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ABSTRACT 
In this paper, a special divide hardware unit based on the Newton-Raphson iteration method is 
proposed. To compute the reciprocal fast in  division process, it utilizes fourth order Newton-Raphson 
reciprocal approximations.  By using fast and efficient parallel computation units the divider achives 
the computations.  These units compute the second, third and fourth order Newton Raphson terms 
more  faster than the standart technique using direct multipliers.    
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1. INTRODUCTION 
As it is well kown, a division can be expressed as 
the product of the dividend, and the reciprocal of 
the divisor , q= a/b = a*(1/b).  To compute the 
reciprocal term (1/b) , the mu ltiplicative iterative 
methods such as Newton-Raphson and Taylor 
Series expansion can be used. The Newton-
Raphson  Method with high-order iterations can 
be written as follows:  
 
Xi+1=Xi+Xi(1-bXi)+Xi(1-bXi)2+.....+Xi(1-bXi)n 

(1) 
Flynn[1] shows that the error decreases 
exponentially as Ei+1=b*Ei

n+1 for an nth order 
Newton-Raphson iteration given above. 
Using standart arithmetic units,  it requires four  
iterations  to achieve an error reduction of 
Ei+4=b*Ei

16 for the first order implementation. On 
the other hand,  for the thirth order and the fourth 
order Newton-Raphson implementation, in only 
two iterations,  they achieves an error reduction 
of Ei+2=b*Ei

16 and  Ei+2=b*Ei
25 respectively. 

 

In previous work [2-3],  the use of the parallel 
squaring and cubing units were applied to the 
Newton-Raphson iterative divide unit.  
In this work, to reduce the reciprocal error, the 
fourth order parallel computational unit proposed 
by [4] is used  to compute the fourth order 
Newton-Raphson iteration. 
 
2. CLASSIC NEWTON-RAPHSON 
    DIVIDE  
The classic first-order Newton-Raphson divide 
unit iteration is Xi+1=Xi(2-bXi). It is clear that the 
error decreases quadratically for each iteration., 
Ei+1=b*Ei

2.  To determine the initial value for the 
reciprocal term of 1/b, a ROM table lookup is 
used, before the first iteration starts.  In this 
method, each iteration needs two multiplication 
and one subtraction (2’s complement) operations. 
On the other hand, to compute (2-bXi) term in a 
single operation is possible. This term is called 
as the fused multiply-subtract.  After  the last 
iteration,  the quotient (q) is computed by 
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multiplying the dividend (a) by the reciprocal of 
the divisior (1/b).  
 
Figure 1 shows a Newton-Raphson divide unit 
with a first order iteration.  In the classical 
technique,  the operations can not be computed 
independently and they depend on the result 
produced by the previous operation.   
Therefore this does not allow  any parallel 
process.  The latency of the divide is given  as 
follow, if k iterations are required for the 
operation: 
 

         tdivisio = tlookuptable + 2k tmult + tmult.           (2) 
 

 
 

Fig.1. Classic divide unit for the first order 
 
3. STANDART FOURTH-ORDER  
   N.-R. DIVIDE    
By means of  the kth order iterative function 
given in (1), the Newton-Raphson fourth order 
iteration function can be expressed as follow: 
Xi+1=Xi(1+(1-bXi)+(1-bXi)2+(1-bXi)3+(1-bXi)4 

                                                     (3) 

 
In order to compute an n-bit reciprocal in a 
single iteration, the look-up table size must be 
approximately (n/5)x(n/5) bits. 
 
Figure 2 shows a fourth order divide unit 
implemented using classic technique.  The 
subtraction and additions can be fused with the 
multiplications as described  before.  
To implement the fourth-order Newton-Raphson 
Divide, a single or double multiplier may be 
used.  If k iterations with a single multiplier are 
used, the latency of the divide is approximately 
as follow: 
             tdivisio = tlookuptable + 5k tmult + tmult.           (4) 
 
With two multipliers are used, the latency of the 
unit can be given as: 
                   tdivisio = tlookuptable + 5k tmult                (5) 

 
 

Fig.2. The fourth-order Newton-R. Divide 
Unit 
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4. PROPOSED FOURTH-ORDER  
    N.-R. DIVIDE UNIT 
In a division operation,  to compute the quotient 
(q) as a parallel process, the special computing 
units called as parallel computational units may 
be used  To show the efficiency of these units in 
the divider implementation,  the Newton-
Raphson iteration can be expressed as the fourth 
order approximation. 
 
q=a/b=aX[1+(1-bX)1+(1-bX)2+(1-bX)3+(1-bX)4] 

                                                                         (6) 
 

Where X is the initial prediction of the reciprocal 
and can be taken the value from the lookup table. 
Figure 3 shows the hardware section required to 
implement the fourth order divide unit.  
 The latency of the divide unit may be given as in 
(7) , as long as all of the powers of  (1-bX) term 
can be computed directly by using the parallel 
computational units that take the same time to 
perform one multiplication.  
 
                   tdivisio = tlookuptable + 3 tmult                  (7) 
 
The divider unit requires tree multipliers, one 
squaring unit, one cubing unit and one fourth 

order exponential computation unit.  But the two 
multipliers  have small bit lenght (n/5 *n) and are 
used to multiply (1-bX), (a*X) terms. The third 
one is full lenght multiplier (n*n) and used to 
multiply quotient (q=a/b).  On the other hand, the 
parallel squaring and cubing units are described  
in detail  [2].  Also, the fourth-order parallel 
computation unit is  modeled mathematically [4] 
in the references. 
 
In the next section, the proposed divider is 
implemented for  24-bit operand, the length of 
the IEEE single precision floating-point format. 
 
5.  THE   DIVIDER     
     IMPLEMENTATION 
Firstly, by a table lookup, an initial value of the 
reciprocal of the divisior should be determined. 
As well known, for  the lookup table, a 2lxm bit 
ROM with l address bits and an m-bit output 
words is required.  
In the computations, to avoid getting the negative 
numbers from (1-bX) term, the value stored in 
each lookup table address should be  less than 
the reciprocal of all possible values of b.  
 
 

 

 
Fig.3.  Proposed fourth-order Newton  Raphson  Division  Hardware 
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Thus, the (1-bX) computation produces positive 
values and it can be  implemented as the fused 
multiply-subtract.  The partial product array of 
the (1-bX) multiply  can be reduced by using  
Wallace tree technique . Therefore, the area 
required to implement the partial product array is 
approximately 30 % the size of the direct 
multiplication technique. 
 
(1-bX)2 is computed by squaring the result of the 
former computation.   Figure 4 shows the the 
squaring unit partial product array reduction for 
4-bit operand.  The matched terms in the partial 
product array are grouped and moved one higher 
value position to the left in the reduced partial 
product array by using aiaj +  aj ai= 2*aiaj and  
aiai= ai  equivalences. 
 
(1-bX)3 is computed by cubing of  the q=(1-bX). 
The parallel cubing unit proposed by [2] 
computes  the cube of  an operand with 24 bit 
length. This computation is 25% faster than the 
direct multiplication technique.  Figure 5 
indicates the partial product terms and  reduced 
terms required to compute the parallel cube.  In 
this computation, three different reduction 
techniques are applied to the cubing unit partial 
product array.  The first reduction technique is 
performed on the three identical tems (a iaiai ) of 
the partial product array.  This term is replaced 
with a single term ai.  The second reduction 
technique is applied to the partial product terms 
which include two identical terms. The three 
terms with two identical bits are replaced by two 
terms with a weighting of  3 as follow: 
                    aiaiaj + ajaiai + aiajai = 3*ajai  
 
The third  reduction technique is applied to the 
partial product terms that include three different 
terms.  The six terms on the partial product array  
are replaced with one three-different term with a 
weighting of 6 as follow: 
akaiaj +akajai+ajakai+ajaiak+aiakaj+aiajak= 6*akajai 
 
As a similiar process, (1-bX)4 is computed as the 
result of fourth-order of  the q=(1-bX). 
 

The parallel unit proposed by [4] computes  the 
fourth exponent  of  an operand with 24 bit 
length. Figure 6 shows the partial product terms 
and  reduced terms required to compute the 
parallel process.     
 
Like the cubing reduction techniques, the four 
identical , three identical, two identical and four 
different terms are replaced by one single term, 
one two term with a weighting of 4, one three 
term with a weighting of 12, one four term with a 
weighting of 24 respectively.  Additionaly, these 
reduced terms are shifted two-bit for the two 
term and the three term with a weighting of 3, 
three-bit for the four term with a weighting of 3  
to the left.    
 
The multiplication of (a*X) is a small 
multiplication.   An efficient multiplier can be 
used to compute the effect of this term to the 
result.  
 
The final multiplier computes the result of  the  
(a*X) multiplication and the sum of the (1-b*X), 
(1-b*X)2,  (1-b*X)3, (1-b*X)4 terms.  This 
multiplication is the only full precision 
multiplication.  
 
6. CONCLUSIONS 
A fast and efficient divider unit is proposed in 
this study.  To compute the reciprocal term (1/b), 
the unit utilizes the fourth-order Newton-
Raphson iteration method.  Parallel computation 
units are used to reduce the latency of the 
division operation.  In the computations, a 24-bit 
operand lenght known as IEEE format  is 
selected.  
 
The latency of the proposed divider is less than 
the latency of the classic Newton-Raphson 
Method.  Also,  to compute the higher-order 
terms  the truncating technique can be used. 
Thus, the needed hardwire can be significantly 
reduced.  
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                                                                          a3           a2           a1             a0 
                                                                          a3           a2           a1             a0 

   X 
                                                                    a3 a0      a2 a0        a1 a0         a0a0 
                                                       a3 a1     a2 a1     a1 a1         a0a1 

          PPA                             a3a2     a2 a2     a1 a2     a0a2 
                               a3 a3        a2a3     a1 a3     a0a3 
         
                               a3a2        a3 a1    a3 a0       a2 a0     a1 a0           _            a0 

       RPPA                a3                     a2 a1                     a1 

                                                           a2       
 

Figure 4.   Squaring  Computational  Unit 
 
 
 
                                                                                    a3          a2            a1          a0 
                                                                                    a3          a2            a1          a0 

   X                                                                                       a3          a2            a1          a0 
  

                                                                                 a3a0a0   a2 a0a0   a1a0a0   a0a0a0 
                                                                    a3a0 a1   a2a0a1      a1a0a1   a0a0a1 
                                                                    a3a1a0   a2a1a0      a1a1a0   a0a1a0 
                                                         a3a2a0  a2a2a0   a1a2a0      a0a2a0 
                                                         a3a1a1   a2a1a1    a1a1a1     a0a1a1 
                                                         a3a0a2  a2a0a2   a1a0a2      a0a0a2 
        PPA                              a3a3a0  a2a3a0   a1a3a0   a0a3a0 
                                              a3a2a1  a2a2a1   a1a2a1   a0a2a1 
                                              a3a1a2  a2a1a2   a1a1a2   a0a1a2 

                                              a3a0a3  a2a0a3   a1a0a3   a0a0a3 
                              a3a3a1  a2a3a1   a1a3a1   a0a3a1 

                                 a3a2a2   a2a2a2   a1a2a2   a0a2a2 
                             a3a1a3     a2a1a3   a1a1a3   a0a1a3 

                      a3a3a2  a2a3a2   a1a3a2   a0a3a2 

                      a3a2a3  a2a2a3   a1a2a3   a0a2a3 
          a3a3a3  a2a3a3    a1a3a3  a0a3a3 

    
    X1            a3         -          -        a2           -          -         a1     -           -         a0 

                                a3a2      a3a1     a3a0       a3a1      a2a0     a3a0                   a2a0           a1a0 

    X3 RPPA              a3a2    a3a2a0          a2a1          a2a1                   a1a0 

                                       a3a2a1                a3a1a0    a2a1a0 

 

Figure 5.   Cubing Computational Unit 
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                                                                                 a3            a2            a1            a0 
                                                                                 a3            a2           a1            a0 

                 a3            a2           a1            a0 

                 a3            a2           a1           a0 
  X                                                                                                 a3a0a0a0  a2a0a0a0  a1a0a0a0  a0a0a0a0 

                                                                                             a3a0a0a1   a2a0a0a1  a1a0a0a1  a0a0a0a1 
                                                                                             a3a0a1a0  a2a0a1a0   a1a0a1a0  a0a0a1a0 
                                                                                             a3a1a0a0   a2a1a0a0    a1a1a0a0   a0a1a0a0                                                         

                                                                       a3a0a1a1   a2a0a1a1  a1a0a1a1  a0a0a1a1 
                                                                            a3a1a0a1   a2a1a0a1  a1a1a0a1  a0a1a0a1 
                                                                            a3a1a1a0   a2a1a1a0  a1a1a1a0  a0a1a1a0 
        PPA                                                           a3a2a0a0   a2a2a0a0  a1a2a0a0  a0a2a0a0 
                                                                            a3a0a2a0   a2a0a2a0  a1a0a2a0  a0a0a2a0 
                                                                            a3a0a0a2   a2a0a0a2  a1a0a0a2  a0a0a0a2 
                                                           a3a1a1a1   a2a1a1a1   a1a1a1a1  a0a1a1a1 

                         Μ             Μ              Μ            Μ 
              
 

                                         Μ         Μ            Μ 
                                   a3a2a2a2 a2a2a2a2 a1a2a2a2 
                    a3a3a3a1  a2a3a3a1  a1a3a3a1 a0a3a3a1 
                    a3a3a1a3  a2a3a1a3  a1a3a1a3 a0a3a1a3 
                    a3a1a3a3  a2a1a3a3  a1a1a3a3 a0a1a3a3 
                     a3a2a2a3  a2a2a2a3  a1a2a2a3 a0a2a2a3 
                     a3a2a3a2  a2a2a3a2  a1a2a3a2 a0a2a3a2 

                 a3a3a2a2  a2a3a2a2  a1a3a2a2  a0a3a2a2 
      a3a2a3a3  a2a2a3a3   a1a2a3a3 a0a2a3a3 
      a3a3a2a3   a2a3a2a3  a1a3a2a3  a0a3a2a3 
      a3a3a3a2  a2a3a3a2  a1a3a3a2  a0a3a3a2 

 a3a3a3a3  a2a3a3a3  a1a3a3a3  a0a3a3a3 

 

 
X1 a3        -          -         -           a2        -        -         -        a1       -        -        -      a0 

 
X4          a3a2         a3a1         a3a2                          a2a1     a2a0      a2a1                   a1a0     a2a0   a1a0 

                           a3a0                           a3a1                        a3a0 
 
 X3        a3a2                      a3a1                         a3a0                     a2a0                   a1a0 

                                                      a2a1  

X3       a3a2a1                  a3a2a1              a2a1a0   a2a1a0  a2a1a0 

                       a3a2a1  a3a1a0              a3a1a0   a3a1a0 

RPPA             a3a2a0  a3a2a0              a3a2a0 

                               a3a2a1a0 
 

Figure 6.    4. Degree  Computational Unit 
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