YEAR
VOLUME
NUMBER

ISTANBUL UNIVERSITY ENGINEERING FACULTY
JOURNAL OF ELECTRICAL & ELECTRONICS

. 2002

12
01

(409-415)

A FAST DIVIDER IMPLEMENTATION
BASED ON THE NEWTON-RAPHSON METHOD
USING PARALLEL COMPUTATION UNITS

Ahmet SERTBA?

Istanbul University, Faculty of Engineering, Computer Engineering Department
34850, Avcilar, Istanbul, TURKEY

e-mail: asertbas@istanbul.edu.tr

ABSTRACT
In this paper, a special divide hardware unit based on the Newton-Raphson iteration method is
proposed. To compute the reciprocal fast in division process, it utilizes fourth order Newton-Raphson
reciprocal approximations. By using fag and efficient parallel computation unitsthe divider achives
the computations. These units compute the second, third and fourth order Newton Raphson terms
more faster than the standart technique using direct multipliers.

Key Words: Division, Newton-Raphson divider, parallel computation, hardwire units.

1. INTRODUCTION

Asitiswell kown, adivision can be expressed as
the product of the dividend, and the reciprocal of
the divisor , g= a/b = a*(1/b). To compute the
reciproca term (1/b) , the multiplicative iterative
methods such as Newton-Raphson and Taylor
Series expansion can be used. The Newton-
Raphson Method with high-order iterations can
be written asfollows:

Xisr =Xi+Xi(1-bX;)X (1-bX;)?+....+X; (1-bX,)"
)
Flynn[1] shows that the error decreases
exponentialy as E..=b*E™! for an ny order
Newton-Raphson iteration given above.
Using standart arithmetic units, it requires four
iterations to achieve an error reduction of
E.4=b*E® for the first order implementation. On
the other hand, for the thirth order and the fourth
order Newton-Raphson implementation, in only
two iterations, they achieves an error reduction
of E+,=b*E® and E.,=b*E?° respectively.

In previous work [2-3], the use of the parallel
squaring and cubing units were applied to the
Newton-Raphson iterative divide unit.

In this work, to reduce the reciprocal error, the
fourth order parallel computational unit proposed
by [4] is used to compute the fourth order
Newton-Raphson iteration.

2.CLASS C NEWTON-RAPHSON

DIVIDE
The classic first-order Newton-Raphson divide
unit iteration is Xj+1=X;(2-bX;). It is clear that the
error decreases quadratically for each iteration.,
E.;=b*E2. To determine the initial value for the
reciprocal term of 1/b, a ROM table bokup is
used, before the first iteration starts. In this
method, each iteration needs two multiplication
and one subtraction (2's complement) operations.
On the other hand, to compute (2-bX;) termina
single operation is possible. This term is called
as the fused multiply-subtract. After the last
iteration, the quotient (q) is computed by

410 A Fast Divider Implementation Based On The Newton-Raphson Method Using Parallel Computation Units

multiplying the dividend (a) by the reciprocal of
the divisior (1/b).

Figure 1 shows a Newton-Raphson divide unit
with a first order iteration. In the classica
technique, the operations can not be computed
independently and they depend on the result
produced by the previous operation.

Therefore this does not allow any paralel
process. The latency of the divide is given as
follow, if k iterations are required for the
operation:

tdivisio = tIookuptable +2k tmult + tmult- (2)

From Lookup Tahle
for (1/b) computing
melect Inttial Xy

= &

Fig.1. Classic divide unit for thefirst order

3. STANDART FOURTH-ORDER
N.-R. DIVIDE
By means of the k, order iterative function
given in (1), the Newton-Raphson fourth order
iteration function can be expressed as follow:
Xis1=Xi (1+(1-bX;)+(1-bX;)2 +(1-bX;)3 +(1-bX;)*
(©)

In order to compute an n-bit reciprocal in a
single iteration, the look-up table size must be
approximately (n/5)x(n/5) bits.

Figure 2 shows a fourth order divide unit
implemented using classic technique. The
subtraction and additions can be fused with the
multiplications as described before.
To implement the fourth-order Newton-Raphson
Divide, a single or double multiplier may be
used. If k iterations with a single multiplier are
used, the latency of the divide is approximately
asfollow:

tdivisio: tlookuptable+ 5k tmult + tmult- (4)

With two multipliers are used, the latency of the
unit can be given as:
taivisio = tiookuptable + SK tmuit 5)

From Lookup Tahle
for (X=1/b) somputing
0/ (0] bits

q=a'b

Fig.2. Thefourth-order Newton-R. Divide
Unit

Ahmet SERTBA?

A Fast Divider |mplementation Based On The Newton-Raphson Method Using Parallel Computation Units 411

4. PROPOSED FOURTH-ORDER
N.-R. DIVIDE UNIT

In adivision operation, to compute the quotient
(q) as a paralel process, the special computing
units called as parallel computational units may
beused To show the efficiency of these unitsin
the divider implementation, the Newton-
Raphson iteration can be expressed as the fourth
order approximation.

g=alb=aX [1+(1-bX) +(1-bX)>+(1-bX)3+(1-bX)*]
©)

Where X istheinitial prediction of the reciprocal
and can be taken the value from the lookup table.
Figure 3 shows the hardware section required to
implement the fourth order divide unit.

The latency of the divide unit may be given asin
(7) , aslong as al of the powers of (1-bX) term
can be computed directly by using the parallel
computational units that take the same time to
perform one multiplication.

tdivisio:tlookuptable+ 3tmult (7)

The divider unit requires tree multipliers, one
squaring unit, one cubing unit and one fourth

order exponential computation unit. But the two
multipliers have small bit lenght (n/5 *n) and are
used to multiply (1-bX), (a*X) terms. The third
one is full lenght multiplier (n*n) and used to
multiply quotient (g=a/b). On the other hand, the
paralel squaring and cubing units are described
in detail [2]. Also, the fourth-order parallel
computation unit is modeled mathematically [4]
in the references.

In the next section, the proposed divider is
implemented for 24-bit operand, the length of
the |EEE single precision floating-point format.

5. THE DIVIDER
IMPLEMENTATION

Firstly, by a table lookup, an initial value of the
reciprocal of the divisior should be determined.
As well known, for the lookup table, a 2xm hit
ROM with | address bits and an mbit output
wordsis required.

In the computations, to avoid getting the negative
numbers from (1-bX) term, the value stored in
each lookup table address should be less than
the reciprocal of all possible values of b.

From Lookup Tahle
for (X=1/0) comanting
(/305 hits

b
nh“f‘m

v ¥ v

< ' (657 || a-427 (-0t
5 v v v
1 + 20T

g=a’h n

Fig.3. Proposed fourth-order Newton Raphson Divison Hardware

Ahmet SERTBA?

412 A Fast Divider Implementation Based On The Newton-Raphson Method Using Parallel Computation Units

Thus, the (1-bX) computation produces positive
values and it can be implemented as the fused
multiply-subtract. The partial product array of
the (1-bX) multiply can be reduced by using

Walace tree technique . Therefore, the area
required to implement the partial product array is
approximately 30 % the size of the direct
multiplication technique.

(1-bX)? is computed by squaring the result of the
former computation. Figure 4 shows the the
squaring unit partial product array reduction for
4-bit operand. The matched terms in the partial
product array are grouped and moved one higher
value position to the left in the reduced partial
product array by using ag + g &= 2*gg and
aa=g equivalences.

(1-bX)? is computed by cubing of the g=(1-bX).
The paralel cubing unit proposed by [2]
computes the cube of an operand with 24 bit
length. This computation is 25% faster than the
direct multiplication technique. Figure 5
indicates the partial product terms and reduced
terms required to compute the parallel cube. In
this computation, three different reduction
techniques are applied to the cubing unit partial
product array. The first reduction technique is
performed on the three identical tems (a;ag) of
the partial product array. This term is replaced
with a single term &. The second reduction
technique is applied to the partial product terms
which include two identical terms. The three
terms with two identical bits are replaced by two
terms with aweighting of 3 asfollow:
aag +aaa +aaa =333

The third reduction technique is applied to the
partial product terms that include three different
terms. The six terms on the partial product array
arereplaced with one three-different term with a
weighting of 6 asfollow:

XA T AT XA T A TR X TR = 6* Ay

Asasimiliar process, (1-bX)* is computed as the
result of fourth-order of the g=(1-bX).

The parallel unit proposed by [4] computes the
fourth exponent of an operand with 24 bit
length. Figure 6 shows the partial product terms
and reduced terms required to compute the
parallel process.

Like the cubing reduction techniques, the four
identical , three identical, two identical and four
different terms are replaced by one single term,
one two term with a weighting of 4, one three
term with a weighting of 12, one four term with a
weighting of 24 respectively. Additionaly, these
reduced terms are shifted two-bit for the two
term and the three term with a weighting of 3,
three-bit for the four term with a weighting of 3
to theleft.

The multiplication of (a&X) is a smal
multiplication. An efficient multiplier can be
used to compute the effect of this term to the
result.

Thefinal multiplier computesthe result of the
(a*X) multiplication and the sum of the (1-b*X),

(1-b*X)?, (1-b*X)3, (1-b*X)* terms. This
multiplication is the only full precision
multiplication.

6. CONCLUSIONS

A fast and efficient divider unit is proposed in
this study. To compute the reciprocal term (1/b),
the unit utilizes the fourth-order Newton-
Raphson iteration method. Parallel computation
units are used to reduce the latency of the
division operation. In the computations, a 24-bit
operand lenght known as |EEE format is
selected.

The latency of the proposed divider is less than
the latency of the classic Newton-Raphson
Method. Also, to compute the higher-order
terms the truncating technique can be used.
Thus, the needed hardwire can be sgnificantly
reduced.

Ahmet SERTBA?

A Fast Divider |mplementation Based On The Newton-Raphson Method Using Parallel Computation Units 413

ag =) a a
ag =) a ao
X
a3ay aap a1 ao dodg
azay a@ay aa dpdy
PPA By aay aqa aa
az az a3 a1az dpds
agaz agar agdo Qa a1 _ ao
RPPA az dp di a1
a
Figure4. Sguaring Computational Unit
a3 b a Ao
a3 a a do
X az & a do
Ay A Aoy Ay Ao
Ay HApdy Ay Adody
WY Ldy Ay AU
Apdy Ay Qddy Apdedg
B Ay YA Ay
Az A, dpdz; Ao
PPA Azdzdp ApAzdp A3y Apdzdo
BwHA; Ay 1A Ay
BQA, A Jud, Apd;
AzApdz AApdz A1Apd3z Aol
Az Az A1 dzdy A3y
BHA, KA A, A,
Bz A3 qhdz Apuds
BB, WA, hdzdy Az
A3d3 Az 183 Apdpd3
A3z AAz Az A3
X1 ds - - d - - a1 - - dy
dzdy dgdy dsdp dgdy Ay Az ddy Aido
X3 RPPA B A A A3y a8
Az ydg A

Figure5. Cubing Computational Unit

Ahmet SERTBA?

414 A Fast Divider Implementation Based On The Newton-Raphson Method Using Parallel Computation Units

a3 A a Ao
a3 & el Ao
a3 a =t Ao
a3 a A do

dzdpdpdp Axdpdpdp A1dpdpdp Apdopdodo
dzdpdpd; azdpdpd; ajdpdpdy Apdodody
dzdpd dg azdpdidp Aidpdidg Apdpdido
dza;dpdp aAzajdpdp d1a1dpdp Apdidpdo

dzqpaid; azapd1ay ajdpdzd; Apdpdrdy
dza;dpd; axa;dpd; q1didpd; dpdidodi
dzqqa;dp ara1ajdp aidza;dp apdi1d18o
PPA a3a 808y 82828080 81828080 80828080
dzdpdpdp azdpddp aidpddp Apdpdzdo
dzdpdoedz Azdpdpdy aidgdpdz Apdpdodz
dzaiqua; axaia;d; aidpa;d; dgdzaidg
N N N |
N L\ v
dzazazady azazayzady qjazazay
dzdzazd; apazdzad; ajdzadszad; dpdzazadi
dzdzajaz apazayaz ajasa;az dpdzaias
dzqazdg apaiazaz ajadiazaz dpd1azads
Azdzadpaz aAzazazaz apdpazaz dpdzdzas
dzdxazay azapazay ajapaszdp dpodpazdp
dzazada; dzazdpap aijazazady dpdzadzad;
dzdpazdz dpapdzadz ajdzazas dpdzadzas
dzadzazaz Azazadxdz Ajdzadxaz Apdzdxds
dzazdzdy dpazdzdy aiazdzdy dAodzdzdp
dzazazds dxazdzds d;dzdzdz dpdzdzads
X1 a3 - - - a - - - a - - - do
X4 azay Az agd a; @ap axa a0 aay a1y
azdo iz azdg
X3 agaz agay agdo aag a1do
Ly
X3 agar agazay a18p axa1dy aa1do
agaza; aza1do agaidp azaudo
RPPA agazdp azdpxdo agzazap
dzdxa1dg

Figure6. 4.Degree Col

mputational Unit

Ahmet SERTBA?

A Fast Divider |mplementation Based On The Newton-Raphson Method Using Parallel Computation Units 415

REFERENCES [3] Liddicoat A. and Flynn M. (2000),
[1] Flynn M. © On division by Functional ‘Pipelinable Divison Unit', CSL-TR-00-809,
Iteration.’, IEEE Transactions on Compuiters, The Technical Report, Computer System
Volume C-19, pages 702-706, August 1970. Labrotary, Stanford University, September.
[4] Sertba® A. ‘Fast and Efficient Paralel
[2] Liddicoat A. and Flynn M, (2000), ‘Pardld Computation Units for Exponential
Square and Cube Computations',Asilomar Functions', 1SCIS XVI International Symp.on
Conference on Signals, Systems and Computer and Information Systems', Antalya-
Computers, California, November. Belek, November 5-9, 2001.

"
d. A

Ahmet Sertba® was born in Ystanbul in 1965. He received the B.S. and
M.Sc. degrees in electronic engineering from the Istanbul Technical
University in 1990, the Ph.D. degree in electronic department from
Istanbul University in 1997 respectively.

He has worked as Research Assistant at |.T.U. during 1987-1990, research
engineer at Grundyg firm during 1990-1992, an instructor at the Vocational
School of Istanbul University during 1993-1999. He s currently an Assoc.
Professor in the Department of Computer Engineering at the University of
Istanbul. His research interests include computer arithmetic circuit design,
computer architecture and computer-aided circuit design, circuit theory
and applications.

Ahmet SERTBA?

