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ABSTRACT

For guaranteeing the safe and effective functioning of aircraft, image processing techniques can be a valuable tool to detect and evaluate aircraft panel values. In 
the pursuit of this objective, a dataset covering multiple aircraft models, various sessions, and different lighting conditions was compiled. Four tasks were examined 
through comparative analysis: object detection, display classification, needle masking, and needle angle detection. YOLOv8 demonstrated high performance in object 
detection and classification. In the classification task, the adaptability of needle-type device reading was examined by using the well-established models VGG16, 
Mobilenet V2, and Xception. Denoising autoencoder, U-net, and GrabCut methods were examined for needle masking, and the least squares method was applied to 
detect needle angle. As we move from the proof-of-concept phase to envisioning the development of an end-to-end system, this work provides significant analysis of 
image processing methodologies for reading aircraft dashboards.
Index Terms—Aircraft analog indicators, cockpit dashboard reading, image processing, pointer needle detection.
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I. INTRODUCTION

The Federal Aviation Administration (FAA) mandates the presence of recording devices on cer-
tain aircraft to collect crucial flight data, including the Cockpit Voice Recorder (CVR) and Flight 
Data Recorder (FDR) [1]. Exemptions exist for specific aircraft, but many countries, like Türkiye 
under Directorate General of Civil Aviation (DGCA) regulations [2], impose requirements for FDRs. 
The absence of FDRs on some planes complicates aviation safety investigations. To address this, 
lightweight recording equipment, such as cameras capturing instrument panels, offers a poten-
tial solution for obtaining critical information in incidents. This approach could significantly con-
tribute to aviation safety, minimizing pilot distraction, automating maintenance processes, and 
enhancing anomaly prediction. Gumus and Eyupoglu [3] explored the motivation behind captur-
ing and processing the cockpit dashboard extensively in their literature review.

The readings and measurements collected from the instruments and gauges on the control 
panel of an aircraft are known as aircraft panel values. These values are crucial for ensuring the 
safe and efficient operation of the aircraft. Typically, pilots or other crew members check these 
values during flight [3].

To monitor the performance of aircraft and identify any problems that may develop, image 
processing techniques can be used to detect and evaluate these panel values. Using machine 
learning (ML) techniques to analyze images of the control panel and identify indicator readings 
shown on the panel is one typical way to identify panel values with image processing. This is 
accomplished by training a ML model on a huge dataset of labeled images, where the labels rep-
resent the values shown on the panel. The model may then be utilized for classifying new control 
panel images and retrieving panel values. Another way is to analyze the images using computer 
vision methods to discover characteristics such as the forms and edges of the instruments and 
gauges on the panel. These characteristics may then be used to detect and extract panel values 
from images. There are inherent drawbacks in a dynamic flying environment, such as time-spatial 
oscillation during a video recording, although instrument reading in a constant environment is 
similar [3]. The aims and contributions of this study are as follows:
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• Meticulously curated a dataset featuring various aircraft models, 
sessions, and lighting conditions, providing a valuable and diverse 
resource for the research community in the domain of needle-
type instrument reading.

• Proposed an image processing-based approach for reading nee-
dle-type instruments on aircraft.

• Explored the image processing algorithms’ efficacy in the context 
of needle-type instrument reading by a task-based approach.

The remainder of the paper was organized as follows: Section II 
emphasized the need for recording and logging cockpit readings, 
listing the chosen literature organized by research motivation, and 
evaluating approaches utilized in various application areas, while 
Section III presented the used dataset and proposed approach. 
Section IV shows the experimental results and discussions. Finally, 
conclusions are summarized in Section V.

II. RELATED WORK

Various methods have been employed in recent studies for iden-
tifying and reading pointer instruments using machine vision. 
Salomon et  al. [4] presented a dial meter reading approach incor-
porating YOLOv4 with an Xception-based AngReg model, achiev-
ing an identification rate of 98.9%. A dial meter reading system was 
developed by Devyatkin et al. [5] using the OpenCV library, involv-
ing illumination alignment, the Otsu method for image binarization, 
Hough transform, and angle processing. Ding and Zhang [6] utilized 
YOLOv3 for meter location, Hough transform for dial region extrac-
tion, and a combination of differentiable binarization and CRNN for 
scale extraction, achieving reading recognition through deflection 
angle calculation. Liu et al. [7] introduced a pointer meter reflection 
detection method based on YOLOv5s, perspective transformation, 
YUV color space, and enhanced k-means clustering with curve fit-
ting, achieving a detection accuracy of 80.9%. Li et  al. [8] focused 
on substation dial gauges, employing MSRCR for image enhance-
ment, circle detection using the arc-support line segment based on 
the Hough transform, and RANSAC for pointer positioning and angle 
procedure.

Ma et al. [9] proposed an adaptive dual-pointer identification model 
incorporating Gaussian filtering, etching, dilation, Canny operator 
for edge detection, and the Hough transform for instrument dial 
detection. Chavan et  al. [10] proposed an analog gauge reading 
method based on HSV color space segmentation, binary thresh-
olding, morphological operations, Canny edge detection, Hough 
transform, and angle technique. In the study of Zhang et al. [11], 
a pointer meter reading recognition model was described, incor-
porating binarization, smooth denoising, edge detection, Hough 
transform for pointer line identification, silhouette approach for 
pointer position detection, and angle procedure stages, with a 
recognition accuracy rate of 98.07%. Li et  al. [12] employed the 
Canny edge detector, Mask R-CNN, and angle method for SF6 pres-
sure gauge reading. Sun et  al. [13] utilized grayscale processing, 
Gaussian filtering, and the Otsu technique for image enhance-
ment, extracting intersectant dual-pointer and pointer locations 
through the Hough transform. Hou et al. [14] presented a wireless 
sensor network-based pointer meter reading approach involving 
the Otsu method for image pre-processing, Hough transforms for 
round dial location, least squares method, and Zhang’s thinning 
algorithm for pointer detection, and further steps for indicated 
value calculation.

Analyzing trends in measurements and natural phenomena, such as 
weather patterns, to detect indicators of potential natural catastro-
phes or aircraft irregularities is a valuable application. In the study 
of Nagarajan et al. [15], indicator values like altimeter, RPM gauge, 
fuel flow, and manifold pressure gauge were logged for future analy-
sis. The study employed SSD Mobilenet v2 for dial identification 
and traditional image processing for dial reading, achieving 98.6% 
detection accuracy and 98% reading accuracy. Khan et al. [16] dem-
onstrated this by monitoring airspeed and engine speed indications 
using two cameras, employing kernel techniques for simulation, and 
achieving an RMSE of 0 under real-world flight conditions.

Ensuring efficient flight operations and safety is crucial, with timely 
maintenance being a key factor. Addressing safety and maintenance, 
Hsiao et  al. [17] applied the Canny edge detector and dynamic 
thresholding for dial edge detection, incorporating a “rotating 
needle mask” for needle angle determination. Zhang et al. [18] used 
an embedded image processing system with FPGA, employing 
grayscale transformation and template matching for dial reading. 
Similarly, Ricciardia and Minwalla [19] focused on airworthiness certi-
fication, utilizing a single camera aimed at the attitude indicator and 
torque gauge. They explored pixel intensity differences and binary 
thresholding for preprocessing and emphasized the importance of 
camera mounting location for effective area selection. Data extrac-
tion involved needle angle determination, aiming to reduce the time 
and cost of obtaining cockpit equipment permission. Extracting 
data, specifically determining the needle angle, play a crucial role 
in minimizing both the time and cost required to obtain permission 
for cockpit equipment. This process ensures a thorough check, com-
paring the values read from the system with those displayed on the 
dashboard screen to assess the device’s reliability.

Pilot inattention was the number one cause of accidents according 
to several studies. It is important to monitor the devices in espe-
cially critical flight stages so that a warning can be issued in case of a 
risky maneuver. Pilot attention can shift when unexpected incidents 
occur, and the dashboard could be left unattended such as in the 
cases reported by NASA [20]. Moreover, the visual attention of pilots 
does not uniformly cease across all sections of the instrument panel 
[21]. Automatic monitoring of an aircraft’s control panel during criti-
cal stages, such as takeoff and landing, is essential for ensuring safe 
flying performance [22-26]. Deviations from predicted parameter 
values require prompt pilot action, emphasizing the significance 
of monitoring flight parameter indicators. Tappan and Hempleman 
[27] monitored six indications using an array of cameras, relying on 
OpenCV as a toolbox. They successfully recognized needle locations 
within 2.9 degrees of predicted values, aiming to learn from and fol-
low human pilot behavior. Tunca et al. [28] used YOLOv4 for real-time 
object detection of cockpit instruments, achieving an F1-score of 
0.99 with GrabCut for needle mapping, aiming to reduce pilot effort 
through automated reading. Khan et al. [29] proposed a system for 
pilot assistance, using cameras to monitor airspeed and RPM gauges. 
They employed image subtraction and one-dimensional kernel con-
volutions for frame extraction, predicting needle angles, and catego-
rizing readings using Bayesian theory.

This literature review including the studies mentioned above identi-
fied critical challenges and opportunities in needle-type instrument 
reading, specifically in the context of aircraft cockpit instrumenta-
tion. The unique challenges encompass factors such as sunlight, 
aerial maneuvers, and environmental conditions contributing to 
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color-contrast changes, reflections, and shadows. These intricacies 
highlighted the need for specialized methodologies in image pro-
cessing tailored to the distinct conditions of cockpit image capture.

Moreover, the exploration unveiled the potential application of 
image processing in real-time settings, notably within Virtual Reality 
(VR) helmets. Ernst et  al. [30] demonstrated the significant advan-
tages of integrating essential cockpit indicators into a pilot’s VR hel-
met during flight, emphasizing the potential for improved safety and 
operational efficiency.

Addressing the pervasive data scarcity challenge in the aviation 
domain, our review emphasized the difficulty in accessing confiden-
tial flight data recorded by instrument panel cameras. ML algorithms, 
while promising, face limitations in performance due to insufficient 
training data. Anticipating these challenges, we identified two key 
research directions for future investigations.

Firstly, the exploration of software simulations emerged as a viable 
solution, as evidenced by existing practices. Simulations offer a 
controlled environment for data acquisition, mitigating challenges 
related to data confidentiality and accessibility. Secondly, the grow-
ing trend of privacy-preserving ML, exemplified in applications like 
satellite image processing [31], presents a promising avenue for 
safeguarding sensitive information while harnessing the power of 
ML algorithms.

To bridge these gaps in the literature, our current study strategically 
addresses the identified challenges by leveraging a carefully curated 
dataset obtained through the GeoFS simulation environment. By 
adopting this approach, we aim to contribute valuable insights 
and methodologies to the field, paving the way for advancements 
in image processing techniques tailored to the unique demands of 
aircraft cockpit instrumentation. This strategic move aligns with the 
anticipated research directions, facilitating progress in overcoming 
data scarcity challenges and ensuring the confidentiality of sensitive 
flight data in future investigations.

III. MATERIALS AND METHODS

The materials utilized in our research, including the meticulously 
curated dataset, serve as the basis for our investigations. Additionally, 
the methods employed, ranging from image processing algorithms 
to transfer learning approaches, are detailed to provide a clear and 
transparent account of our experimental design.

A. Dataset Description
Our dataset construction, tailored for needle-type instrument read-
ing in aircraft, adheres to essential criteria derived from our previous 
survey: 1) Accessibility: prioritizing ethical standards, privacy regu-
lations, and open data sharing, our dataset encourages transpar-
ency and collaboration within the research community. 2) Aircraft 
diversity: to enhance generalizability, the dataset includes different 
aircraft types, capturing variations in cockpit configurations and 
facilitating a comprehensive evaluation of image processing algo-
rithms. 3) Varied lighting settings: meticulously designed to repli-
cate actual aircraft environments, the dataset incorporates diverse 
lighting conditions, ensuring our study addresses the challenges of 
needle-type instrument reading under varying illumination.

These requirements bolster the scientific rigor of our dataset, 
precisely meeting the demands of our research objectives and 

contributing to advancements in image processing methodologies 
for aviation contexts.

1) Data Collection
The dataset was collected using the GeoFS simulation environment 
[32]. GeoFS is an online flight simulation platform that replicates 
real-world flying conditions. It offers a global scenery with accurate 
terrain and weather representations. Users can choose from a vari-
ety of aircraft and navigate through different locations, experiencing 
changes in time of day, season, and geographical settings.

The inclusion of various aircraft types, including Cessna 172 Modern, 
Alphajet PAF, and Piper Cub, ensures a comprehensive evaluation of 
needle-type instrument reading across different cockpit configura-
tions and flying characteristics. Sessions are conducted at different 
times of day (morning, afternoon, and evening) and seasons (Winter, 
Summer, and Spring), introducing variability in lighting conditions 
and weather patterns. This enables the assessment of algorithm per-
formance under a spectrum of environmental scenarios. The data 
were collected in five sessions as indicated in Table I.

To enhance the usability of the dataset for our research objectives, 
we employed a meticulous annotation process. Skilled annotators 
carefully labeled each image to identify needle-type instruments. 
The annotation process involved selecting the area of interest (dash-
board), identifying the dials (airspeed indicator, altimeter, attitude 
indicator, heading indicator, turn coordinator, vertical speed indi-
cator, and other dials), and annotating the needle position of the 
airspeed indicator. We only focused on the needle position of the 
airspeed indicator out of our six named indicators because mark-
ing needle positions is a very labor-intensive task, and we wanted to 
deliver our proof-of-concept experiments swiftly.

2) Data Preprocessing
Before model training and evaluation, the dataset underwent prepro-
cessing steps to ensure consistency and eliminate potential biases. 
We identified four tasks, each required specific preprocessing steps: 
Object Detection, Dial Classification, Needle Mask Composition, and 
Needle Angle Detection. The dataset splits for each task are pre-
sented in Table II.

For Object Detection, images were resized to 640 × 640 pixels, and 
pixel values were normalized to [0,1]. The dataset was split into train-
ing (70%), validation (20%), and test (10%) samples.

TABLE I. DATASET COLLECTION SESSIONS OVERVIEW

Session Aircraft Location Time of Day Season

1 Cessna 172 
Modern

Chamonix—Alps—
France

16:30 Winter

2 Cessna 172 
Modern

Florence—
Tuscany—Italy

09:30 Summer

3 Cessna 172 
Modern

Sahara—Algeria 14:30 Spring

4 Alphajet PAF Acrop olis—
Athens—Gre ece

12:00 Spring

5 Piper Cub Acrop olis—
Athens—Gre ece

18:30 Spring



Electrica 2024; 24(2): 425-435
Gümüşand Eyüpoğlu. An Image Processing-Based Approach for Reading Needle-Type Instruments on Aircraft

428

In Dial Classification, dials were cropped, resized to 88 × 88 pixels, 
and pixel values normalized to [−1,1]. An additional step for dial clas-
sification was data augmentation, which included random rotation 
and horizontal flipping. The dataset was then divided into training 
(80%), validation (16%), and test (4%) samples. Class labels and dis-
tribution for the task are as in Table III.

Needle Mask Composition and Needle Angle Detection shares data-
set and preprocessing steps. For those tasks, dials were cropped, and 
the airspeed indicator was filtered. Further preprocessing involved 
resizing to 88 × 88 pixels, grayscale transformation, and Otsu’s 
Thresholding [33]. The training set constitutes 94% of the dataset, 
while the test set comprises 6%, with no validation set specified for 
this task.

B. Breakdown of the Tasks
The study examined four tasks: Object Detection, Dial Classification, 
Needle Mask Composition, and Needle Angle Detection. In contrast 
to proposing an end-to-end system where tasks are interconnected 

sequentially, each task was independently examined. An end-to-end 
system typically involves a sequential flow, taking and processing 
output from the previous task, such as framed video input, object 
detection of dashboard and dials, dial classification of the detected 
objects, composing a needle mask, and finding needle angle. 
However, our approach deviates by investigating each task in isola-
tion, assuming perfect input accuracy from the preceding task. This 
method allows for a focused analysis of each task’s performance, 
contributing to a nuanced understanding of individual components 
and facilitating targeted improvement strategies.

Fig. 1 depicts a typical end-to-end needle-type instrument reading 
system. In this work, the four tasks were handled independently. We 
proposed to perform object detection and classification tasks in one 
go with the YOLO v8 model [34]. We also presented further analy-
sis on the classification task separately, utilizing transfer learning on 
different models: VGG16 [35-37], MobileNet V2 [38], and Xception 
[39]. A visual comparative result analysis of needle masking was per-
formed on a denoising autoencoder, U-net model [40], and GrabCut 
[41]. Finally, the least-square method was applied to detect the nee-
dle angle.

1) Models and Algorithms
Most object detection algorithms employ regions to locate objects 
within an image, focusing on areas with high probabilities of con-
taining the object, a.k.a. two-stage detection. YOLO (You Only Look 
Once) is a one-stage detector. It utilizes a single convolutional net-
work to predict both bounding boxes and class probabilities for 
these boxes, providing a unique approach compared to region-
based algorithms. YOLOv8, being a leading-edge state-of-the-art 
model released in 2023, advances upon its predecessors by intro-
ducing new features and enhancements. It accommodates a wide 
array of vision AI tasks, such as detection, segmentation, pose esti-
mation, tracking, and classification.

YOLO is a one-stage algorithm; it detects and classifies at the same 
time. Therefore, classification is done in its inherent architecture. For 
proof-of-concept inspection of the four identified tasks individually, 
we also performed transfer learning with some of the well-known 
image classification models (Table IV). The dials were extracted by 
the reference of the ground-truth bounding boxes, and a separate 
classification dataset was formed. Each base model was trained for 
10 epochs, and the initial weights of Imagenet were transferred.

Denoising convolutional autoencoders were employed with the 
goal of removing noise (background) and enhancing the clarity of 
the needle on the instruments. Autoencoders consist of an encoder 
and a decoder. The encoder compresses the input image into a 

TABLE II. DATASET SPLITS FOR TRAIN, VALIDATION, AND TEST

Task
Train 

Samples
Validation 

Samples
Test 

Samples

Object Detection 5144 1470 734

Dial Classification 43 909 8782 2195

Needle Mask Composition 
and Needle Angle Detection

6953 Not 
applicable

456

TABLE III. DIAL CLASSIFICATION TASK CLASS DISTRIBUTION

Class Number of Samples Class Distribution

Airspeed indicator 6956 7%

Altimeter 7353 8%

Attitude indicator 6984 7%

Dashboard 6666 7%

Heading indicator 6961 7%

Other dial 48 411 50%

Turn coordinator 5898 6%

Vertical speed indicator 6713 7%

Fig. 1. A typical end-to-end needle-type instrument reading system.



Electrica 2024; 24(2): 425-435
Gümüşand Eyüpoğlu. An Image Processing-Based Approach for Reading Needle-Type Instruments on Aircraft

429

latent space representation, and the decoder reconstructs the image 
from this representation while reducing noise. The autoencoder was 
composed of two convolutional layers (each 32 units) with max pool-
ing in the encoder and two deconvolutional layers (each 32 units) in 
the decoder. It was designed for 2D input; thus, grayscale conversion 
was needed at the preprocessing step.

U-Net is designed for semantic segmentation tasks. Its architec-
ture incorporates a contracting path (encoder) to capture context 
and a symmetric expanding path (decoder) for precise localization. 
U-net (Fig. 2) was composed of four downsampling blocks (64, 128, 
256, and 512 units), a bottleneck (1024 units), and four upsampling 
blocks (512, 256, 128, and 64 units).

GrabCut is an interactive segmentation algorithm that separates 
an image into foreground and background based on user-specified 
initializations. Unlike the previous two segmentation algorithms, 
GrabCut requires a rough bounding box selection around the nee-
dle manually. This bounding box serves as an initial estimate of the 
foreground. Each pixel is considered a mixture of Gaussians, with 
parameters learned from the image data. The segmentation prob-
lem is formulated as an energy minimization task, where the energy 
function is defined based on color and spatial proximity.

GrabCut utilizes a Gaussian Mixture Model (GMM) to represent 
each pixel in an image, with each Gaussian component modeling 
distinct color distributions. Parameters are learned during initializa-
tion based on a user-provided bounding box. The GMM captures 
color variability, enabling the algorithm to handle complex fore-
ground and background colors. The segmentation problem is 
framed as an energy minimization task, considering both color and 

spatial proximity. Through iterative updates, GrabCut refines the 
GMM parameters and segmentation based on the bounding box, 
enhancing accuracy for an interactive and precise foreground-back-
ground segmentation result.

The procedure in GrabCut is neither entirely manual nor automatic. 
The system operator can assign an area of interest to the algorithm 
based on the make and model. In our experiments, the optimal area 
of interest is identified around the base of the needle, achieved by 
dividing the device bounding box into a 3-by-3 grid and selecting 
the central part. Therefore, once the system operator establishes 
the ideal grid for the device under monitoring, the process becomes 
automatic for aircraft of the same make and model. Without selecting 
an initial interest area, the algorithm extracts a clutter of foreground 
information, not solely the needle. In such cases, significantly more 
post-processing would be required.

The final task detection of needle angle is a relatively easy task, pre-
suming a correct needle mask got delivered from the pipeline. The 
least squares method for needle angle detection is a mathematical 
approach that aims to find the best-fitting line through a set of data 
points representing the position of a needle. In the context of needle 
angle detection, the method is applied to determine the orienta-
tion of the needle based on the positions of its tip and tail. As it was 
assumed that a suitable input is provided via the image processing 
pipeline, the tail should be in the center of the dials, and the other 
end of the tail.

2) Evaluation Metrics
Evaluation of object detection primarily entails bounding box loss 
(Equations 1 and 2), classification loss (Equation 3), and depth focal 
loss. The box loss measures the difference between the predicted 
bounding box and the ground truth coordinates. It is often com-
puted using a regression loss, such as Mean Squared Error (MSE).

MSE
n

y y
i

n

i i� �� �
�
�1

1

2˘  (1)

In calculating MSE for object bounding boxes, n is the number of 
bounding box coordinates (4 for x, y, width, and height in object 

TABLE IV. BASE MODEL INFORMATION FOR THE CLASSIFICATION TASK

Base Model Model Size Parameter Depth

VGG16 528 MB 138.4 M 16

Mobilenet V2 14 MB 3.5 M 105

Xception 88 MB 22.9 M 81

Fig. 2. The general architecture of U-net.
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detection), where yi is the ground truth bounding box coordinate 
and y̆ i  is the corresponding predicted bounding box coordinate. 
Bounding box loss is the final MSE value that represents the average 
squared difference between predicted and ground truth bounding 
box coordinates (Equation 2).

Box Loss MSE MSE MSE MSEx y w h� � � �� �1
4

 (2)

The final box loss is the average MSE for the four ground-truth, 

and prediction values where MSE x xx gt� �� �˘ 2
, MSE y yy gt� �� �˘ 2

,  

MSE w ww gt� �� �˘ 2
, MSE h hx gt� �� �˘ 2

 as gt stands for “ground-

truth”, hat symbols for predictions, and w and h for width and height 
respectively.

The classification loss assesses the model’s object classification per-
formance, determined by computing the softmax cross-entropy 
loss. During the classification process, the model predicts class prob-
abilities for each bounding box, generating a probability distribution 
across all possible classes for every identified object. This distribu-
tion is obtained through the application of a softmax activation.

Crossentropy Loss y p
i

C

i i� � � �
�
�

1

. ˘log  (3)

Equation 3 describes a basic cross-entropy loss function where C is 
the number of classes, yi is the ground truth probability for class i, 
and p̆i  is the respective predicted probability.

Focal Loss is an enhanced version of Cross-Entropy Loss designed to 
handle class imbalance. It achieves this by assigning more weight 
to challenging or easily misclassified examples (e.g., background 
with noise, partial objects) and down-weighting simpler examples 

(e.g., background objects). The depth focal loss is specific to YOLOv8 
and contributes to the model’s ability to estimate distances; the 
exact equation was not released by the creators of the model as of 
the date.

In the context of object detection, mean Average Precision (mAP) 
is a widely used metric to evaluate the performance of models like 
YOLOv8. Two common variations of mAP are mAP50 and mAP50-
95, which are calculated based on the Intersection over Union (IoU) 
metric.

The average precision for a specific class and IoU threshold is calcu-
lated by computing the precision–recall curve and taking the area 
under the curve (AUC). The precision-recall curve is created by vary-
ing the confidence threshold for object detection and calculating 
precision and recall values at each threshold. Precision and recall 
are calculated by Equations 4 and 5. The average precision is then 
obtained by interpolating the precision-recall curve and calculating 
the area under it.

Precision
TruePositives

TruePositives False Positives
�

�
 (4)

Recall
TruePositives

TruePositives FalseNegatives
�

�
 (5)

The two mAP variants are calculated by Equations 6 and 7, where C 
is the number of classes, APc

50 is the average precision at IoU of 50 for 
class c, and APtc is the Average Precision at IoU threshold t for class 
c. The sum is taken over the IoU threshold range from 50 to 95, and 
the division by 11 represents the number of thresholds in that range.

mAP
C

AP
c

C
c

50

1

50
1

�
�
�  (6)

Fig. 3. YOLO v8 object detection training, where box_loss is bounding box loss, cls_loss is classification loss, dfl_loss is depth focal loss, mAP is 
the mean average precision metric at IoU of 50 (mAP50), and at the IoU range of 50–95 (mAP50-95).
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mAP
C

AP
c

C

t

t
c

50 95

1 50

95
1 1

11
�

� �

� � �  (7)

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In our pursuit of dataset diversification, we meticulously curated data 
from five distinct sessions, involving three different aircraft mod-
els and varied lighting conditions. The YOLOv8 model, renowned 
for its robustness, demonstrated exceptional efficiency, achieving 
peak performance within a few epochs, as illustrated in Fig. 3. In the 
evaluation of the test set, YOLOv8 exhibited remarkable accuracy, 
boasting scores of mAP 99.5%, precision 99.9%, and recall 99.9%. 
Furthermore, its robust generalization was validated on additional 
held-out images from a brief sixth flight session, affirming consistent 
and accurate predictions. For clarity, an illustrative example, com-
plete with ground-truth references, is presented in Figs. 4 and 5.

In the dial classification task, we leveraged transfer learning by 
employing three base models: VGG16, Mobilenet V2, and Xception. 
The accuracy results, as depicted in Table V, showcase the perfor-
mance across three different scenarios:

• Without re-training: The base models were utilized without 
undergoing any additional training on the specific dial classifica-
tion task. The models retained the knowledge gained from their 
pre-training on large-scale datasets but were not adapted to the 
nuances of the dial classification domain. Consequently, the per-
formance in this setting reflects the models’ generic understand-
ing without specialization for the task at hand.

• Frozen re-training: The base models were incorporated into the 
dial classification task architecture, and certain layers were fro-
zen, preventing further updates to their weights. This approach 
allowed the model to adapt to the dial classification task while 
retaining the valuable knowledge acquired during pre-training on 
broader datasets.

• Fine-tuning: This scenario involved training the entire model, 
including all layers, on the dial classification dataset. Unlike the 
‘Frozen Re-training’ scenario, here, all parameters of the base 
model were open for updates.

As the results in Table V indicate, classification without re-training 
meant no adaptation to the dial classification domain. All models 
suffer, but especially Xception. Re-training the model on a frozen 
setting or not did not make a major difference.

Fig. 4. Dashboard illustration for reference.

Fig. 5. YOLOv8 prediction on a sample. All dials were correctly classified with the annotated confidence scores.
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Needle masking was a particularly hard problem to tackle. We identi-
fied two main reasons:

• Limited contrast: needles may have limited contrast against the 
background or dial, especially in cases of poor lighting conditions 
or reflective surfaces. This lack of contrast makes it challenging for 
computer vision algorithms to accurately identify and mask the 
needles.

• Noise and interference: noise in images or interference from other 
elements on the dashboard, such as markings or shadows, can fur-
ther complicate the task of accurately masking needles.

An example of input-desired output is shown in Fig. 6. We manually 
annotated the training set for the autencoder and U-net models. As 
shown examples in Fig. 7, the outputs were not ideal. Denoising con-
volutional autoencoder and U-net was unsuccessful. Training these 
models further, not only did not provide any improvement, but at 
10 epochs the needle itself disappeared completely. In contrast, 
GrabCut was near perfect; however, it required manual annotation 
of the needle bounding box.

As our study centers on data collection and proof-of-concept anal-
ysis, we did not annotate the angles of the needles, precluding us 
from conducting an angle error analysis at this stage. It is notewor-
thy to mention, however, that the least squares method emerged as 

TABLE V. ACCURACY RESULTS FOR THE CLASSIFICATION TASK

Base Model
Without 

Re-training
Frozen 

Re-training Finetuning

VGG16 0.1427 0.9945 1.0

Mobilenet V2 0.1113 0.9963 1.0

Xception 0.0333 0.9858 0.9995

Fig. 6. Input (left) and desired output (right) for needle mask task.

Fig. 7. Input and needle mask outputs: (a) Denoising convolutional autoencoder input and output at epochs 3 and 10. (b) U-net architecture 
input and output at epochs 3 and 10. (c) GrabCut algorithm input and output.
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an effective technique for angle estimation, leveraging the provided 
needle masks (Fig. 8).

V. CONCLUSION

In this study, we undertook a comprehensive exploration of needle-
type instrument reading in aircraft through the collection and analy-
sis of a curated dataset. Emphasizing the independent execution of 
key tasks such as object detection, dial classification, needle mask 
composition, and needle angle detection, we laid the foundation for 
a systematic understanding of image processing methodologies in 
the aviation context.

The dataset, comprising data from diverse sessions, aircraft models, 
and varying lighting conditions, serves as a valuable resource for 
future research endeavors. Our approach, rooted in a proof-of-con-
cept framework, aimed to showcase the efficacy of individual tasks, 
highlighting the capabilities of advanced models like YOLOv8 in this 
specialized domain.

On the needle mask task, three approaches were examined sepa-
rately. Denoising autoencoder and U-net did not yield desirable 
outcomes, and GrabCut required manual preprocessing. The three 
methods are to be used as a pipeline in a future study, with different 
classes of annotated dials. These algorithms complement each other: 
Denoising autoencoders enhance image quality, U-Net performs 
precise segmentation, and GrabCut refines the obtained masks for 
the most accurate representation of needle-type instruments. By 
experimenting with these approaches, the goal is to optimize the 
process of needle mask composition, ensuring high-quality masks 
that can be further utilized for needle angle detection and other rel-
evant analyses in the context of aircraft instrument reading.

While our current focus remains on discrete task analysis, the pros-
pect of developing an end-to-end system looms on the horizon. The 
seamless integration of individual tasks into a cohesive, intercon-
nected system represents the logical next step, promising a holistic 
solution for needle-type instrument reading on aircraft dashboards.
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