID controller, which are included 
in the engineering problems, are calculated. The parameters of the 
PID controller for the simplified speed control of the manipulator 
joint using squirrel-cage induction motors in the study in [12] are 
reconsidered with the SHO optimization algorithm. In the reference 
study [12], the transfer function of the squirrel-cage electric motor, 
whose speed control will be made, was first calculated. Then, a new 
block diagram specific to the PSO algorithm was developed. With 
this block diagram, the Kp, Ki, and Kd values of the PID parameters 
were calculated. Then, the acceleration times of the squirrel-cage 
motor were investigated with the PSO algorithm. The PID parame-
ters, squirrel-cage motor parameters, and optimization initialization 
criteria in the referenced study were chosen similarly to avoid a dif-
ferent outcome in the seahorse study. Commonly selected param-
eters are presented below.

Fig. 2. (a) Seahorse spiral movement. (b) Seahorse Brownian movement.

Fig. 3. SHO optimization best score value.
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• In the PSO algorithm used in the referenced study, the lower 
bound and upper bound values of Kp, Ki, and Kd are between 
0 and 1. These values were chosen the same in seahorse 
algorithm.

• Population and iteration numbers were set as 100 and 1500 for 
both studies.

• The parameters of the squirrel-cage motor are chosen to be identi-
cal in transfer function form. In the study carried out in the article, 
parametric differences in the electric motor reaching 50 and 90 
rpm values were avoided.

• The total duration of the simulation was set as 20 seconds in both 
studies.

• The stabilization parameter was determined as the rpm number of 
the squirrel-cage motor and 50 rpm and 90 rpm were taken as the 
basis in both studies.

The results obtained in the study with the PSO and SHO algorithms 
are presented in Table I.

According to the results in Table I, the Kp value was obtained 
as 0.0430 in the SHO application. The Ki value was calculated as 
0.00474, and the Kd value was calculated as 0.03254. These values 
of the PID parameters were recalculated with the help of the transfer 
function in the MATLAB Simulink program. The transfer function of 
speed control is given by Equation 11.

G s
s s

( )
.

. .
�

� �
73 15

15 25 9 706 12  (11)

The Simulink circuit given in Fig. 4 was created to calculate the rpm 
of the squirrel-cage electric motor. The Matlab Simulink solver cho-
sen for this application is Code 45. The maximum step size is set to 
0.4. Stop time is set to 20.

The Kp, Ki, and Kd values obtained by the SHO method are integrated 
into the PID controller block diagram. In Fig. 5, the block diagram set-
tings are shown.

Instead of the P, I, and D values shown in Fig. 5, the Kp, Ki, and Kd val-
ues obtained from the seahorse algorithm were entered. When the 
Simulink circuit was started, the engine reached 90 rpm in approxi-
mately 8 seconds. In the third second, it reached a speed of 50 rpm. 
The PID setting graph is presented in Fig. 6.

In the study referenced [12], adjustments of PID parameters were 
made using PSO, and when the result graph was examined, it was 
observed that the electric motor reached 50 rpm in 5 seconds and 90 
rpm in 12 seconds. In our study using SHO, it was observed that the 
time to reach 50 and 90 rpm was shorter. The results of the PID + PSO 
and PID + SHO applications are presented in Table II.

Regarding the results presented in Table II, SHO has brought the PID 
parameters to a more stable range compared to other algorithms. 
Working in this range, the PID controller made the squirrel-cage 
electric motor move faster. Therefore, using the PID controller with 
the SHO algorithm enables the squirrel-cage electric motor to reach 
the desired stable speed in a shorter time.

Reaching the desired stable range in approximately 50% shorter time 
than the application using the PSO algorithm reveals the potential 

TABLE I. COMPARISON OF CALCULATION RESULTS WITH PID PARAMETERS 
SHO AND PSO

Optimizer Kp Ki Kd

PID + SHO 0.0430 0.00474 0.03254

PID + PSO 0.04200 0.00504 0.03360

PID, propo rtion al-in tegra l-der ivati ve; PSO, particle swarm optimization; SHO, 
seahorse optimization.

Fig. 4. PID circuit graph of engine rpm calculation. PID, propo rtion al-in tegra l-der ivati ve.

Fig. 5. PID parameter block diagram settings. PID, propo rtion al-in 
tegra l-der ivati ve.
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to increase the production speed of industrial establishments. Faster 
process checks depend on an optimal operating interval. Seahorse 
optimization has accelerated the process by bringing this optimal 
working time to a more stable and faster structure.

V. CONCLUSION

This research focuses on the effect of the seahorse algorithm on fun-
damental engineering problems. In particular, based on reference 
[12], a new approach with SHO was developed and evaluated. This 
study is carried out on the example of simplified speed control of a 
manipulator joint using squirrel-cage induction motors.

First of all, the transfer function of the squirrel-cage motor was inte-
grated into the seahorse algorithm and used as a new optimized 
function in [12]. Then, the transfer function of the induction motor 
is optimized using the seahorse algorithm within the determined 
upper and lower limits.

Using SHO, Kp, Ki, and Kd values were calculated to be 0.0430, 
0.00474, and 0.03254, respectively, based on the obtained results. 
Then, a special circuit was designed in the Simulink environment 
to evaluate the time it takes for the motor to reach the determined 
50 rpm and 90 rpm speed values. As a result of the circuit simula-
tions, it was seen that the time for the motor to reach 50 rpm was 
3 seconds, and the time to reach 90 rpm was 8 seconds, using the 
seahorse algorithm. Compared with the other approach (PID + PSO), 
it was concluded that it is possible to reach the desired speed in a 
shorter time with the seahorse algorithm.

This study can be used to optimize the coefficients of PID control-
lers of MA2000 manipulator joints. The most important problem of 

MA2000 manipulator joints is that PID control parameters cannot 
be properly tuned, and their coefficients cannot be optimized. For 
these systems where PSO and GA algorithms are generally used, 
coefficient tuning can be done by obtaining the minimum error rate 
with the SHO algorithm. The study can also make parametric adjust-
ments on different types of motors. SeaHorse algorithm can also be 
used in optimally tuned fractional PID controller design problems for 
direct current (DC) motor speed control. During the speed control 
of the DC motor, it will reach the nominal speed faster than other 
optimization algorithms. In this way, the time for the DC motor to 
reach 50 rpm speed can be reduced from 5 seconds to 3 seconds. 
In DC motors, approximately 60% of the settling time can be saved. 
In addition, PID parameters tuned with the seaHorse algorithm can 
also be used in grid-connected hybrid renewable energy systems. 
Here the PID parameters can be tuned with minimum error and 
maximum gain, and a time domain objective function can be for-
mulated in terms of voltage and current errors to obtain efficiency. 
As a result, the seahorse algorithm can provide better results com-
pared to conventional PSO for input and output current, voltage, 
and power parameters.

The seahorse algorithm has not yet been used to solve multi-objec-
tive and discrete optimization problems. It also does not have a suf-
ficient structure for intelligent solutions of complex optimization 
problems. Among the constraints of our study, sufficient results 
have not yet been obtained for solving such engineering problems, 
but seahorse can be used as an alternative to solve problems where 
classical optimization methods are applied. Multi-objective optimi-
zation problems try to minimize or maximize multiple objectives 
with multiple constraints. In these problems, fixed values are gener-
ally not used, but the values of L and λ in the seahorse algorithm, 
especially in the motion functions (Brownian behavior), are chosen 
as fixed. The results obtained with variable values will be used in 
future studies. The constant value used is among the most important 
constraints of our study. On the other hand, optimization problems 
are defined as continuous or discrete problems according to the val-
ues of the decision variables. Some of the problems are continuous 
since the function can take infinite values in the range of definition. 
Discrete optimization problems, unlike continuous optimization, 
take integer values in the range of definition. Seahorse has a struc-
ture suitable for infinite value input in the range defined in the study. 
However, with the development of the algorithm in future studies, 
it can be ensured to take integer values in certain definition ranges. 

Fig. 6. PID tuning results using SHO.

TABLE II. THE ACCELERATION TIMES OF THE ELECTRIC MOTOR OPERATED 
WITH SHO AND PSO ALGORITHMS TO 50 RPM AND 90 RPM

Solver 50 RPM 90 RPM

PID + SHO 3 seconds 8 seconds

PID + PSO 5 seconds 12 seconds

PID, propo rtion al-in tegra l-der ivati ve; PSO, particle swarm optimization; SHO, 
seahorse optimization.
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The limitations of our current study are explained in detail. In future 
studies, it is aimed to reconsider these constraints and to improve 
the optimization algorithm and apply it to all engineering problems.

In our future research, we intend to investigate how the seahorse 
algorithm can be applied to variety of engineering problems and 
compare it with the most prominent optimization methods known 
in the literature. In this way, the overall applicability and perfor-
mance of the algorithm will be evaluated more comprehensively.
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