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ABSTRACT

The aim of this paper is to evaluate the optimization capabilities of the salp swarm algorithm (SSA), a metaheuristic algorithm capable of addressing contemporary global 
challenges. The paper focuses on assessing SSA as an optimizer and observing its impact as a predictor in an example energy problem to gauge its predictive power. 
Salp swarm algorithm (SSA) distinguishes itself with its optimization capabilities, providing effective solutions to optimization problems. The quality, competitiveness, 
and efficiency of the algorithm were initially assessed using the CEC 2019 and CEC 2020 function sets. The results demonstrated that SSA is a competitive, effective, 
and up-to-date algorithm. This competitive nature suggests that SSA can be effectively employed across a wide range of problems. Therefore, the paper aims to 
evaluate its success in providing solutions to an energy prediction problem. In addressing the challenge of effective energy utilization, the accurate prediction of heat 
loading (HL) and cool loading (CL) factors, critical in building design, contributes significantly to the solution. In solving this problem, machine learning algorithms, 
specifically the multi-layer perceptron (MLP) as an artificial neural network architecture, were chosen. SSA was approached in a supervised manner, and a comparison 
with alternative metaheuristic algorithms was conducted. The obtained results indicate that the SSA-based MLP architecture (SSA-MLP) exhibits effective predictive 
capabilities in energy problems. By combining the optimization power of SSA and the learning capabilities of MLP, a robust solution with a competitive advantage in 
energy efficiency is presented.
Index Terms—Energy efficiency problem, metaheuristic algorithm, machine learning algorithm, multi-layer perceptron, salp swarm algorithm
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I. INTRODUCTION

In recent years, the world has witnessed significant scientific and industrial advancements. 
Alongside these developments, there is a growing need to address numerous complex, high-
dimensional, and nonlinear optimization problems. Solving nonlinear problems entails find-
ing the best solution among possible solutions, a process referred to as optimization [1]. 
Mathematically, optimization problems can be modeled as

min f x g x h x x Q� � � �� � � � �, , ,0 0  (1)

Here, f(x) represents the problem to be minimized, while g(x) ≤ 0 and h(x) = 0 denote functions 
representing the constraints of the problem [2]. The solution of optimization problems involves 
specific algorithmic processes, and it is important to note that not every algorithm can solve 
all problems. In other words, while one algorithm may be capable of solving certain problems, 
another algorithm may be suited for different types of problems. This underscores the absence 
of a universal algorithm for all problems [3]. The two fundamental methods for solving problems 
are the gradient method [4] and metaheuristic methods [5]. Metaheuristic algorithms are struc-
tures inspired by nature, characterized by their simple and linear formations. These algorithms 
are widely applied in engineering research and various fields due to their population-based 
randomizations. They are essentially divided into evolutionary and swarm-based algorithms [6]. 
Metaheuristic methods have become increasingly prevalent in recent years. This is attributed to 
their non-reliance on derivatives, flexible structures, and their ability to provide more optimal 
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solutions in a shorter time [7]. Some initial works in this area include 
Genetic Algorithm (GA) [8], Particle Swarm Optimization (PSO) 
[9], Artificial Bee Colony (ABC) [10], and Ant Colony Optimization 
(ACO) [11]. Subsequently, numerous algorithms such as Grey Wolf 
Optimizer (GWO) [10], Harris Hawks Optimization (HHO) [12], Hunger 
Games Search (HGS) [13], and Dandelion Optimizer (DO) have been 
introduced. Metaheuristic algorithms are widely used in many indus-
trial areas such as solving classical engineering problems as real-
world problems, design problems, automotive industry, wind farms, 
and heat transfer mechanisms [14-16].

In this paper, the swarm-based Salp Swarm Algorithm’s prob-
lem-solving performance was initially assessed. The Salp Swarm 
Algorithm (SSA), introduced in 2017, is an optimization algorithm 
based on the swarm mechanism of salps, offering a biology-
inspired approach [17]. Salp Swarm Algorithm has been applied 
not only to address various optimization problems but also to solve 
problems mathematically modeled in diverse fields such as indus-
try, medicine, education, and various aspects of life. Furthermore, it 
has found utility in different domains, including machine learning, 
engineering design, wireless network formation, image process-
ing, and power energy optimization [18]. SSA, in its essence, inves-
tigates the swarming behavior of salps in the oceans. It leverages 
the chain formation behavior of salps as they navigate the ocean. 
SSA’s implementation is straightforward, efficient, and capable of 
producing flexible results [19]. However, akin to many metaheuris-
tic algorithms, SSA may encounter challenges such as early conver-
gence or stagnation by getting trapped in local optima. Therefore, 
there is a need for further enhancement to address these issues for 
improved problem-solving [20-21]. Function sets, often referred to 
as quality functions, are employed to reveal the solution quality 
of metaheuristic algorithms. In this paper, the optimization power 
of the SSA algorithm is demonstrated using the CEC2019 [22] and 
CEC2020 [23] function sets, known to complicate the path to global 
solutions [24].

As a competitive algorithm, SSA establishes another objective of 
applying its capabilities to real-world problems, aiming to achieve 
specific results after evaluating its performance superiority. In this 
context, the training of a non-linear problem, the multi-layer percep-
tron (MLP), serves as an exemplary case [25]. MLP is utilized in super-
vised learning architectures for classifying data in artificial neural 
network training. The inclusion of a hidden layer between input and 
output layers in MLP training results in a higher data classification 
rate and a lower error rate [26]. There exists a rich literature on the 
use of metaheuristic algorithms in the training of MLP [27].

The objective in the training of SSA-based MLP (SSA-MLP) is to eval-
uate the algorithm’s capability in solving energy-related problems. 
According to the International Energy Agency (IEA), the increase in 
energy consumption today, with 34% of energy consumption being 
energy spent in buildings, points to a significant problem [28]. The 
need for saving in energy consumption has led to the search for 
new methods. Energy used in buildings is utilized through heating, 
cooling, ventilation, and air conditioning (HVAC). The HVAC system 
is designed to create favorable air conditions inside the building by 
calculating the HL and CL factors of the building through heating, 
cooling, and ventilating the air inside the building. Estimation of HL 
and CL factors in buildings is important for reducing consumption 
according to the occupancy level, managing energy demands of 
the change in the performance of the building, reducing emissions 

of  harmful gases, and reducing costs thanks to accurate estima-
tion [29]. The required cooling and heating capacities are estimated 
according to basic factors such as building characteristics, utilization, 
and climatic conditions. Optimum design of HVAC systems plays an 
important role in ensuring energy saving [30]. In this context, the 
interior design of buildings is important in terms of human health 
as well as saving energy consumption, and HVAC systems are gener-
ally the preferred active systems to achieve this saving. In order to 
maximize high efficiency and energy saving, HVAC systems should 
be designed in accordance with the climatic conditions of the build-
ing [31].

Studies focused on predicting energy consumption in buildings 
contribute significantly to energy conservation efforts and mitigat-
ing environmentally harmful effects. In this research, the energy effi-
ciency performance for heating load (HL) and cooling load (CL) in 
buildings was predicted through MLP, utilizing a dataset obtained 
from the UCI Machine Learning Repository [32].

The article is organized into three main sections: the introduction in 
the first section, the definition, operational mechanism, and applica-
tion areas of the SSA algorithm in the second section, and the meth-
odology and techniques divided into two subsections in the third 
section. The first subsection involves the performance evaluation of 
the SSA algorithm, comparing it with alternative contemporary and 
effective algorithms, namely Prairie Dog Optimization Algorithm 
(PDO) [33], Hunger Games Search Optimizer (HGS) [13], Archimed 
Optimization Algorithm (AOA) [34], and Harris Hawks Optimization 
(HHO) [12]. This comparison is carried out using performance tables 
consisting of statistical metrics and convergence curves through 
CEC 2019 and CEC 2020. The second subsection focuses on the cre-
ation of the SSA-based MLP (SSA-MLP) architecture, addressing the 
prediction of the energy problem dataset and generating tables 
with statistical measurement tools. Additionally, the interpretation 
of the data through median is presented using box-plot graphs. The 
final section, titled “Results,” evaluates the paper and sheds light on 
future research directions.

II. SALP SWARM ALGORITHM

A. Definition and Mathematical Expression of the SSA Algorithm
Algorithms based on swarm intelligence techniques mimic the 
collective behaviors exhibited by living organisms that move in 
groups in nature. The SSA algorithm is a swarm-based algorithm 
that emulates the behaviors of salp communities. Salp swarms 
form a specific chain while swiftly and synchronously moving in 
the oceans, displaying a distinctive foraging behavior. This organ-
ism propels itself by pumping water similar to a jellyfish to capture 
plankton in the ocean. The foraging behavior is characterized by 
the spontaneous formation of this chain. Individuals in front of the 
chain move spontaneously toward the food, while those behind 
the chain mimic the previous movement, resembling swarm 
behavior. The mathematical model of these specific behaviors of 
the chain constitutes the SSA algorithm. There are sources validat-
ing the efficient operation of the SSA algorithm in both small and 
large-scale problems.

Similar to various optimization techniques, SSA possesses some 
advantages (strengths) and a few disadvantages (weaknesses) [28]. 
These include simplicity, strong convergence acceleration, effective-
ness in global search, adaptability, robust and flexible structure, as 
well as completing the optimization process in a reasonable time 
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frame. Its main disadvantage is susceptibility to early convergence 
[19, 35-36].

The mathematical modeling of the SSA algorithm is provided in 
Equations 1, 2, and 3. If we refer to the mentioned chain as the salp 
chain, this chain can be divided into two parts: leaders (θ) and fol-
lowers (α) [37].

In SSA, the population of this salp chain is evenly divided into two 
parts. The leader moves in real-time toward the location of the 
food source (S:S∈θ S S:� �� ). This optimal solution, or the most 
suitable solution, is represented by the position of the leader in 
Equation 2.

S
F c ub lb c lb c

F c ub lb c lb c
j

j j j j

j j j j

�
� �� � �� � �

� �� � �� � �

�
�
� 1 2 3

1 2 3

0

0���
 (2)

Here, Fj  represents the position of the prey, while ub j  and lb j  denote 
the upper and lower bounds in the array, respectively. Similarly, c2  
and c3  are random numbers in the [0,1] range. The parameter c1  is 
a control parameter that plays a crucial role in adjusting the explora-
tion and exploitation phases during the optimization process, and it 
is expressed in Equation 3.
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Here, t  and Tmax  represent the current and maximum iteration num-
bers, respectively. Subsequently, the position of the i-th follower, 
M M Mj

i :�� �� , is updated according to Newton’s second law of 
motion based on the position of the follower closest to the leader. 
The position of the i-th follower is modeled according to Equation 4.

M M M ij
i

j
i

j
i� �� � ��1

2
21  (4)

Equations 1 and 3 lead the reader to the simulation of salp chain 
behavior [26].

B. SSA Algorithm and Examples of Various Versions
The SSA has been applied in various domains such as automatic volt-
age regulator (AVR) systems [38], quality test functions [39], feature 
selection, training artificial neural networks [40], early detection of 
diabetes, gender differences in voice data, sensor networks, central 
models, and engineering design problems [41]. Due to its simple 
architecture and superior performance in the optimization process, 
the SSA algorithm has been successfully applied to many real-world 
problems. However, in some complex optimization problems, the 
issue of getting stuck in local optima is a challenge faced by the SSA 
algorithm. To address this, a new Enhanced Salp Swarm Algorithm 
(ESSA) has been proposed by hybridizing the SSA algorithm with 
three strategies, including OL, QI, and GOL, achieving improved per-
formance [42]. Similarly, to overcome not only local optima but also 
the problem of entering into a deadlock in solving certain problems, 
an enhanced version of the SSA algorithm (DSSA) has been sug-
gested [43].

The SSA has been rejuvenated through various modifications 
developed by researchers to solve comprehensive optimization 
problems [44]. They have produced binary solutions to enhance 

the exploration and exploitation capabilities of the SSA algorithm 
[40]. In the TCSSA algorithm, a new binary solution has been pro-
posed to improve the leadership structure of SSA, ensuring a more 
successful exploitation phase. A salp swarm algorithm based on 
the simplex method (SMSSA) has been proposed. This unidirec-
tional method is a random variant strategy that increases the num-
ber of search agents in the considered swarm and enhances the 
local searchability of the algorithm. This method not only helps 
achieve a more suitable balance between the exploration and 
exploitation stages of SSA but also makes SSA more robust and 
faster [45]. An SSAPSO algorithm, a hybridization of the SSA and 
PSO algorithms, has been developed to solve a feature selection 
problem [46].

In the proposed CME algorithm, the aim is to develop a new hybrid 
space exploration method that combines both deterministic and 
metaheuristic algorithms to rapidly summarize a definable map in 
an unknown environment. The process is optimized using the meta-
heuristic SSA to create a finite map with a multi-robot system. It 
generates random parameters that assist in determining the robot’s 
next best positions, influencing the robot’s subsequent movement. 
As a result, the SSA selects the robot’s next movement position [47].

III. METHOD AND APPROACH

The SSA algorithm’s quality and performance power were initially 
statistically reported. In the second stage, a real-world non-linear 
problem was solved. Addressing an energy problem, machine learn-
ing algorithms were employed for the classification of data in the 
dataset through MLP training. The SSA-MLP hybrid algorithm was 
utilized in a supervised manner for this purpose.

A. Superiority of SSA Algorithm Performance
Like all metaheuristic algorithms, the SSA algorithm exhibits a com-
petitive nature. CEC 2019 and CEC 2020 function sets were used to 
compare the performance power of the algorithm with alternative 
algorithms. Thirty independent runs were conducted for each algo-
rithm using the MATLAB program. The search agent number was 
set to 30 as initial parameters, and 500 iterations were performed in 
each run. The best results are indicated in bold. The performance of 
the SSA algorithm, along with alternative algorithms, was measured 
through statistical metrics such as mean, standard deviation, the 
best value, and the worst value. Additionally, the convergence trends 
of the SSA algorithm were observed over 500 iterations through con-
vergence curves, reporting instances of early convergence or local 
minima.

To determine whether the results of the SSA algorithm obtained 
through the benchmark functions are different from the alternative 
algorithms, the P-value is performed at the 5% significance level. The 
results were evaluated in three different categories. winn (W) indi-
cates that the SSA algorithm creates a completely different dataset, 
till (T) indicates that it does not have a very different dataset, and lost 
(L) indicates that there is no significant difference between SSA and 
the alternative algorithm [48].

The parameter settings of the SSA algorithm and alternative algo-
rithms are given in Table I given below. 

B. Measurement of Performance Superiority with CEC 2019
The CEC 2019 function set is contemporary and widely utilized 
in various studies. The function set includes F1–F3 functions with 
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multimodal characteristics and F4–F10 functions with multi-
modal shifted and rotated features. This function set is particularly 
employed in the exploration phase for revealing the universal opti-
mum point. CEC2019 functions parameters is given by Table II, and 
Table III shows the experimental results. 

Table IV shows that the SSA algorithm produces a different dataset 
than the alternative algorithms, but due to the size of some bench-
mark functions and the inertia of the SSA algorithm in exceeding the 
local optimum, it produces a similar dataset with HGS in F4, F5, F8, 
and F10, with AOA in F8 and with HHO in F7. These results should 
be considered as a successful result although the CEC2019 dataset 
makes it difficult to find the global optimum.

Given the multimodal nature of all functions in the CEC 2019 func-
tion set, it serves as a metric for evaluating an algorithm’s early 
convergence and local area traversal capabilities. In other words, 
it assesses the algorithm’s exploratory capabilities. In Table III, SSA 
algorithm has demonstrated superior performance in terms of aver-
age values in functions F3, F4, F5, as well as F8 and F9 within the 
CEC 2019 function set. The fundamental characteristic of these func-
tions being multimodal shifted and rotated indicates the algorithm’s 
exceptional exploratory capabilities.

Additionally, examining the convergence curves visualized in Fig. 1 
in parallel with this table reveals that functions F3, F4, F5, F8, and F9 
converge regularly and steadily. It is observed that these functions 
do not experience early convergence and consistently approach the 
optimal point in each iteration, showcasing the algorithm’s effec-
tiveness across various functions.

C. Measurement of Performance Superiority with CEC 2020
The CEC 2020 function set is designed to test the algorithm with 
variables ranging from 5, 10, 20, 30, 50, up to 100 dimensions. This 
paper specifically addresses problems with 10 dimensions. Within 
the CEC 2020 function set whose basic parameters are given in 
Table V, F1 is single mode, F2--F4 is multimode, F5--F7 exhibits 
hybrid features and F8--F10 has combination features.This function 
set is a contemporary and effective tool for revealing both local and 
global optima, making it instrumental in evaluating algorithmic 
performance.

When Table VII is analyzed, it is seen that the SSA algorithm pro-
duces a different dataset than the alternative algorithms, but due 
to the size of some benchmark functions and the inertia of the 
SSA algorithm in exceeding the local optima, it produces a simi-
lar dataset with HGS in F3, F4, F5, F8, and F10, with AOA in F8 and 
with HHO in F7. The CEC 2020 set is a quality function set that has 
been successful in demonstrating the superiority of the algorithm 
in many studies. It has a structure that challenges the algorithm 
with difficult problems, especially in overcoming local optimum 
points and reaching the global best result. The robustness of the 
competitive structure of the SSA algorithm has been demonstrated 
experimentally.

In the CEC 2020 function set, F1 represents a unimodal structure, 
evaluating the algorithm’s capacity to surpass local optima. This 
allows an analysis of the convergence performance. Upon examin-
ing the result of the SSA algorithm on the F1 function, it can be 
concluded that it exhibits a significantly superior performance 
compared to alternative algorithms, indicating a robust conver-
gence performance. Functions F5, F6, and F7 exhibit a hybrid struc-
ture, while F8, F9, and F10 have a composition structure. These 
functions harbor numerous local optima, showcasing both the 
algorithm’s ability to avoid local optima and its balance between 
exploration and exploitation. The SSA algorithm demonstrates a 
superior performance on these functions compared to alternative 
algorithms, implying a strong balance between exploration and 
exploitation.

Functions F2, F3, and F4 have a multimodal structure, assessing 
an algorithm’s ability for early convergence and overcoming local 
optima. While the SSA algorithm may not exhibit the utmost per-
formance on these functions, it still achieves competitive results. 
Upon inspecting Fig. 2 alongside Table VI, it is evident that the SSA 

TABLE I. BASIC PARAMETERS OF ALGORITHMS

Algorithms Parameters Value

SSA c1 parameter balances 
the stages of exploration 
and exploitation

c1∈ [0,1] 

PDO ρ constant is the special 
food source alarm

ρ = 0.1 kHz

HGS l parameter is to improve 
the algorithm
LH parameter is the 
hunger threshold

l=0.08
LH=10, 100, 1000

AOA α indicates the exploit 
accuracy of the iterations
µ parameter sets search 
process

α = 5
µ = 0.499

HHO E parameter sets the 
transition of the HHO 
between processes

|E| ≥ 0.5, soft containment occurs
|E| < 0.5, hard containment occurs

TABLE II. CEC2019 FUNCTIONS DEFINITY PARAMETERS

Functions Dimension Search Interval
Fitting 
Value

F1: Storn’s Chebyshev 
Polynomial Fitting Problem

9 [−8192, 8192] 1

F2: Inverse Hilbert Matrix 
Problem

16 [−16 384, 16384] 1

F3: Lennard–Jones Minimum 
Energy Cluster

18 [-4.4] 1

F4: Rastrigin’s Function 10 [−100, 100] 1

F5: Griewangk’s Function 10 [−100, 100] 1

F6: Weierstrass Function 10 [−100, 100] 1

F7: Modified Schwefel’s Function 10 [−100, 100] 1

F8: Expanded Schafer’s F6 
Function

10 [−100, 100] 1

F9: Happy Cat Function 10 [−100, 100] 1

F10: Ackley Function 10 [−100, 100] 1
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TABLE III. STATISTICAL RESULTS OF ALGORITHMS VIA CEC 2019

Function Metric SSA PDO HGS AOA HHO

F01 Mean 8.8064E+09 6.7995E+04 4.5615E+04 2.4349E+09 5.2612E+04

Std 1.2064E+10 2.6059E+04 1.1296E+04 6.1103E+09 5.3745E+03

Best 2.9787E+08 4.4845E+04 3.9036E+04 7.5185E+05 4.4909E+04

Worst 4.7209E+10 1.4308E+05 9.8576E+04 2.1395E+10 6.3537E+04

F02 Mean 1.7348E+01 1.7806E+01 1.7343E+01 1.9314E+01 1.7361E+01

Std 1.6047E−02 4.7927E−01 1.1814E−12 4.1514E−01 1.0900E−02

Best 1.7343E+01 1.7347E+01 1.7343E+01 1.8391E+01 1.7345E+01

Worst 1.7407E+01 1.8998E+01 1.7343E+01 1.9848E+01 1.7397E+01

F03 Mean 1.2702E+01 1.2702E+01 1.2702E+01 1.2703E+01 1.2702E+01

Std 9.0336E−15 1.0691E−06 1.0164E−07 1.0947E−03 8.6649E−06

Best 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01

Worst 1.2702E+01 1.2702E+01 1.2702E+01 1.2706E+01 1.2702E+01

F04 Mean 3.5255E+01 1.4406E+04 3.9087E+01 1.1587E+04 1.6897E+02

Std 1.6125E+01 5.7814E+03 2.1402E+01 6.2419E+03 6.6621E+01

Best 1.2934E+01 6.7489E+03 9.9531E+00 4.7120E+03 7.3361E+01

Worst 6.7656E+01 2.8405E+04 8.8556E+01 3.0665E+04 3.3801E+02

F05 Mean 1.1879E+00 4.2123E+00 1.2027E+00 4.0258E+00 2.3724E+00

Std 1.2113E−01 7.0672E−01 1.5064E−01 8.0967E−01 5.9370E−01

Best 1.0738E+00 2.8865E+00 1.0370E+00 2.3112E+00 1.3620E+00

Worst 1.6761E+00 5.8989E+00 1.8255E+00 5.3789E+00 3.9881E+00

F06 Mean 4.8555E+00 9.4121E+00 3.9102E+00 8.9709E+00 9.4357E+00

Std 1.5940E+00 1.2391E+00 9.9071E−01 7.9521E−01 1.1137E+00

Best 2.1198E+00 7.1749E+00 1.6615E+00 6.8619E+00 6.9697E+00

Worst 8.0604E+00 1.1680E+01 5.7114E+00 1.0582E+01 1.1338E+01

F07 Mean 3.7014E+02 8.3096E+02 2.2725E+02 2.3495E+02 3.0854E+02

Std 2.3619E+02 1.9259E+02 1.8923E+02 1.2448E+02 1.6533E+02

Best −2.1483E+02 4.4307E+02 −7.8153E+01 2.5017E+01 3.7071E+01

Worst 8.1575E+02 1.2490E+03 6.2378E+02 4.2756E+02 6.7806E+02

F08 Mean 5.1431E+00 6.2460E+00 5.5573E+00 5.4913E+00 5.8203E+00

Std 8.5162E−01 4.2642E−01 6.1332E−01 5.4100E−01 5.4000E−01

Best 3.2477E+00 5.0425E+00 3.7442E+00 4.1483E+00 4.6600E+00

Worst 6.3720E+00 6.9344E+00 6.3490E+00 6.5249E+00 6.6779E+00

F09 Mean 2.6354E+00 1.5526E+03 2.9150E+00 8.9154E+02 3.2700E+00

Std 1.5928E−01 3.7459E+02 3.1843E−01 5.0173E+02 4.6170E−01

Best 2.4177E+00 6.6172E+02 2.4016E+00 6.2336E+00 2.6435E+00

Worst 3.0975E+00 2.4810E+03 3.8112E+00 1.7613E+03 4.3586E+00

F10 Mean 2.0048E+01 2.0304E+01 2.0019E+01 2.0148E+01 2.0248E+01

Std 1.0245E−01 1.4464E−01 2.6424E−02 5.9806E−02 1.4820E−01

Best 1.9979E+01 2.0087E+01 1.9999E+01 2.0063E+01 1.9969E+01

Worst 2.0378E+01 2.0602E+01 2.0099E+01 2.0271E+01 2.0600E+01
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algorithm consistently and steadily converges toward the optimal 
point without early convergence issues for functions F1, F5, F6, F7, 
F8, F9, and F10. Additionally, for F2, the SSA algorithm shows sta-
bility after the 300th iteration, avoiding the stagnation observed in 
alternative algorithms at different iterations. Function F3 demon-
strates successful convergence, showing a slower yet balanced con-
vergence compared to the top-performing HGS algorithm. For F4, 
the algorithm gets stuck at certain points and shows stagnation after 
the 250th iteration, a phenomenon observed in other algorithms as 
well.

D. Prediction with SSA-MLP Hybrid Algorithm
The Artificial Neural Network (ANN) provides a solution to non-linear 
problems, whether unsupervised or supervised. For ANN training, if 
classification is the goal, a supervised learning model is selected, and 
in this paper, the guiding algorithm is the SSA algorithm. The fact 
that the MLP method has a few parameters such as the momentum 
coefficient, tolerable error rate, learning rate, number of hidden layer 
nodes and layers, and the number of iterations enables it to be used 
without any prior knowledge, and it is superior to traditional systems 
with the advantages of having adaptive flexible learning processes, 
optimizing non-linear problems, and hybridizing with different 
methods. However, the most important disadvantages are the need 
for a large number of repetitions, the convergence rate depends on 
the characteristics of the dataset, the need for multiple experiments 

to determine the number of nodes for the best architecture, and 
the black box feature of the network causes the need for different 
analyses to ensure causality. When classical MLP training models 
and metaheuristic-based MLP architecture are compared, the meta-
heuristic-based method does not get stuck at optimal points in the 
local area, is not dependent on the starting point, and can achieve 
more optimal results depending on the balance between explora-
tion and exploitation processes [27].

The flowchart in Fig. 3 illustrates the supervised learning model of 
the SSA-MLP hybrid system. In this system, the dataset is divided into 
two groups: 90% training and 10% testing, and an MLP architecture 
is adopted as the objective function of the metaheuristic algorithm. 
In this architecture, the input layer and output layer are protected in 
accordance with the data set. While creating the hidden layer, one 
was added to twice the number of nodes in the input layer, that is, 
it consisted of 2 * 8 + 1 = 17 nodes. This number of nodes enabled 
the most optimal results to be achieved. The objective in statistical 
learning models is to achieve the highest possible classification of a 
target dataset. In a classification problem, a specific example from 
the dataset is labeled with one of the existing classes. Models cre-
ated for this purpose have adjustable parameters to perform well. 
In this section, the prediction of the energy problem is achieved 
through SSA-MLP training, and the results are reported with statisti-
cal metrics.

TABLE IV. COMPARISON OF ALGORITHMS BY MEANS OF WILCOXON SIGNED-RANK TEST (CEC 2019)

Function Metrics SSA-PDO SSA-HGS SSA-AOA SSA-HHO

F1 P 1.7344e−06 1.7344e−06 3.6000E−03 1.7344e−06

W/T/L W W W W

F2 P 1.7344e−06 1.7344e−06 1.7344e−06 3.0650e−04

W/T/L W W W W

F3 P 5.6061e−06 1.5600E−02 1.7344e−06 1.7344e−06

W/T/L W W W W

F4 P 1.7344e−06 5.0380E−01 1.7344e−06 1.7344e−06

W/T/L W L W W

F5 P 1.7344e−06 6.435E−01 1.7344e−06 1.7344e−06

W/T/L W L W W

F6 P 1.7344e−06 1.9600E−02 1.7344e−06 1.9209e−06

W/T/L W W W W

F7 P 1.7344e−06 5.3000E−03 2.5600E−02 1.6500E−01

W/T/L W W W L

F8 P 3.8822e−06 5.9800E−02 1.6500E−01 1.3595e−04

W/T/L W L L W

F9 P 1.7344e−06 3.3173e−04 1.7344e−06 2.3534e−06

W/T/L W W W W

F10 P 8.4661e−06 4.2840E−01 9.6266e−04 1.3601e−05

W/T/L W L W W
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E. Energy Efficiency Problem
The main objective of the proposed method and the studied data-
set is to efficiently estimate heating load (HL) and cooling load (CL) 
to assist engineers in the construction of optimal energy-efficient 
buildings. The calculation of HL and CL in building designs holds 
great importance for the proper selection of indoor climate con-
trol equipment. Reducing these loads is critical for energy savings 
[49]. An effective forecasting strategy is needed to optimize energy 
consumption. Different studies have been conducted using the UCI 
dataset [32] for HL and CL predictions.

Irfan et  al. employed machine learning algorithms, specifically 
artificial neural networks and deep neural networks, to address 
the energy problem. They demonstrated the superiority of this 
strategy by comparing it with 16 different algorithms [30]. Tien 
et  al. conducted an extensive review of the literature regard-
ing the problem-solving capabilities of machine learning algo-
rithms [50]. Nilashi et al. trained the data by applying Expectation 
Maximization (EM) clustering and Adaptive Neuro-Fuzzy Inference 
System (ANFIS) methods through the dataset specified in this 
study. They gave the importance of HL and CL load predictions 

Figure 1. Converge curve of algorithms via CEC 2019.

TABLE V. CEC2020 FUNCTIONS DEFINITY PARAMETERS

Functions Dimension
Search 

Interval
Fitting 
Value

F1: Shifted and Rotated Bent Cigar 
Function

10 [−100,100] 100

F2: Shifted and Rotated Schwefel’s 
Function

10 [−100,100] 1100

F3: Shifted and Rotated Lunacek 
bi-Rastrigin Function

10 [−100,100] 700

F4: Expanded Rosenbrok’s plus 
Griewank’s Function

10 [−100,100] 1900

F5: Hybrid Function 1 (N=3) 10 [−100,100] 1700

F6: Hybrid Function 2 (N=4) 10 [−100,100] 1600

F7: Hybrid Function 3 (N=5) 10 [−100,100] 2100

F8: Composition Function 1 (N=3) 10 [−100,100] 2200

F9: Composition Function 2 (N=4) 10 [−100,100] 2400

F10 : Composition Function 3 (N=5) 10 [−100,100] 2500

Figure 2. Converge curve of algorithms via CEC 2020.
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TABLE VI. STATISTICAL RESULTS OF ALGORITHMS VIA CEC 2020

Function Metric SSA PDO HGS AOA HHO

F1 Mean 3.6623E+03 8.5352E+09 7.8432E+03 1.0478E+10 3.4794E+06

Std 3.2699E+03 4.1008E+09 4.2935E+03 4.6193E+09 9.4448E+06

Best 1.0627E+02 2.9881E+09 2.1263E+02 2.8185E+09 2.9156E+05

Worst 1.2733E+04 1.9938E+10 1.2742E+04 2.0059E+10 5.0434E+07

F2 Mean 1.9993E+03 2.6486E+03 1.6903E+03 2.2388E+03 2.1276E+03

Std 1.7937E+02 2.9189E+02 2.1321E+02 3.1185E+02 2.7888E+02

Best 1.3872E+03 2.0348E+03 1.2337E+03 1.6337E+03 1.5941E+03

Worst 2.2151E+03 3.0570E+03 2.0309E+03 3.0150E+03 2.6069E+03

F3 Mean 7.4130E+02 8.1483E+02 7.4075E+02 8.0237E+02 7.8766E+02

Std 1.3581E+01 2.8797E+01 1.8342E+01 1.7566E+01 2.0224E+01

Best 7.2164E+02 7.7724E+02 7.0597E+02 7.5386E+02 7.4963E+02

Worst 7.7724E+02 9.0590E+02 7.9616E+02 8.4126E+02 8.3316E+02

F4 Mean 1.9017E+03 1.9000E+03 1.9000E+03 1.9000E+03 1.9000E+03

Std 5.9752E-01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Best 1.9008E+03 1.9000E+03 1.9000E+03 1.9000E+03 1.9000E+03

Worst 1.9034E+03 1.9000E+03 1.9000E+03 1.9000E+03 1.9000E+03

F5 Mean 1.9623E+04 4.1855E+05 8.9957E+04 3.6849E+05 6.0535E+04

Std 2.7224E+04 2.3041E+05 1.4403E+05 1.8964E+05 5.2291E+04

Best 3.1198E+03 2.8989E+04 3.2650E+03 1.3920E+04 5.2928E+03

Worst 1.1208E+05 8.7327E+05 7.0653E+05 7.4014E+05 1.8151E+05

F6 Mean 1.7353E+03 2.0749E+03 1.7804E+03 2.0895E+03 1.8828E+03

Std 9.0788E+01 1.3240E+02 9.3024E+01 2.0559E+02 1.1178E+02

Best 1.6084E+03 1.8394E+03 1.6129E+03 1.7630E+03 1.6220E+03

Worst 1.8777E+03 2.2988E+03 2.0342E+03 2.8252E+03 2.1521E+03

F7 Mean 4.4954E+03 5.4502E+05 1.2243E+04 8.3203E+05 5.4682E+04

Std 1.8042E+03 8.1288E+05 1.1550E+04 1.4718E+06 1.2584E+05

Best 2.7256E+03 1.2492E+04 2.4422E+03 2.9293E+03 3.1130E+03

Worst 9.5660E+03 3.2751E+06 3.2394E+04 6.8501E+06 6.6883E+05

F8 Mean 2.2956E+03 2.9446E+03 2.3372E+03 3.2013E+03 2.3461E+03

Std 2.2508E+01 3.7750E+02 1.7930E+02 3.8606E+02 1.9947E+02

Best 2.2192E+03 2.4980E+03 2.3003E+03 2.6428E+03 2.2462E+03

Worst 2.3050E+03 4.1352E+03 3.2864E+03 3.9394E+03 3.3984E+03

F9 Mean 2.7415E+03 2.8402E+03 2.7613E+03 2.8666E+03 2.7959E+03

Std 4.7187E+01 2.1015E+01 5.0827E+01 7.2937E+01 1.1836E+02

Best 2.5000E+03 2.7939E+03 2.5000E+03 2.7112E+03 2.4246E+03

Worst 2.7839E+03 2.8772E+03 2.7977E+03 3.0175E+03 2.9633E+03

F10 Mean 2.9356E+03 3.3282E+03 2.9397E+03 3.4088E+03 2.9322E+03

Std 2.8658E+01 2.1243E+02 2.8222E+01 2.8598E+02 5.5981E+01

Best 2.8977E+03 3.0283E+03 2.8979E+03 3.1332E+03 2.7563E+03

Worst 3.0242E+03 4.0540E+03 3.0243E+03 4.1498E+03 3.0285E+03
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in smart buildings by comparing many methods [51]. Roy et  al., 
in their study, performed HL and CL factor predictions by com-
paring deep neural network, Gaussian process regression, mini-
max probability machine regression methods, and drew attention 
to the importance of these predictions in smart buildings [29]. 
Wang et al. proposed a hybrid extreme learning machine-fuzzied 
hunger games search model (ELM-Fuzz-HGS) for the measure-
ment of indoor individual thermal comfort in order to create an 
ecologically beneficial and comfortable space, compared it with 
ELM training of different metaheuristic algorithms and reported 
that the prediction power increased [52]. Another example of 
metaheuristic-based MLP training is the model proposed by 
Kosarirad et al. for noise removal of big data sonar database and 
the classification rates are quite high [53]. In order to increase 
comfort and minimize energy cost in ecological smart build-
ings, Wang et  al. developed a metaheuristic-based Green build-
ing energy optimization system model and stated that chimp 
optimization algorithm is the best algorithm to optimize energy 
saving [54]. He et  al. proposed a metaheuristic-based algorithm 
model to enhance energy efficiency and extend the network 
lifetime. They also introduced a hybrid hierarchical chimp opti-
mization algorithm for efficient clustering and multi-hop routing  
procedures [55].

F. SSA-MLP Training
In this paper, the problem encompassing HL and CL obtained from 
UCI [32] will be optimized and predicted using the MLP method. 
Within the scope of prediction, two primary outcomes will be sought. 
The first is the classification rate, as given in (5) (Class_Rate), and the 
other is the mean square error (MSE) rate, as provided in (6). Among 
competitive algorithms, the algorithm with the highest Class_Rate 
and the lowest MSE rate will be considered successful.

Class Rate
CR

NoS
_ � �

�
�

�
�
�100  (5)

where CR is the current rate resulting from a run and NoS refers to 
the number of samples in the dataset.

MSE
N

P O
i

N

i i� �� �
�
�1

1

2
 (6)

where Pi is predicted values, Oi is the observed values, and N is the 
number of observations.

The basic features of the dataset are given in Table VIII below.

When Table X is examined, the SSA algorithm can produce different 
datasets from the other three algorithms except HGS and is superior. 
In other words, the SSA algorithm can serve as a unique algorithm in 
MLP training.

When examining Table IX, the results of effective HVAC algorithms 
with specific error rates are provided. The successful use of meta-
heuristic algorithms in MLP training has been observed in this paper 
within the energy sector. In this table, as with the lowest MSE rate 
observed in the SSA algorithm, it is also seen that the SSA algorithm 
has the highest classification rate. The prominence of the SSA algo-
rithm in addressing buildings with different features and its superior-
ity in evaluating all these features together for output loads indicate 
the suitability of using this algorithm in calculating HL and CL in 
building designs. Fig. 4 is the convergence curve of the algorithms in 
MLP training. Convergence curves provide the opportunity to visu-
ally examine whether an algorithm is subject to early convergence 
in the process of optimizing the MLP architecture depending on the 
iterations and the early convergence status. When the Fig. 4 is exam-
ined, it will be observed that the SSA algorithm optimizes both HL 
and CL values better. In this way, it can be observed that the SSA 
algorithm is not exposed to early convergence and at the same time 
does not get stuck in local optima. Fig. 5 presents box-plot graph 
results. Box-plot graphs are useful measurement tools in statistics, 
displaying the median, first and third quartiles, lower and upper 
whiskers, and outliers. Observations reveal that SSA algorithm values 
are very close to each other for both CL and HL values, serving as two 
separate output values. Additionally, no outliers are observed in the 
HL values, and only one outlier is noticed in the CL values. Therefore, 
parallel values are provided, as indicated in Table VI.

IV. CONCLUSION

The aim of this paper is to investigate the problem-solving quality 
of the SSA, its ability to compete with alternative algorithms, and its 
ability to classify an artificial neural network with MLP architecture 
as a trainer.

Figure  3. Flowchart of SSA-MLP training of supervised learning 
diagram.
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Salp swarm algorithm and alternative algorithms were evaluated 
using CEC 2019 and CEC 2020 function sets and as a result of these 
evaluations, it was observed that SSA was more advantageous in 
both test sets. Through the Wilcoxon signed-rank test, it was shown 

that the SSA algorithm has a robust structure in generating unique 
data sets by comparing it with alternative algorithms. This shows 
that the SSA algorithm can be used to solve problems of any size, 
but it is also observed that the algorithm is suitable for development 
and hybridization with different strategies due to its flexible struc-
ture and can offer a variety of solutions for different problems when 
different studies are carried out.

One way to solve the energy problem that our planet faces today is 
to ensure efficient energy use. In this context, minimizing HL and CL 
demand in energy efficient smart buildings will contribute to energy 
saving. It can be predicted that building designers can achieve the 
required efficiency in HVAC systems with the model produced in this 
study. A successful problem optimization was achieved with 100% 
prediction ability and MSE values of approximately 0.20. With this 
model, in the context of addressing the global energy crisis, the 
importance of selecting the right environmental control equipment, 
especially in the design of buildings aiming to improve the quality 
of climate control, is also emphasized. In this context, it is experi-
mentally observed that metaheuristic algorithms, especially the SSA 
algorithm, can play an effective role in the calculation of HL and CL 
factors. In addition, the competitive nature of metaheuristic algo-
rithms is emphasized and the opportunity to find and use the best 
algorithm within their framework is provided. The SSA-based SSA-
MLP algorithm has shown successful results confirming its potential 

TABLE VII. COMPARISON OF ALGORITHMS BY MEANS OF WILCOXON SIGNED-RANK TEST (CEC 2020)

Function Metrics SSA-PDO SSA-HGS SSA-AOA SSA-HHO

F1 P 1.7344e−06 5.7064e−04 1.7344e−06 1.7344e−06

W/T/L W W W W

F2 P 2.3534e−06 1.6394e−05 2.6000E−03 2.7000E−02

W/T/L W W W W

F3 P 1.7344e−06 0.8130E+00 1.7344e−06 2.3534e−06

W/T/L W L W W

F4 P 1.7344e−06 5.0380E−01 1.7344e−06 1.7344e−06

W/T/L W L W W

F5 P 1.7344e−06 6.4350E−01 1.7344e−06 1.7344e−06

W/T/L W L W W

F6 P 1.7344e−06 1.9600E−02 1.7344e−06 1.9209e−06

W/T/L W W W W

F7 P 1.7344e−06 5.3000E−03 2.5600E−02 1.650E−01

W/T/L W W W L

F8 P 3.8822e−06 5.9800E−02 1.6500E−01 1.3595e−04

W/T/L W L L W

F9 P 1.7344e−06 3.3173e−04 1.7344e−06 2.3534e−06

W/T/L W W W W

F10 P 8.4661e−06 4.2840E−01 9.6266e−04 1.3601e−05

W/T/L W L W W

TABLE VIII. FEATURES OF ENERGY EFFICIENCY DATASET

Input/Output Variable Variable Name Definition of Variable

Input I1 Relative compactness

I2 Surface area

I3 Wall area

I4 Roof area

I5 Overall height

I6 Orientation

I7 Glazing area

I8 Glazing area distribution

Output O1 Heating load

O2 Cooling load
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TABLE IX. STATISTICAL RESULTS OF MLP TRAINING OF DATASET

Function Metric PDO HGS AOA HHO SSA

Output class 
heating load

Mean 2.0840E−01 2.0450E−01 2.1840E−01 2.1170E−01 2.0380E−01

Std 4.9000E−03 8.2000E−03 7.7000E−03 1.7000E−03 3.3000E−03

Best 2.0400E−01 1.9760E−01 2.0770E−01 2.0960E−01 2.0030E−01

Worst 2.2140E−01 2.2520E−01 2.2860E−01 2.1410E−01 2.1090E−01

Class. rate %99.8667 %99.8560 %99.8660 %99.8702 %100

Rank 3 2 5 4 1

Output class 
cooling load

Mean 2.8790E−01 2.8462E−01 2.9630E−01 2.8900E−01 2.8460E−01

Std 2.0000E−03 8.2000E−03 5.2000E−03 3.7000E−03 2.7000E−03

Best 2.8520E−01 2.7890E−01 2.9010E−01 2.8310E−01 2.8160E−01

Worst 2.9210E−01 3.0210E−01 3.0610E−01 2.9410E−01 2.9130E−01

Class. rate %99.8667 %99.8560 %99.8660 %99.8698 %100

Rank 3 2 5 4 1

TABLE X. COMPARISON OF ALGORITHMS BY MEANS OF WILCOXON SIGNED-RANK TEST

Function Metrics SSA-PDO SSA-HGS SSA-AOA SSA-HHO

Heating load P-value 9.8100E–03 9.2190E–01 2.0250E–03 2.0217E–03

W/T/L W L W W

Cooling load P-value 1.3700E–02 4.1360E–01 2.0001E–03 4.8800E–02

W/T/L W L W W

Figure 4. Converge curves of algorithms via MLP training.

Figure 5. Box plots of algorithms via MLP training.
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in this area. Future work can lead to new applications for solving 
energy problems through hybridization with both ANN and various 
machine learning algorithms, taking advantage of different reliable 
data sets and the flexibility of the SSA algorithm. It is believed that 
this paper will be a guiding reference in this field.
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