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ABSTRACT

In this paper, a machine learning based approach is presented for detection and classification of faults in an induction machine. Five different classification algorithms, 
namely, support vector machine (SVM), decision tree, random forest, naive Bayes, and extreme gradient boosting (XGBoost), are adopted. The diagnosis of the most 
common types of faults such as broken bars, interturn fault and outer racing fault are considered. The current signatures under healthy and various faulty conditions 
are used for training and validating the models. The feature extraction step is implemented with the help of discrete wavelet transform (DWT). Following DWT, the 
features obtained are fed to the classification algorithms and subsequently the performance of each algorithm with respect to each fault condition is evaluated with 
appropriate metrics. Finally, a performance comparison is done and the most suitable classifier for reliable diagnosis of each of the fault condition is suggested.
Index Terms—Fault diagnosis, Induction machine, Fault classifier, Machine learning, Discrete Wavelet Transform
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I. INTRODUCTION

Induction motors (IMs) are quite popular for their sturdiness, robustness, and low cost of mainte-
nance. Despite being a well-matured technology, it is still prone to various kinds of faults. Many 
of these defects do not result in an immediate decline in system performance but, if ignored, can 
eventually severely damage the motor. This can lead to revenue losses for the stakeholders in 
terms of both replacement and unplanned downtimes. Being widely used in a variety of critical 
applications in various industries, it becomes necessary to have a reliable diagnosing methodol-
ogy to identify and mitigate the fault at an incipient stage. The various methods of fault diagnosis 
in IMs include vibration analysis, motor current signature analysis, thermography, and acoustic 
monitoring. The vibration analysis involves the measurement of vibration signals that require 
additional sensors and correct positioning of sensors. The motor current signature analysis 
requires current signal capturing, which is also a part of monitoring of energy consumption and 
protecting the machine in the event of overloading. Thermography requires temperature estima-
tion in various parts of the machine through sensors or imaging, which might add to the cost of 
the facility. Acoustic monitoring has the issue of filtering out the components which might not be 
the fault-inducing components. Hence, motor current signature analysis is one potential choice 
for condition monitoring of machines with a greater impact on the industrial sector as it is an 
inherent part of the whole system requiring only the current sensor which is part of diagnostics.

In addition, several data-driven approaches that leverage machine learning and deep neural 
network models for fault classification have been devised by researchers for IM fault diagnosis 
[1–6]. The research works presented in [7–9] propose solutions that are focused on identifying 
broken rotor bars in induction machines based on support vector machine (SVM) and k-nearest 
neighbor (k-NN) classifiers, respectively. A methodology is formulated in [6] for detecting co-
occurring faults such as eccentricity faults and broken rotor bars from start-up current signal 
using minimum Mahalanobis distance classifier and k-NN classifier. In [10–14], a deep learning-
based approach comprising convolutional filters and SVM, for fault diagnosis in IMs is explored. 
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A comparison of SVM, k-NN, and multi-layer Perceptron for detecting 
bearing failures at different load and voltage conditions has been 
done in [15].

Feature extraction method is critical for model performance. Several 
methods based on Fourier transform [16–18], wavelet transform 
(WT) [19, 20], power spectral density [21] and some advanced meth-
ods based on convolutional neural networks (CNN) [22–24] have 
been proposed by scholars for feature extraction. Among the pro-
posed solutions WT and Discrete WT (DWT) are the most commonly 
preferred [25] for IM diagnosis owing to its ease of use [26].

Researchers in [27] have applied DWT for detecting rotor bar faults 
in IMs. In [28, 29], wavelet packet decomposition is used for feature 
extraction in their neural network-based approach for fault diagno-
sis in IM. Wavelet packet decomposition is another common tech-
nique that provides higher frequency resolution compared to DWT 
at the expense of higher computational costs.

The major contribution of this work lies in presenting a DWT-based 
machine learning tool for IM fault classification. Multiple machine 
learning algorithms are trained on the features extracted using DWT. 
For various combinations of defects, both multiclass classification 
and binary classification have been investigated. The results of each 
algorithm’s performance comparison are given.

This paper is organized as follows: In section II, the experimental 
setup used for fault simulation and data acquisition is explained. In 
section III, the proposed methodology is detailed. Section IV deals 
with the feature extraction using DWT. Section V gives a brief sum-
mary of five different classifiers, namely, SVM, decision tree, random 
forest, naive Bayes, and extreme gradient boosting (XGBoost), and 
section VI provides a comparison of the performance of all the clas-
sifiers using three different metrics namely accuracy, recall, and 
precision.

II. EXPERIMENTAL SETUP

The experimental setup shown in Fig. 1 consists of a dynamometer 
and two IMs—one for simulating faults and the other to use as refer-
ence. Both are 3 ϕ, 1 HP, 415 V, 50 Hz, 4 pole, and 1440 rpm machines. 
Dynamometer rating is 0.75 kW, 1500 rpm, 0.5 kg-m with an excita-
tion voltage of 85 V.

Stator current monitoring and storage is done using Digital Storage 
Oscilloscope DSO-X 3024A MY54020518 - 200 MHz, and the data is 
further processed using MATLAB.

III. PROPOSED METHODOLOGY

The proposed methodology has five major steps: (i) Fault simulation, 
(ii) Data collection, (iii) Feature extraction, (iv) Classification, and (v) 
Performance evaluation. Fig. 2 shows the systematic approach used 
in the present work.

The methodology begins with simulating the faults in an IM, which 
was tested and verified to be in healthy condition. Test motor is 

Fig. 1. (a) Experimental setup. Fig. 2. Flowchart of the proposed methodology.
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provided with tapings at different turns of the stator winding. 
Interturn short circuit fault is generated by shorting the one-way 
switches that are connected between these terminals as shown in 
Fig. 3. The test motor has 12 turns/phase, one-third of the fault is cre-
ated by shorting four turns and two-thirds of the fault is created by 
shorting eight turns.

Broken rotor bar fault is created by punching a hole of diameter 1.6 
mm and depth 5 mm on the rotor as shown in Fig. 4. This is repeated 
for three rotor bars, and stator current signal is acquired under all 
three conditions. Outer racing fault is emulated by drilling holes in 
the outer race of the bearing as shown in Fig. 5. To ensure diversity, 
data is collected for various load and no-load conditions.

The next stage involves extracting relevant features from the signal 
using DWT. The detail coefficients and approximation coefficients 
obtained would serve as input to our subsequent classification step. 
Haar and Daubechies 10 were compared, and Haar has been used 
based on the lower number of decomposition levels.

Classification step is implemented by use of five classification algo-
rithms, namely, 1. support vector machine, 2. naive Bayes, 3. deci-
sion tree, 4. random forest, and 5. XGBoost. The data are randomly 
shuffled and split into train and test data in the ratio of 3:1. Lastly, 

the performance of the models are evaluated on the test data using 
appropriate evaluation metrics and the results obtained are pre-
sented in detail in section VI.

IV. DISCRETE WAVELET TRANSFORM FOR FEATURE 
EXTRACTION

The stator current of this test motor is acquired under healthy and 
faulty condition with the sampling frequency of 20000Hz and with 
2000 data samples as shown in Fig. 6a and b. The interturn fault is 
created externally by short circuiting the terminals of the tapings.

The current frequency (fst) appearing corresponding to the interturn 
short circuit faults is expressed as

fst = fs(m/p(1 − s) ± k) (1)

From figures, for the same loading condition, the difference between 
the healthy and faulty conditions of the IMs is shown only in ampli-
tude. There is no other information about healthy and faulty IMs. But 
every change in the IM is directly reflected in the IMs stator current, 
and therefore it is necessary to extract the features of the signals 
using some signal processing techniques.

Discrete Wavelet transform is a multi-resolution analysis technique 
that provides a time-frequency domain representation of the signal. 
The original signal is decomposed into a number of detailed signals 
and one approximation signal by recursively passing through sev-
eral levels of low pass and high pass filters derived from the mother 
wavelet. Discrete wavelet transform provides good time resolution 
and poor frequency resolution at high frequency and conversely, it 
provides poor time resolution and good frequency resolution at low 
frequencies. In each level of decomposition, the sequence is simulta-
neously passed through a digital low pass filter and digital high pass 
filter with impulse responses of h[n] and g[n], respectively.

y k x n g k nhigh

n

[ ] [ ] [ ]� � �� 2  (2)

y k x n h k nlow

n

[ ] [ ] [ ]� � �� 2  (3)

Fig. 3. Creation of inter turn short circuit fault.

Fig. 4. Broken bar fault in rotor. Fig. 5. Bearing fault.
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The approximation signal can be used to isolate the faulty com-
ponent after a suitable decomposition level. But with the machine 
learning algorithms, a single level of decomposition is sufficient to 
extract the features is sufficient to attain good accuracy. The overall 
process followed in this work is shown in Fig. 7.

Wavelet transform represents a signal with detail and approximation 
coefficients. These components cover the entire frequency spectrum 
with different band widths and whose frequency band depends on 
the sampling frequency (fs). The highest band covers the frequency 
range fs/2 to fs/4; whereas the lowest band depends upon the 
decomposition levels. For next decomposition levels, the center fre-
quency and band width will be halved.

The sampling frequency of the data samples decides the frequency 
band of the wavelet coefficients. The Multi-Resolution Analysis 
decomposition levels and corresponding frequency ranges are 
given in Table I.

Using equation (1), the fault harmonic frequencies correspond-
ing to the interturn fault created are frequencies 75, 100, 125, 150, 
175, 200, 225Hz, etc. They are covered in the frequency ranges with 

decomposition levels 6, 7, and 8. Usually, the fault identification can be 
done from the wavelet coefficients of the higher decomposition levels.

The wavelet coefficients of different decomposition levels for faulty 
and healthy current shown in Fig. 6a and b are shown in Fig. 8.

V. CLASSIFICATION ALGORITHMS

The classification algorithms chosen for this work are detailed as 
follows.

A. Decision Tree
Decision tree is a non-parametric supervised learning model where a 
tree-like structure mimics the human decision-making thought pro-
cess. Starting from the root node, each branch represents a decision 
made and the internal nodes represent the attributes. The leaf node 
represents the outcome of the model. The model is easy to interpret, 
making it quite advantageous.

In this work, the information gain and entropy are utilized as the cri-
terion for accessing the impurity of a node in the tree. Entropy can be 
explained as a measure of randomness. The expression for entropy is 
given as follows

Fig. 6. (a) Measured voltage and current for healthy and (b) 
measured voltage and current for faulty condition.

Fig. 7. The classification process.

TABLE I. PERFORMANCE OF MODELS WITH RESPECT TO VARIOUS FAULTS

Decomposition Levels Frequency Range (Hz)

1 10k–5k

2 5k–2.5k

3 2.5k–1.25k

4 1.25k–0.625k

5 625–312.5

6 312.5–156.25

7 156.25–78.125

8 78.125–39.0625
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where S is the current node state, pi is the probability of event i in 
the node of state S. It can be noted from Fig. 9 that entropy is lower 
in nodes which are more homogeneous. The information gain and 
entropy are related as follows:

IG Y X E Y E Y X( , ) ( ) ( | )� �  (5)

where IG is the information gain and E is the entropy. E(Y) refers to 
the case where there is no impurity and E(Y|X) is the entropy of the 
node under consideration. The tree continues to branch out until IG 
cannot be increased any further.

B. Random Forest Classifier
Random forest as shown in Fig. 10 is an ensemble technique that 
employs multiple decision tree classifiers. These classifiers will put 
forth their predictions and the class with the most votes is con-
sidered as the final prediction. The precision of the overall model 
increases with the number of individual models.

Diversity between individual models is ensured by using a technique 
called bagging where each model is trained with a subset of the 
original dataset. Further, each model is trained on only a subset of 
the features to induce diversity between the models. Random forest 
classifiers are thus immune to overfitting and quite reliable.

C. Extreme Gradient Boosting
The term “boosting” refers to a class of algorithms which builds a 
strong learner from a bunch of weak learners. Extreme Gradient 
Boosting is a parallelized optimized implementation of Gradient 
Boosting (GB) Algorithm. In GB, learners are added incrementally to 
the classifier in order to reduce the error produced by its predecessor.

Assuming a weak learner model Fm(x), let “ y̆m ” be the prediction 
made.

y̆ F xm m= ( )  (6)

Subsequently estimators hm(x) are added to the base model Fm(x).

F x F x h xm m m� � �1( ) ( ) ( )  (7)

If L(y , y )m m˘ is the loss function, then the estimator is given as nega-

tive gradient of L(y , y )m m˘  with respect to function F(x),

h
L
F

m(x)
(y, y)

� �
�
�

˘
 (8)

which makes the next model as

F
L
F

m� �
�
�

1(x)= F (x)
(y, y)

m
˘

 (9)

After many stages, the model accuracy gradually increases, generat-
ing a robust model.

D. Support Vector Machine
Support vector machine is a popular machine learning model used 
for classification as well as regression tasks. Support vector machine 
creates a hyperplane in the input space which functions as a separa-
tor between the data points corresponding to different classes. The 
multiclass SVM models are generally implemented by two meth-
ods: one-versus-all method and one-versus-one (OVO) method. In 

Fig. 8. Decomposition levels of faulty and healthy motor.

Fig. 9. Entropy for decision tree.
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this work, OVO approach has been used, where N(N + 1)/2 models 
are created if there are N classes to be classified. To account for non-
linearity in the data points, Gaussian RBF has been has been chosen 
as the kernel for the SVM model. Various values of hyperparameters 
viz. kernel coefficient gamma and regularization factor C were ana-
lyzed and the optimal results obtained were found with gamma as 1/
(in put_f eatur es_co unt × input _feat ure_v arian ce) and regularization 
factor C as 1.0.

E. Naive Bayes Classifiers
Naive Bayes classifiers are a class of algorithms that are based on 
the Bayes theorem. Bayes theorem provides a way for calculating 
the posterior probability of a class (P(y|x)) given the predictor (input 
features) if the prior probability of the class (P(x)), prior probability 
of predictor (P(y)), and posterior probability of a predictor given the 
class (P(x|y)) are known.

P y x
P x y P y

P x
( | )

( | ) ( )
( )

�
�

 (10)

Naive Bayes assumes the features are non-correlated, and their con-
tributions to the outcome are equal. Gaussian naive Bayes classifier 
which assumes that the input features conform to a Gaussian distri-
bution was used. Here the probability of a predictor given the class 
take the below form,

P x y e
x

( | )
( )

�
�

�1
2

1
2

2

� �

�
�  (11)

where μ and σ are mean and standard deviation, respectively, for 
each feature.

VI. RESULTS AND DISCUSSION

Accuracy, precision, and recall are used as the performance metrics 
for evaluation. Precision gives a measure of the confidence of the 
model when a fault is detected. High precision means lesser chance 
of false alarms. On the other hand, with high recall less faults go 

unnoticed, but not all the fault detections may necessarily be a case 
of true positive. The results of classification are given in Table II.

Precision = True positives/(True positives + False positives)

Recall = True positives/(True positives + False negatives).

A. Broken Rotor Bar
The data distribution for broken rotor bars is indicated in Table III. As it 
can be observed from Table I, decision tree and random forest classi-
fiers provide better accuracy in detecting broken bar faults compared 
to other models. Although random forest has marginally better accu-
racy, decision tree is able to provide significantly higher precision. This 
means with decision tree the chances of getting false alarms are con-
siderably lesser. Furthermore, decision tree is far less computationally 
expensive compared to random forest. Therefore, decision tree is the 
ideal choice for cases with computational resource constraints. In the 
absence of such constraints, random forest can be a better choice for 
detecting single, double, and triple broken rotor bars.

B. Interturn Fault
The data distribution for interturn fault is indicated in Table IV. In case 
of interturn fault, random forest algorithm is outperforming every 
other algorithm under consideration in terms of accuracy, precision, 
as well as recall, making it the clear choice.

C. Bearing Fault
The data distribution for bearing fault is indicated in Table V. As for 
detecting bearing fault, decision tree, XGBoost, and random forest—
all three are able to provide 100% accuracy, precision, and recall for 
classifying bearing fault. Nevertheless, when considering the com-
putational resources involved, decision tree is more suitable for the 
application.

D. Multi-fault Detection: Broken Bar, Interturn Fault, and Bearing 
Fault
The data distribution for all the faults considered is indicated in 
Table VI. For multiclass classification with three cases of broken bar 

Fig. 10. Random forest classifier.



Rajini et al. A Classification Approach for Induction Motor Faults

521

Electrica 2024; 24(2): 515-524

TABLE II. PERFORMANCE OF MODELS WITH RESPECT TO VARIOUS FAULTS

Motor Faults Algorithm
Accuracy 

(%)
Precision 

(%)
Recall 

(%)

1 broken bar SVM 52.04 55 34

Naive Bayes 58.77 67 38

Decision trees 90.52 91 90

XGBoost 88.53 85 88

Random forest 92.12 85 88

1 and 2 broken bar SVM 36.65 37 32

Naive Bayes 40.84 41 40

Decision trees 87.57 88 88

XGBoost 75.54 76 75

Random forest 88 87 88

1, 2, and 3 broken bar SVM 28.04 28 19

Naive Bayes 31.25 32 28

Decision trees 84.99 87 86

XGBoost 75 82 69

Random forest 85.24 84 85

Interturn fault SVM 84.2 84 82

Naive Bayes 91.91 90 92

Decision trees 94.22 95 94

XGBoost 94.97 94 95

Random forest 99.3 99 97

Bearing fault SVM 87.96 83 90

Naive Bayes 97.11 99 96

Decision trees 100 100 100

XGBoost 100 100 100

Random forest 100 100 100

Multi-fault:1, 2, 3 
broken bar and 
Interturn and Bearing 
fault

SVM 23.18 23 19

Naive Bayes 26.27 29 30

Decision trees 62.76 63 63

XGBoost 87.86 88 89

Random forest 88.1 89 88

TABLE III. DATA DISTRIBUTION—SINGLE, DOUBLE, AND TRIPLE BROKEN 
BAR FAULT DETECTION

Test Dataset Distribution

1 Broken Bar 
Fault

2 Broken Bar 
Fault

3 Broken Bar 
Fault Healthy

1013 1032 1016 951

TABLE IV. DATA DISTRIBUTION—INTERTURN FAULT DETECTION

Test Dataset Distribution

Interturn Fault Healthy

2132 1888

TABLE V. DATA DISTRIBUTION—BEARING FAULT DETECTION

Test Dataset Distribution

Bearing fault Healthy

1018 1999

Fig. 11. Confusion matr ix—XG Boost —sin gle, double, triple broken 
bar fault, interturn fault, and bearing fault.

Fig. 12. Confusion matrix—random forest—single, double, triple 
broken bar fault, interturn fault, and bearing fault.
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(1, 2, and 3), interturn fault [30], and bearing fault, both XGBoost 
and random forest provide close results. Fig. 11 and 12 provide the 
results, respectively. Since computational complexity is comparable, 
either of the models can be used for this scenario.

VII. CONCLUSION

In this paper, machine learning techniques are explored for classi-
fication of some of the commonly occurring faults in IMs. The main 
contribution of this paper is fault-related feature extraction from the 
current signal using DWT and the use of five classifier algorithms for 
IM fault classification. The methodology is validated with various 
faults like one broken bar fault, two broken bar fault, three broken 
bar fault, stator fault, bearing fault, and even with multi-faults.

The following conclusions are drawn from the results obtained.

• Even with a single level of decomposition in DWT, machine 
learning algorithms can detect the presence of faults effectively, 
thereby saving computational costs.

• The choice of model should be made considering the type of fault 
to be detected. The performance of models varies considerably 
between different fault conditions and therefore choosing the 
right model is critical.

• For detection of single and multiple broken rotor bar faults, a less 
computationally intensive algorithm such as decision tree can be 
chosen over ensemble methods with very minimal sacrifice in 
accuracy.

• For detection of co-occurring multiple faults, ensemble meth-
ods like random forest and XGBoost provide better overall 
performance.

Though the offline results of the proposed method are only pre-
sented in this paper, it is well suited for online implementation as 
well. To automate the process of condition monitoring of motors, 
data preprocessing is required and in this paper, level 1 decomposi-
tion with DWT is used. The algorithmic effort for DWT would offset 
the precision of the fault classification.

Further, the work could be extended by applying deep learning 
techniques such as CNNs with increased data collection suited for 
critical industrial applications employing IMs.
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