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ABSTRACT

Accurately predicting the potential wind power generation is of paramount importance in advancing the contribution of wind energy within the overall energy
production landscape. To reduce dependence on fossil fuels, there is an urgent need to accelerate the integration of renewable energy sources, such as wind power.
Moreover, ensuring a stable equilibrium between energy supply and demand hinges upon a profound understanding of the anticipated energy generation capacity.
This paper presents a short-term forecasting model using data from the West of Duddon Sands, Barrow, and Horns Power sites. In pursuit of this goal, we have
meticulously developed hybrid prediction models based on long short-term memory (LSTM) and bi-directional LSTM (Bi-LSTM) architectures. These models entail
an initial data decomposition stage followed by the prediction phase. While some models solely incorporate the empirical mode decomposition (EMD) method for
decomposition, others combine EMD with wavelet decomposition (WD) and swarm decomposition (SWD) for a more comprehensive approach. This investigation
encompasses a range of models, including EMD-LSTM, EMD-WD-LSTM, EMD-SWD-LSTM, Bi-LSTM, EMD-Bi-LSTM, EMD-WD-Bi-LSTM, and EMD-SWD-Bi-LSTM.
After a meticulous analysis of the outcomes generated by each model, a consistent trend emerges: the EMD-SWD-LSTM model consistently yields elevated R? values,
signifying a heightened level of predictive accuracy and success.

Index Terms—Decomposition, deep learning, hybrid models, long short-term memory (LSTM), wind forecasting

I. INTRODUCTION

Advancements in industry and technology are amplifying energy consumption, while the
escalating reliance on polluting and finite fossil fuels persists as the primary energy source.
Consequently, environmentally conscious and renewable energy sources are experiencing a
surge in popularity. Among these, wind energy has emerged as a rapidly expanding force in the
realm of electricity generation from renewable sources in recent years. The wind is abundant, has
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Physical models take into account various characteristics such as humidity, air temperature, and
the geographical structure of the region during the forecast process. These models are commonly
known as Numerical Weather Prediction (NWP) models, namely Regional Atmospheric Modeling
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correction techniques. Liu et al. have developed the NWPWS method
by customizing NWP for wind prediction [11].

In statistical wind forecasting methods, predictions are generated
by employing mathematical and statistical techniques on historical
wind data. The autoregressive integrated moving average (ARIMA)
and autoregressive moving average (ARMA) models are the most
commonly used statistical models [12]. Studies utilizing these mod-
els can be found in the existing literature. A few notable examples
include the work of Liu et al, who enhanced the ARIMA-based
Seasonal Auto Regressive Integrated Moving Average (SARIMA)
method for wind forecasting in coastal/offshore areas of Scotland
[13]. Another study by Liu et al. introduced the repeated WT-based
ARIMA (RWT-ARIMA) model, an extension of the ARIMA and Wavelet
Transform-ARIMA (WT-ARIMA) models [14].

With the advancements in the field of computer science, artificial
intelligence models are also being developed. Artificial intelligence
models can be utilized in various domains, including wind predic-
tion. A brief summary of the literature on artificial intelligence mod-
els in the field of wind forecasting is as follows: Qureshi et al. utilized
the gated recurrent unit (GRU) artificial intelligence method to fore-
cast wind energy by utilizing wind data from the Jhimpir-Pakistan
region [15]. Yang et al. employed a predictive model developed by
integrating the kernel-based extreme learning machine and multi-
objective optimization methods [16]. Rodriguez et al. employed
artificial neural networks (ANN) to perform a 10-minute ahead wind
prediction [17].

In hybrid prediction models, multiple methods are used together,
including techniques such as decomposition, normalization, and
prediction methods. Nahid et al. attempted to forecast wind speed
using the empirical mode decomposition (EMD)-convolutional
long-short term memory (CLSTM) hybrid model, which was con-
structed by combining EMD, convolutional neural network (CNN),
and long short-term memory (LSTM) [18]. Mansoor et al. performed
power analysis and prediction employing a hybrid model known as
Modified White Shark Optimization (MWSO)-Radial Basis Function
Neural Network (RBFNN), which synergistically integrates the MWSO
and RBFNN models [19]. Bommidi et al. made forward predictions
ranging from 5 minutes to 48 hours using their developed hybrid
model, which combines improved complete ensemble EMD with
adaptive noise, transformer network, and novel kernel mean square
error (MSE) loss function [20]. Zhao et al. conducted forward predic-
tions of 15-minute wind power using a hybrid model that employed
variable mode decomposition for decomposition and combined
CNN with GRU [21].

This paper provides a comprehensive comparison of a hybrid model
that combines deep learning with secondary decomposition for
short-term wind power forecasting. The analysis involves integrat-
ing decomposition methods into LSTM-based forecasting mod-
els. The inclusion of decomposition techniques like EMD, wavelet
decomposition (WD), and swarm decomposition (SWD) enhances
model performance by mitigating nonlinearity. Moreover, the study
explores secondary decomposition models that combine these
techniques, yielding more accurate estimations. Notably, the over-
all model’s effectiveness is notably enhanced by improving the
prediction accuracy of high-frequency subcomponents in second-
ary decomposition. To evaluate model performance, comprehen-
sive analyses are conducted, employing offshore wind power data
from the Duddon Sands, Barrow, and Horns Power regions, and
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comparing results against established performance metrics. In this
respect, the main contributions of this study can be summarized as
follows:

« Short-term wind power forecasting frame based on a multiple sig-
nal processing strategy is successfully designed. The original data
is decomposed using a robust preprocessing approach including
EMD and SWD. The advantages of the EMD and SWD data pro-
cessing strategies are hybridized to maximize the data prepro-
cessing performance and provide convenience for high-accuracy
prediction. Multiple decomposition approaches provide a unique
perspective for analyzing and modeling data dynamics and com-
plexities, resulting in a better understanding of the data.

« To improve the forecasting performance, the advantages of the
secondary decomposition data processing strategies are hybrid-
ized to maximize performance with LSTM. Long short-term mem-
ory performs on offshore wind datasets to exploit its capability
of learning features from nonlinear historical data. The proposed
model is assessed on multivariate offshore wind farm data from
three different regions.

+ The robustness of the proposed scheme is assessed through vari-
ants of LSTM on all wind farms in terms of error measures. Several
performance metrics including MSE, MAE, RMSE, and R? are used
to quantify the forecasting accuracy and demonstrate the superior
performance of the proposed models. By identifying significant
variables in the offshore wind power data and subseries obtained
from the multiple decomposition, the proposed forecasting model
provides compelling analysis for wind power forecasting, catering
to the needs of decision-makers.

The remainder of the paper is organized as follows: Methodology is
presented in Section Il. The comparative results of the models are
given in Section 3. Section 4 presents conclusion remarks.

Il. METHODOLOGY

A. Long-Short Term Memory (LSTM)

This model is a type of recurrent neural network (RNN) architecture
in which values are memorized at random intervals. The stored val-
ues are not modified as the learned data progresses. RNNs allow for-
ward and backward connections between neurons. Considering the
unknown dimensions and time delays between events in time series
classification, processing, and prediction, LSTM is a highly suitable
model. LSTM networks consist of LSTM units and recurrent compo-
nents. Due to the recurrent nature of the components, LSTM units
can remember long or short time periods. As a result, the stored val-
ues remain unchanged through iterations and are trained over time
through backpropagation. The mathematical formulas of the LSTM
model are provided below [22]:

fi = (Wex +Urhe s +by)

ir =o(Wix, +Uh +b;)

¢ =tanh(W.x, +Uch,; +b)
¢ =c40 f+i 0 ¢

0c =0 (Wox, +Uohs +b;)

h =0, tanh(c)
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where W, W, W, W,, U, U, U, U, denote the weights of the input
and recurrent connections, the subscript fis the forget gate, the sub-
script i is the input gate, the subscript c is the memory cell, and the
subscript o is the output gate, © is element-wise product operator,
b represents the bias vector, x, is the input of the LSTM, ¢ is Sigma
function. f, is the activation vector of the forget gate, i, is the activa-
tion vector of the input/update gate, ¢, is activation vector of the
cell input, ¢, is the cell state vector, o, is the activation vector of the
output gate, and h, is the hidden state vector.

This process continues by iterating through the steps described
above. In addition, the weight (W) and bias (b) parameters used in
the above equations are determined by the model in such a way as
to minimize the difference between the LSTM outputs and the real
training data. This ensures that the model optimally adjusts these
parameters to achieve the best fit between predicted and actual
results during the training process.

B. Bi-Directional Long Short-Term Memory

Bi-directional (Bi)-LSTM) is composed of two independent artificial
neural networks. In this structure, the networks possess information
both in the forward and backward directions. Inputs are processed
in two distinct ways: from the past to the future and from the future
to the past. What sets it apart from unidirectional LSTM is that the
information coming from the future is preserved and merged with
two hidden layers. This allows the retention of information from both
the past and the future at any given time. A diagram illustrating the
general operation of Bi-LSTM is provided in Fig. 1.

C. Empirical Mode Decomposition

Empirical mode decomposition is a powerful signal processing
technique that plays a significant role in enhancing the accuracy of
wind power forecasting models. Empirical mode decomposition has
found widespread application in various fields due to its ability to
adaptively decompose nonstationary and nonlinear data into intrin-
sic mode functions (IMF). Empirical mode decomposition operates
on the principle of sifting through a signal iteratively to extract its
oscillatory components at different scales. These extracted IMFs
capture the essential temporal patterns present in the signal. Each
IMF represents a narrowband component that, when combined,
reconstructs the original signal. The decomposition is performed in
such a way that each IMF satisfies two main conditions: it has equal
numbers of zero crossings and extrema, ensuring its adaptability to
various data characteristics. In the formula [23], X(t) represents the
input signal, h, denotes the first component, and m, corresponds to
the average of the upper and lower envelopes determined by the
cubic-spline interpolation of local maxima and minima.

A(6)=X(t)-m(1 ”

In the second step, h, data are obtained, with m, being the average
of the upper and lower envelopes of h, components.

i (£)=h (6)-m (1) ®
These first two steps are repeated k times until h,, becomes an IMF.
h1k (t) = h1(k71) (t) — My (t) (9)

Afterward, the first IMF ¢, =h,, is determined from the data contain-
ing the shortest period component of the signal. c, is separated from
the rest of the data.

n(t)=X(t)-c(t) (10)
These operations are repeated up to n times.
[Cy=lyy...lh1—Ch =r, (11)

D. Wavelet Decomposition

Wavelet decomposition operates by convolving a given signal with
a family of wavelet functions, each of which has a specific frequency
and time localization. This convolutive process generates a set of
coefficients that represent the signal’s behavior at different scales
and positions. By iteratively applying this convolution and downsam-
pling, the original signal is divided into a series of low-frequency and
high-frequency components, known as approximation and detail
coefficients, respectively. In the domain of wind power forecasting,
WD is employed as a preprocessing technique to unveil underlying
temporal patterns that might be masked in the original data. By cap-
turing both short-term variations and longer-term trends, wavelet-
based decomposition provides a comprehensive representation of
the data’s oscillatory behavior.

Wavelet decomposition can decompose a time-domain signal
into different frequency groups. In WD, various functions indicat-
ing certain mathematical properties, such as a window length cor-
responding to a fixed number of periods, are used. A fundamental
requirement in WD is that the basic functions should be within the
bounds of the Hilbert space with a mean of zero.

E. Swarm Decomposition

Swarm decomposition is a method developed to analyze non-sta-
tionary signals. The concept of SWD was introduced by Apostolidis
et al. [24], and it has since been adopted across various fields of
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Fig. 1. Diagram depicting the general operation of Bi-LSTM. Bi, bidirectional; LSTM, long short-term memory.
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study, encompassing fault analysis [25], [26] and renewable energy
[27], [28].

This approach is primarily based on swarm filtering (SWF) [28]. The
method involves the foraging behavior of a swarm. There are two
interaction forces in the swarm for successful foraging: driving force
and cohesion. The driving force is denoted as F,,(n, i);

Far (n,0)=Porey (1) =P (n—1) (12)

In the above equation, i and n represent the number of members
and the number of steps, respectively. The location information of
the prey is denoted by P, . For all members of the swarm, the alerted
cohesion force is denoted as F,_, (n, i);

coh

M
Fooni =ﬁ Zf(P,[n—ﬂ—P, (n-1) (13)

j=j#
f(d):—sgn(d).ln[de (14)

The above equations are represented in terms of the sign and
logarithmic functions, sgn(.) and In(.), respectively. The distances
between members and the critical distance are denoted as dand d,,
respectively. M represents the number of swarms, and in order for
the swarm to track its prey, the position and velocity information are
updated at each step as follows:

VilnJ=Vi[n 1]+ 8.(F8,; +Fén;) (15)
P[n]=P[n-1]+8.V[n) (16)
The parameter 6, as shown in the equations, is used to control the

flexibility of the swarm. The output of SWF is determined by the fol-
lowing equation.

TABLE I. INFORMATION ABOUT THE DATASETS

Turbine Name Standard Deviation Turbine Number Power

West of Duddon Sands 72.0836 108 3888 MW
Barrow 28.1497 30 90.0 MW
Horns Power 51.1955 49 160 MW

y[njzs.zfif,.[n] (17)

In the above equation, f is the scale parameter that influences the
members of the swarm.

I1l. EXPERIMENTAL RESULTS

In this study, a desktop computer equipped with an Intel i5-7500
processor and 16 GB RAM was used as the hardware. Matlab 2020b
was employed for data analysis and prediction processes. The maxi-
mum number of epochs for the models was set to 50, with a mini-
mum batch size of 16, and the Adam optimizer was selected for the
training process. We used well-known metrics such as MSE, root MSE
(RMSE), mean absolute error (MAE), and R? to compare the models.

A. Datasets

The forecasting models were trained and tested on wind power data
from three different regions of real offshore wind farms. The datasets
consist of 1-year records recorded at 1-hour intervals. These farms
include the West of Duddon Sands and Barrow wind farms located
between England and Ireland, and the Horns Power wind farm
situated near the coasts of Denmark in the North Sea. Information
regarding the datasets is summarized in Table I.

B. Prediction Results and Analysis

This section presents the results of the predictions made within the
scope of the study, both for the training and testing phases, dis-
played in tabular form. Additionally, the test results of all models for
each region are provided in graphical format.

C. Results for West of Duddon Sands Dataset

Table Il and Table Il display the forecasting results of the models
based on LSTM and Bi-LSTM for the West of Duddon Sands dataset,
respectively. Here, the hybrid models have been further categorized
into EMD-WD and EMD-SWD, incorporating a secondary decom-
position. Here, in the results in the table, the best metric values are
indicated in bold.

Upon examining the values presented in the aforementioned tables,
it becomes evident that the EMD-SWD-LSTM model emerges as the
optimal forecasting model during the training phase. Conversely,
the testing phase yields superior performance from the EMD-
SWD-Bi-LSTM model. The R? values corresponding to the LSTM and
Bi-LSTM models are illustrated graphically in Fig. 2.

Fig. 3 presents the forecasting test results of the implemented
models for West of Duddon Sands. It is obtained that the EMD-SWD

TABLE Il. THE FORECASTING RESULTS OF LSTM-BASED MODELS FOR THE WEST OF DUDDON SANDS REGION

LSTM EMD-LSTM EMD-WD-LSTM EMD-SWD-LSTM
Metrics Training Test Training Training Test Training Test
MSE 384.23 381.38 11857 189.56 31333 342.16 95.874 113.95
RMSE 19.602 19.529 10.889 13.768 17.701 18498 9.7915 10.675
MAE 13.951 14.207 7.938 10.872 10.814 11.565 7.3311 8.384
R? 0.92774 0.91559 0.9777 0.95805 0.95126 0.9388 0.98197 0.97478

EMD, empirical mode decomposition; LSTM, long short-term memory; MAE, mean absolute error; MSE, mean square error; RMSE, root mean square error; SWD,

swarm decomposition; WD, wavelet decomposition.
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TABLE Ill. THE FORECASTING RESULTS OF BI-LSTM-BASED MODELS FOR THE WEST OF DUDDON SANDS REGION

Bi-LSTM EMD-Bi-LSTM EMD-WD-Bi-LSTM EMD-SWD-Bi-LSTM
Metrics Training Test Training Test Training Test Training Test
MSE 362.21 349.84 144.97 136.22 327.79 342.58 101.71 99.336
RMSE 19.032 18.704 12.04 11.671 18.105 18.509 10.085 9.9668
MAE 11.962 11.145 9.134 8.8001 11.657 11.503 7.4792 7.6334
R? 0.93188 0.92257 0.97274 0.96985 0.94901 0.93873 0.98087 0.97801

Bi, bidirectional; EMD, empirical mode decomposition; LSTM, long short-term memory; MAE, mean absolute error; MSE, mean square error; RMSE, root mean square
error; SWD, swarm decomposition; WD, wavelet decomposition.
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Fig. 2. Results of (a) training and (b) testing phases of hybrid deep learning models for West of Duddon Sands dataset. Bi, bidirectional; EMD,
empirical mode decomposition; LSTM, long short-term memory; MAE, mean absolute error; MSE, mean square error; RMSE, root mean square
error; SWD, swarm decomposition; WD, wavelet decomposition.
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Fig. 3. Results of hybrid deep learning models for West of Duddon Sands. Bi, bidirectional; EMD, empirical mode decomposition; LSTM, long
short-term memory; MAE, mean absolute error; MSE, mean square error; RMSE, root mean square error; SWD, swarm decomposition; WD, wavelet
decomposition.
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TABLE IV. THE FORECASTING RESULTS OF LSTM-BASED MODELS FOR THE BARROW REGION

LSTM EMD-LSTM EMD-WD-LSTM EMD-SWD-LSTM
Metrics Training Test Training Test Training Test Training Test
MSE 85.584 77.555 19.553 19.988 11.686 18.836 1753 19.245
RMSE 92512 8.8065 44219 44708 3.4185 4.34 4.1868 4.3869
MAE 5.8682 56011 3.2652 3.3104 2.5464 3.5442 3.1402 3.3108
R? 0.89963 0.87972 0.97707 0.969 0.98606 0.9707 0.97944 0.97015

EMD, empirical mode decomposition; LSTM, long short-term memory; MAE, mean absolute error; MSE, mean square error; RMSE, root mean square error; SWD,

swarm decomposition; WD, wavelet decomposition.

based hybrid proposed model results give the best fit to the real
data, while the standalone models’ results display the most dis-
crepancies. Upon examination of the plots, it becomes evident
that the EMD-SWD-Bi-LSTM model exhibits the highest degree of
success.

D. Results for Barrow Dataset

In this subsection, for the Barrow dataset, we presented the compari-
son results of all hybrid deep learning-based forecasting models used
in this study. The error performance values of the LSTM, EMD-LSTM,
EMD-WD-LSTM, and EMD-SWD-LSTM models for predictions in

the Barrow region are shown in Table IV, while the error performance
values for predictions using the Bi-LSTM, EMD-Bi-LSTM, EMD-WD-
Bi-LSTM, and EMD-SWD-Bi-LSTM models are shown in Table V. Here,
within the table results, the superior metric values are highlighted
in bold.

Upon examining the results in these tables, it is observed that the
EMD-WD-LSTM model was the most successful during the training
phase, while the EMD-SWD-Bi-LSTM model performed best during
the testing phase. R? values for the models using LSTM and Bi-LSTM
are shown in the graphs in Fig. 4.

TABLE V. THE FORECASTING RESULTS OF BI-LSTM-BASED MODELS FOR THE BARROW REGION.

Bi-LSTM EMD-Bi-LSTM EMD-WD-Bi-LSTM EMD-SWD-Bi-LSTM
Metrics Training Test Training Test Training Test Training Test
MSE 79.715 69.033 17.634 15.658 19.86 21.79 18111 14.05
RMSE 8.9284 8.3086 4.1993 3.9571 44565 4.6679 4.2557 3.7484
MAE 6.3167 5.8006 3.0517 29132 3.5261 34785 3.156 2.7601
R? 0.90651 0.89294 0.97932 097572 0.97631 0.96611 0.97876 0.97821

Bi, bidirectional; EMD, empirical mode decomposition; LSTM, long short-term memory; MAE, mean absolute error; MSE, mean square error; RMSE, root mean square

error; SWD, swarm decomposition; WD, wavelet decomposition.
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Fig. 4. Results of (a) training and (b) testing phases of hybrid deep learning models for Barrow dataset. Bi, bidirectional; EMD, empirical mode
decomposition; LSTM, long short-term memory; MAE, mean absolute error; MSE, mean square error; RMSE, root mean square error; SWD, swarm
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Fig. 5. Results for Barrow LSTM and Bi-LSTM-based models. Bi, bidirectional; EMD, empirical mode decomposition; LSTM, long short-term
memory; MAE, mean absolute error; MSE, mean square error; RMSE, root mean square error; SWD, swarm decomposition; WD, wavelet

decomposition.

Fig. 5 illustrates the outcome of model predictions during the testing
phase. Upon closer examination of the graphs, it becomes evident
that the EMD-SWD-Bi-LSTM hybrid model exhibits the most accu-
rate and effective prediction curve compared to other models.

E. Results for Horns Power Dataset

In this subsection, the wind power prediction results of all models
for the Horns Power dataset are evaluated. The error performance
values of the LSTM-based hybrid models for forecasts in the West
of Duddon Sands region are presented in Table VI, while the error
performance values found for forecasts using Bi-LSTM-based hybrid
models are summarized in Table VII. Here, in the table results, the
best metric values are highlighted in bold.

As can be seen from these tables, the best hybrid model for the train-
ing phase is the EMD-SWD-LSTM model. For the testing phase, the
EMD-SWD-LSTM model showed the best performance, except for
the MAE value where the LSTM model performed best. Additionally,
the R? values for LSTM and Bi-LSTM-based hybrid models are pre-
sented in the graphs in Fig. 6.

Fig. 7 presents the graphs illustrating the wind power prediction
results generated by each hybrid model during the testing phase.
Examination of both the graphs and accompanying tables reveals
that the LSTM model for Horns Power achieved noteworthy perfor-
mance metrics, with RMSE, MSE, and MAE values of 23.833, 568.02,
and 13.472, respectively. These findings lead to the conclusion that
the LSTM model outperformed other models in terms of predictive
accuracy. In contrast to other datasets, the efficacy of this second-
ary decomposition hybrid model diminished for the present dataset
due to extended intervals of zero crossing points when power gen-
eration is absent. Specifically, this unique scenario was intentionally
included in the analysis without applying data filtering or reference
point selection. The prolonged duration of zero crossing points leads
to adverse transitions in the separated signals, thereby reasoning to
the degradation of model performance within the hybrid models.

IV. CONCLUSION

In this study, LSTM and Bi-LSTM-based hybrid models were devel-
oped for wind predictions. During the development of the hybrid

TABLE VI. THE FORECASTING RESULTS OF LSTM-BASED MODELS FOR THE HORNS POWER REGION.

LSTM EMD-LSTM EMD-WD-LSTM EMD-SWD-LSTM
Metrics Training Test Training Test Training Test Training Test
MSE 41642 541.45 115.94 654.87 52841 25609 98.163 558.56
RMSE 20406 23.269 10.767 2559 22987 160.03 9.9077 23.634
MAE 14.221 15497 7.5895 14.346 14.031 50.659 6.8884 13.083
R? 0.84025 0.79402 0.95552 0.75087 0.88104 048722 0.96234 0.78751

EMD, empirical mode decomposition; LSTM, long short-term memory; MAE, mean absolute error; MSE, mean square error; RMSE, root mean square error; SWD,

swarm decomposition; WD, wavelet decomposition.
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TABLE VII. THE FORECASTING RESULTS OF BI-LSTM-BASED MODELS FOR THE HORNS POWER REGION.

Bi-LSTM EMD-Bi-LSTM EMD-WD-Bi-LSTM EMD-SWD-Bi-LSTM
Metrics Training Test Training Test Training Test Training Test
MSE 430.73 568.02 125.86 770.13 494.26 22200 98.504 568.96
RMSE 20.754 23.833 11219 27.751 22232 149 9.9249 23.853
MAE 12.405 13472 7.9517 15 13.24 47.182 6.913 13.089
R? 0.83476 0.78391 0.95172 0.70702 0.88872 0.55549 0.96221 0.78355

Bi, bidirectional; EMD, empirical mode decomposition; LSTM, long short-term memory; MAE, mean absolute error; MSE, mean square error; RMSE, root mean square
error; SWD, swarm decomposition; WD, wavelet decomposition.
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Fig. 6. Results of (a) training and (b) testing phases of hybrid deep learning models for Horns power dataset. Bi, bidirectional; EMD, empirical
mode decomposition; LSTM, long short-term memory; MAE, mean absolute error; MSE, mean square error; RMSE, root mean square error; SWD,
swarm decomposition; WD, wavelet decomposition.
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Fig. 7. Results for Horns power LSTM and Bi-LSTM-based models. Bi, bidirectional; EMD, empirical mode decomposition; LSTM, long short-term
memory; MAE, mean absolute error; MSE, mean square error; RMSE, root mean square error; SWD, swarm decomposition; WD, wavelet
decomposition.
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models, the EMD, WD, and SWD decomposition methods were used.
The EMD method served as the primary decomposition, while the
WD and SWD methods were used as secondary decomposition
methods. It was observed that the use of secondary decomposition
methods generally improved the success rate of the models in mak-
ing predictions.

The EMD-WD-LSTM model demonstrated superior performance
during the training phase for the Barrow dataset, achieving an
impressive MSE of 11.686 and an R? value of 0.98606. However, in the
testing phase, the EMD-SWD-Bi-LSTM model claimed the top posi-
tion with an MSE of 14.05 and an R? of 0.97821. Turning to the Horns
Powers dataset, the EMD-SWD-LSTM model excelled during train-
ing, boasting MSE and R? values of 98.163 and 0.96234, respectively.
Nevertheless, during the testing phase, the LSTM model emerged
as the frontrunner, attaining the best results with an MSE of 541.45
and an R? of 0.79402. Finally, for the West of Duddon Sands dataset,
the EMD-SWD-LSTM model showcased superior performance in the
training phase, recording MSE and R? values of 95.874 and 0.98197.
Conversely, in the testing phase, the EMD-SWD-Bi-LSTM model
outperformed its counterparts with MSE and R? rates of 99.336 and
0.97801, respectively. These comprehensive findings underscore
the nuanced dynamics of model performance across diverse data-
sets and phases. The difference between LSTM and Bi-LSTM-based
models in the successful models was generally minimal. Thus, it can
be concluded that LSTM and Bi-LSTM-based models exhibit similar
success rates.

In conclusion, the results of wind power predictions for the three
datasets show that hybrid models including secondary decomposi-
tion methods generally produce more accurate forecasts. However,
as the number of methods used in hybrid models increases, the
running times required for the model to perform the predictions
also increase. For future research, the exploration of incorporating
meta-heuristic approaches to fine-tune LSTM parameters could be
considered.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - M.B, U.Y., Design - M.B., UY., ED,
Supervision - U.Y.,, E.D,; Data Collection and/or Processing - M.B., E.D,
Analysis and/or Interpretation - M.B., U.Y., E.D,; Literature Review - M.B., E.D.;
Writing - M.B., U.Y.; Critical Review - U.Y., E.D.

Declaration of Interests: The authors have no conflict of interest to declare.

Funding: The authors declared that this study has received no financial
support.

REFERENCES

1. Z.Shang, Y. Chen, Y. Chen, Z. Guo, and Y. Yang, “Decomposition-based
wind speed forecasting model using causal convolutional network and
attention mechanism,” Expert Syst. Appl., vol. 223, p. 119878, 2023.
[CrossRef]

2. E.Tefera, M. Martinez-Ballesteros, A. Troncoso, and F. Martinez-Alvarez,
“A new hybrid cnn-LSTM for wind power forecasting in ethiopia,” in Int.
Conf. Hybrid Artif. Intell. Syst. Berlin: Springer, 2023, pp. 207-218.

3. X.Liu, L. Zhang, J. Wang, Y. Zhou, and W. Gan, “A unified multi-step wind
speed forecasting framework based on numerical weather prediction
grids and wind farm monitoring data,” Renew. Energy, vol. 211,
pp. 948-963, 2023. [CrossRef]

4. X.Wang, X. Li, and J. Su, “Distribution drift-adaptive short-term wind
speed forecasting,” Energy, vol. 273, p. 127209, 2023. [CrossRef]

20.

21.

22.

23.

24,

25.

354

M. Galphade, V. Nikam, B. Banerjee, and A. W. Kiwelekar, “Comparative
analysis of wind power forecasting using LSTM, bilstm, and gru,” in Int.
Conf. Frontiers Intell. Comput.: Theory Appl. Berlin: Springer, 2022,
pp. 483-493.

K. Moharm, M. Eltahan, and E. Elsaadany, “Wind speed forecast using
LSTM and bi-LSTM algorithms over gabal el-zayt wind farm,”in Int. Conf.
Smart Grids Energy Syst. (SGES), Vol. 2020. IEEE Publications, 2020,
pp. 922-927. [CrossRef]

Y. Hao, W. Yang, and K. Yin, “Novel wind speed forecasting model based
on a deep learning combined strategy in urban energy systems,” Expert
Syst. Appl., vol. 219, p. 119636, 2023. [CrossRef]

S.Tuy, H.S. Lee, and K. Chreng, “Integrated assessment of offshore wind
power potential using weather research and forecast (wrf) downscaling
with sentinel-1 satellite imagery, optimal sites, annual energy produc-
tion and equivalent CO, reduction,” Renew. Sustain. Energy Rev., vol. 163,
p. 112501, 2022. [CrossRef]

H. Chen, “A comprehensive statistical analysis for residuals of wind
speed and direction from numerical weather prediction for wind
energy,” Energy Rep., vol. 8, pp. 618-626, 2022. [CrossRef]

J. Dong, W. Zeng, L. Wu, J. Huang, T. Gaiser, and A. K. Srivastava,
“Enhancing short-term forecasting of daily precipitation using
numerical weather prediction bias correcting with xgboost in differ-
ent regions of china,” Eng. Appl. Artif. Intell., vol. 117, p. 105579, 2023.
[CrossRef]

C. Liu, X. Zhang, S. Mei, Q. Zhou, and H. Fan, “Series-wise attention
network for wind power forecasting considering temporal lag of
numerical weather prediction,” Appl. Energy, vol. 336, p. 120815, 2023.
[CrossRef]

M.-D. Liu, L. Ding, and Y.-L. Bai, “Application of hybrid model based on
empirical mode decomposition, novel recurrent neural networks and
the arima to wind speed prediction,” Energy Convers. Manag.-Ment,
vol. 233, p. 113917, 2021. [CrossRef]

X. Liu, Z. Lin, and Z. Feng, “Short-term offshore wind speed forecast by
seasonal arima-a comparison against gru and Istm,” Energy, vol. 227,
p. 120492, 2021. [CrossRef]

S. Singh, S. N. Singh, and A. Mohapatra, “Repeated wavelet transform
based arima model for very short-term wind speed forecasting,” Renew.
Energy, vol. 136, pp. 758-768, 2019. [CrossRef]

S. Qureshi, F. Shaikh, L. Kumar, F. Ali, M. Awais, and A. E. Girel, “Short-
term forecasting of wind power generation using artificial intelligence,”
Environ. Chall., vol. 11, p. 100722, 2023. [CrossRef]

W.Yang, Z.Tian, and Y. Hao, “A novel ensemble model based on artificial
intelligence and mixed-frequency techniques for wind speed forecast-
ing,” Energy Convers. Manag., vol. 252, p. 115086, 2022. [CrossRef]

F. Rodriguez, A. M. Florez-Tapia, L. Fontan, and A. Galarza, “Very short-
term wind power density forecasting through artificial neural networks
for microgrid control,” Renew. Energy, vol. 145, pp. 1517-1527, 2020.
[CrossRef]

F. A. Nahid, W. Ongsakul, and N. M. Manjiparambil, “Short term multi-
steps wind speed forecasting for carbon neutral microgrid by decom-
position based hybrid model,” Energy Sustain. Dev., vol. 73, pp. 87-100,
2023. [CrossRef]

M. Mansoor, A. F. Mirza, M. Usman, and Q. Ling, “Hybrid forecasting mod-
els for wind-pv systems in diverse geographical locations: Performance
and power potential analysis,” Energy Convers. Manag., vol. 287,
p. 117080, 2023. [CrossRef]

B. S. Bommidi, K. Teeparthi, and V. Kosana, “Hybrid wind speed forecast-
ing using iceemdan and transformer model with novel loss function,”
Energy, vol. 265, p. 126383, 2023. [CrossRef]

Z. Zhao et al., "Hybrid vmd-cnn-gru-based model for short-term fore-
casting of wind power considering spatio-temporal features,” Eng. Appl.
Artif. Intell., vol. 121, p. 105982, 2023. [CrossRef]

M. C.Yilmaz, and Z. Orman, “LSTM derin 6grenme yaklasimi ile Covid-19
pandemi surecinde twitter verilerinden duygu analizi,” Acta Infologica,
vol. 5, no. 2, pp. 359-372, 2019. [CrossRef]

Z. Guo, W. Zhao, H. Lu, and J. Wang, “Multi-step forecasting for wind
speed using a modified emd-based artificial neural network model,”
Renew. Energy, vol. 37, no. 1, pp. 241-249, 2012. [CrossRef]

G. K. Apostolidis, and L. J. Hadjileontiadis, “Swarm decomposition: A
novel signal analysis using swarm intelligence,” Signal Process., vol. 132,
pp. 40-50, 2017. [CrossRef]

G.Vashishtha, S. Chauhan, M. Singh, and R. Kumar, “Bearing defect iden-
tification by swarm decomposition considering permutation entropy


https://doi.org/10.1016/j.eswa.2023.119878
https://doi.org/10.1016/j.renene.2023.05.006
https://doi.org/10.1016/j.energy.2023.127209
https://doi.org/10.1109/SGES51519.2020.00169
https://doi.org/10.1016/j.eswa.2023.119636
https://doi.org/10.1016/j.rser.2022.112501
https://doi.org/10.1016/j.egyr.2022.07.080
https://doi.org/10.1016/j.engappai.2022.105579
https://doi.org/10.1016/j.apenergy.2023.120815
https://doi.org/10.1016/j.enconman.2021.113917
https://doi.org/10.1016/j.energy.2021.120492
https://doi.org/10.1016/j.renene.2019.01.031
https://doi.org/10.1016/j.envc.2023.100722
https://doi.org/10.1016/j.enconman.2021.115086
https://doi.org/10.1016/j.renene.2019.07.067
https://doi.org/10.1016/j.esd.2023.01.016
https://doi.org/10.1016/j.enconman.2023.117080
https://doi.org/10.1016/j.energy.2022.126383
https://doi.org/10.1016/j.engappai.2023.105982
https://doi.org/10.26650/acin.947747
https://doi.org/10.1016/j.renene.2011.06.023
https://doi.org/10.1016/j.sigpro.2016.09.004

26.

Electrica 2024; 24(2): 346-356
Balcr et al. A Combined Model Based on Secondary Decomposition and LSTMs

measure and opposition-based slime mould algorithm,” Measurement,
vol. 178, p. 109389, 2021. [CrossRef]

C. Xiao, and J. Yu, “Adaptive swarm decomposition algorithm for com-
pound fault diagnosis of rolling bearings,” IEEE Trans. Instrum. Meas.,
vol. 72, pp. 1-14, 2023. [CrossRef]

27.

28.

355

E. Dokur, “Swarm decomposition technique based hybrid model for very
short-term solar pv power generation forecast,” Electron. Elektrotech.,
vol. 26, no. 3, 79-83, 2020. [CrossRef]

E. Dokur, N. Erdogan, M. E. Salari, C. Karakuzu, and J. Murphy, “Offshore
wind speed short-term forecasting based on a hybrid method: Swarm
decomposition and meta-extreme learning machine,” Energy, vol. 248,
p. 123595, 2022. [CrossRef]


https://doi.org/10.1016/j.measurement.2021.109389
https://doi.org/10.1109/TIM.2022.3231324
https://doi.org/10.5755/j01.eie.26.3.25898
https://doi.org/10.1016/j.energy.2022.123595

Electrica 2024; 24(2): 346-356
Balcr et al. A Combined Model Based on Secondary Decomposition and LSTMs

Mehmet Balci received the BS degree from the Electrical and Electronics Department, and the MS degree in the Computer
Engineering Department, Bilecik Seyh Edebali University, Bilecik, Ttrkiye in 2012 and 2019, respectively. He earned his PhD
in electronics and computer engineering from Bilecik Seyh Edebali University in 2019. His research interests include deep
learning algorithms, artificial neural networks, and renewable energies. He has been an IT staff member at Bilecik Seyh
Edebali University since 2015.

Ugur Yiizgeg received the BS degree from the Electronics and Communication Engineering Department, Yildiz Technical
University, Istanbul, Trkiye, in 1995, and the MS and PhD degrees from the Electronics and Communication Engineering
Department, Kocaeli University, Kocaeli, Turkiye, in 1999 and 2005, respectively. From 1998 to 2010, he was a research
assistant with the Electronics and Communication Engineering Department, Kocaeli University. Since 2020, he has been
a Professor with the Computer Engineering Department, Faculty of Engineering, Bilecik Seyh Edebali University, Tlrkiye.
His research interest includes intelligent systems and control, fuzzy and neuro-fuzzy systems, meta-heuristic algorithms,
unmanned aerial vehicles, and numeric techniques in optimization problems.

Emrah Dokur received the BSc degree in electrical and electronics engineering from Istanbul University, Ttrkiye, in 2010,
the MSc degree in electrical engineering from Istanbul Technical University, Tirkiye, in 2013, and the PhD degree in
energy systems engineering from Bilecik Seyh Edebali University. He was a Postdoctoral Researcher with the Marine and
Renewable Energy Center (MaREI), University College Cork, Ireland. Since 2022, he has been an associate professor with
the Electrical Electronics Engineering Department, Bilecik Seyh Edebali University. His current research interests include
high voltage engineering, renewable energy systems, and power system analysis. He received the Postdoctoral Fellowship
Award from the Scientific and Technological Research Council of Tlrkiye, in 2020, to conduct research in Ireland.

356



