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ABSTRACT

This paper presents an approach to address the critical challenge of load forecasting in the Indian state of Odisha. Motivated by the necessity for accurate predictions 
to support efficient planning and operation of the power system network, the work focuses on developing a reliable load forecasting model according to the unique 
characteristics of Odisha's electricity consumption patterns and environmental influences. To handle this problem, a Long Short-Term Memory based model is proposed 
with the ability to capture long-term dependencies and handle non-linear dynamics in time-series data. Historical load datasets are collected from the Odisha State 
Load Dispatch Centre, and meteorological datasets are collected from the National Aeronautics and Space Administration site. The work aims to accurately forecast 
power demand at 15-minute intervals for both short-term (next week) and medium-term (next month) horizons. Through comparative analysis with traditional 
methods such as Gaussian Process Regression and Artificial Neural Network, the proposed approach demonstrates superior performance in terms of accuracy and 
reliability. One year of the dataset (from January to December 2022) is considered as a training dataset to forecast next year's January 2023 load demand at every 
15-minute intervals. The LSTM model achieves an absolute error range of ±10 MW during testing, with a mean absolute error of 5.9443 MW and a Mean Absolute 
Percentage Error of 0.2134%, outperforming the existing models. This research contributes to advancing the reliability and efficiency of power system operations, 
offering valuable insights for optimizing load forecasting strategies in Odisha and similar regions.
Index Terms— Load forecasting, long short-term memory, energy consumption
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I. INTRODUCTION

The world faces two significant challenges today: global warming and energy security. Addressing 
these issues is not just crucial; it is a matter of utmost importance, and energy efficiency is a key part 
of the solution. Numerous countries are continuously striving to enhance their energy efficiency. 
Renewable energy sources, such as solar and wind power, have been proven to be effective in reduc-
ing harmful emissions. By utilizing renewable energy sources, countries can increase their energy 
security and efficiency while reducing their reliance on fossil fuels, thereby significantly mitigating the 
adverse effects of global warming. Furthermore, electricity demand analysis is a complex process, and 
the demand variability presents a challenge to the electrical grid. This variability can lead to imbalances 
between electricity supply and demand, posing a significant threat to grid stability [1]. Accurate load 
forecasting is essential in addressing this issue and ensuring that the electrical grid operates reliably. By 
predicting energy consumption patterns, grid operators can balance supply and demand in real-time, 
reducing the need for backup power plants and improving overall grid efficiency.

Machine learning algorithms are increasingly being used in electrical power systems to address 
load forecasting problems [2]. Studies have shown that meteorological variables have a signifi-
cant relationship with electricity load consumption and are frequently used as inputs for machine 
learning algorithms [3].

To predict electrical power load demand for the day ahead in the European Network of 
Transmission System, a simple processing pipeline method is applied for preprocessing raw 
power data, which is gathered at discrete and separate time intervals [4]. Secondly, a Gated 
Recurrent Unit (GRU), which is a lightweight type of recurrent neural network, is selected to yield 
the multi-step forecast. A new transformer model called the transform graph, and the Graph 
Convolutional Network (GCN), is developed to predict electric load [5]. The predicted load values 
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are generated using a feedforward neural network that takes the 
outputs of the transform graph as input. In ref. [6], for day-ahead grid 
system-wide level load forecasting, the Long Short-Term Memory 
(LSTM) algorithm is used. An improved complete empirical mode 
decomposition with adequate noise technique is used in ref. [6] to 
obtain the input of net load decomposition. In ref. [7], separate load 
forecasting models for net load and PV generation are proposed for 
a 66/13.2 kV power substation located in the north of Spain; it uses 
64 variables as input to Cubist and random forest models to esti-
mate the load demand with 5––7% Mean Absolute Percentage Error 
(MAPE). A mid-term load forecasting technique utilizing both load 
data and environment data for Australian and Indian datasets is pro-
posed in ref. [8]. In ref. [9], a hybrid short-term load forecasting model 
has been proposed for the smart grid. The model consists of feature 
engineering and adaptive grasshopper optimization, as well as a 
locally weighted Support Vector Regression (SVR) forecaster. In ref. 
[10], a novel temporal convolution network-LSTM load forecasting 
model is proposed that incorporates mobility data and multi-tasking 
learning. The combination of different methods used in refs. [9] and 
[10] imposes more complexity compared to single-method-based 
models. Support Vector Regression and Artificial Neural Network 
(ANN) in ref. [11] are used to forecast the electrical load demand for 
the period from July 16 to July 22, 2010. Between March and July 
2010, the local electrical distribution company is the source of data 
that they use. The findings show that the SVR model is better than 
the ANN model. In ref. [12], the electric load consumption in the 
Nepool region of New England is predicted between 2004 and 2008 
using an ANN model. The research discovers that weather variables 
like temperature and wind speed affect forecast accuracy. Similarly, 
in ref. [13], an ANN model for analyzing the electrical load data for 
2019 in Macedonia is proposed. An ensemble model for short-term 
load forecasting in the Australian National Electricity Market (NEM) 
that employs an Extreme Learning Machine (ELM) is proposed in ref. 
[14]. The proposed model consists of several single ELMs that are 
trained using random input parameters and hidden nodes within a 
specified range to generalize the randomness of the individual ELMs. 
In ref. [15], a hybrid load forecasting model employing Vibrational 
Mode Decomposition (VMD), Empirical Mode Decomposition (EMD), 
Fast Fourier Transform (FFT), stepwise regression, Similar Days (SD) 
selection method, and ANN is proposed, but owing to the deploy-
ment of numerous methods, this model complexity is quite high, 
which leads to higher computation time.

In ref. [16], a comparative analysis of 19 machine learning mod-
els for short-term load forecasting is done using a dataset from 
Maharashtra, India, for July 2022. In terms of forecasting accuracy, 
the study revealed that the exponential Gaussian process Regression 
(GPR) performed better than the other models. Further, a combined 
Prophet and LSTM model is proposed to forecast the load data. This 
model uses both linear and nonlinear data to predict the original load 
data, and the non-linear residuals are trained using LSTM [17]. An 
LSTM model with a combination of Recurrent Neural Network (RNN) 
deep neural network models used 24- and 168-hour records for 
day- and week-ahead prediction with the help of historical load and 
weather data, indicating an accuracy in terms of MAPE as 1.01% [18]. 
Similarly, a Convolutional Neural Network (CNN) and LSTM (CNN–
LSTM) hybrid model is proposed for STLF with a 6-year historical load 
data training dataset to predict 12 days’ load with a MAPE of 3.5% 
[19]. Ultra-load demand prediction for several hours is proposed by 
using the Complete Ensemble Empirical Mode Decomposition with 
Adaptive Noise (CEEMDAN) concept and LSTM neural network; a 

total 4-year dataset (2014–2017) is applied for training purposes, and 
the result is compared with Autoregressive Moving-Average (ARMA), 
LSTM single-prediction, Ensemble Empirical Mode Decomposition 
(EEMD) and LSTM, and CEEMDAN-LSTM models [20]. A model using 
a multi-stage-based method for short-term zonal load probabilis-
tic forecasting is proposed [21]. In this method, highly correlated 
features with electricity load are provided, and an LSTM model 
integrates a temporal attention-based decoder and pinball loss 
function for probabilistic forecasting. It is clear from the previous 
discussion that historical load data and weather information are 
two crucial kinds of features that can affect the accuracy of load 
forecasting. Additionally, good performance in load forecasting has 
been affirmed in the past using machine learning-based methods. 
However, Indian load patterns have not been analyzed in research 
articles; therefore, in this paper, a load forecasting model using LSTM 
is proposed for the Indian State Load Dispatch Centre.

The proposed model has the following main contributions:

• Developing a forecasting model that is driven by data for the 
Odisha Load Dispatch Centre.

• Investigating the effect of past load and weather information on 
load forecast. Temperature, relative humidity, dew point, wet bulb, 
and wind speed are the weather variables taken into account in 
this research.

• Assessing how well GPR, ANN, and LSTM work in predicting the 
electrical load. For the evaluation of the performance of different 
models and to determine the most accurate model, MAPE is calcu-
lated and compared.

II. FRAMEWORK OF LOAD FORECASTING MODEL

The first step of load forecasting is gathering the required input 
dataset for building load forecasting models and organizing them. 
The framework of load forecasting is shown in Fig. 1. Data, informa-
tion, and knowledge acquisition are of utmost importance in the 
area of data analysis. Further, to forecast load demand accurately by 
machine learning algorithms, it is necessary to preprocess and clean 
the data before feeding it to the learning algorithms.

Arranging and combining the collected historical load data with 
other elements produce various load characteristics, which can be 
visualized and analyzed to achieve the desired knowledge. Later, 
this knowledge can help with the decision-making process of fea-
ture selection.

The study focuses on determining the effect of meteorological vari-
ables on load forecast accuracy by using different features. Various 
features are collected and compared to identify the most effective 
set of features for accurate predictions. Studies have shown that 
meteorological variables have a significant relationship with electric-
ity load consumption and are frequently used as inputs for machine 
learning algorithms [3]. Because load patterns are frequently predict-
able, historical load information, such as past energy consumption, 
can significantly affect load forecasts. The proposed work’s datasets 
consist of historical load data as well as meteorological data.

In this paper, the load forecasting model is developed for Tata Power 
Southern Odisha Distribution Limited (TPSODL) using the electricity 
load data provided by the State Load Dispatch Centre, Odisha [22] 
for the year 2022 (January–December) and 2023 (January). The data-
set also includes six meteorological features: block, temperature, 
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relative humidity, dew point temperature, wet bulb temperature, 
and wind speed, along with load demand data consisting of 96 
data points for a day collected at every 15-minute time interval. The 
meteorological features are collected from the National Aeronautics 
and Space Administration (NASA) website available online at https 
://po wer.l arc.n asa.g ov/ [23]. The dataset from the year 2022 is used 
to train and validate the models and test them using the dataset of 
January 2023. For the load forecasting model, the final dataset is pre-
pared using a variety of data preprocessing methods. These meth-
ods include gathering data, data cleaning, data monitoring, missing 
data filling, and data normalization. The chosen features are further 
analyzed based on the Pearson correlation coefficient.

The Pearson correlation coefficients are used to measure the correla-
tion between two variables. It can be calculated by using (1) as:

�
� �

x x
Weather load

Weather load
Weather load

x x
,

cov( )
�  (1)

Where σWeather and σload represent the standard deviations of the 
weather variable xWeather and the load value xload and cov is the covari-
ance. The feature that has a high score (close to 1) is highly correlated 
with load demand and selected for further forecasting steps. Table 
1 indicates the correlation coefficient values of the variables (if the 
current day is “k” then previous day’s load demand (day k−1), block 
(day k), temperature (day k), relative humidity (day k), dew point (day 
k), wet bulb (day k), and wind speed (day k)) with the actual load 

for the year 2022. Artificial neural network-based algorithms assign 
weights to variables, thereby reflect the influence of input variables 
and the assigned weight on the forecasted load. The model might 
assign a higher weight to a historical variable if it is found to have 
a strong correlation with load demand. This approach ensures that 
the model produces accurate and reliable predictions that can help 
energy companies make informed decisions regarding manage-
ment and planning. As depicted in Fig. 2, there is a strong correlation 
between the previous day’s load demand and the current day’s load 
demand, as the Pearson coefficient value is 0.99. Similarly, additional 
feature correlations can be recognized through the visual represen-
tation in Fig. 2.

Further, the total dataset is split into training and testing sets with 
different ratios, say 70−30%, 80−20%, and 90−10%. In order to get 
the most accurate results, the machine learning algorithm to fore-
cast load must be chosen carefully. This paper uses GPR, ANN, and 
LSTM to provide load forecasting models, where the training data is 
utilized to teach machine learning techniques. To evaluate the accu-
racy of the predictive model, the test set is employed. Evaluation 
metrics are an essential part of measuring the performance of 
any model. In this particular case, the evaluation is done based 
on MAPE. The percentage difference between the actual and pre-
dicted values is measured by MAPE. This metric is particularly useful 
when evaluating models that predict values with different scales. 
The important parameters for simulation work are basically related 
to system configuration and model parameters. The proposed 
approach is carried out on a workstation with a 64-bit operating 
system, ×64-based processor, and 16.0 GB RAM. All three models 
are simulated in MATLAB/Simulink software for different basis func-
tions with validation. Gaussian Process Regression is simulated 
with different kernel functions, and the ANN and LSTM models are 
trained by selecting an appropriate number of layers and neurons 
for each model. For ANN, two hidden layers are considered with 30 
neurons in each layer and one neuron in the output layer, whereas 
the LSTM model simulated with 400 hidden neurons and one neu-
ron in the output layer with a hyperbolic tangent activation func-
tion and Adam optimizer.

III. DECISION-MAKING TOOLS

Three decision-making tools are selected to develop load forecast-
ing models. These techniques are: GPR, ANN, and LSTM. These tech-
niques are discussed in the subsections hereunder.

Fig. 1. Framework to forecast the load.

TABLE 1. PEARSON CORRELATION COEFFICIENT VALUES

Input Variables
Pearson Correlation 

Coefficient Values

Load demand (day k−1) 0.99 With respect to 
load demand of the 
current day (day k)Block (day k) 0.188

Temperature (day k) 0.447

Relative humidity (day k) 0.011

Dew point temperature (day k) 0.423

Wet blub temperature (day k) 0.493

Wind speed (day k) 0.332

https://power.larc.nasa.gov/
https://power.larc.nasa.gov/
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A. Gaussian Process Regression
A non-parametric Bayesian estimation method called GPR applies 
a Gaussian Process prior to a collection of hidden functions. This 
prior distribution can be updated as new data becomes available, 
allowing the model to adapt and improve its prediction over time. 
When dealing with complex and noisy datasets, this approach can 
be particularly beneficial. By capturing the uncertainty in the data, it 
can provide a measure of confidence in the predictions. Additionally, 
the non-parametric nature of this method allows for flexibility in the 
model, which can lead to more accurate and robust predictions.

At a specific time, t, a set of denoted by x x x x Rt t t t
D D� �� ���

1 2, , ...,  which 
includes D as exogenous variables that provide information on 
weather and calendar as the input.

In addition, let y Rt ∈  represents the total power consumption 
that is being measured, and this defines the output variable. 
X x x RN

N D�� �� �
1, ...,  and Y y y RN

N�� ��1,...,  can capture the historical 
data of the previous N measurements of both the input and out-
put variables. This information can be used to develop a Gaussian 
Process (GP) model that makes predictions about future values of 
the output variables based on input variables. By using this model, 
we can capture the underlying trends and patterns in the data and 
make informed decisions about power consumption based on this 
information. The GP model can be formulated as follows:

f x GP k x x

y f x N f xt t t

� � � � �� �
� � � � �� �

�0

2

, ,

,�
 (2)

The Gaussian Process regression uses the variance of the estimation 
error σ2 and the variance of the latent function f(x) to make predic-
tions. The covariance function, denoted as k (x,x’), is used to capture 
the similarity between different input points in the dataset. By using 
this model, the relationship between input and output variables can 
be estimated without having to make any assumptions about the 
underlying functional form [24].

B. Artificial Neural Network
The biological neural networks found in the human brain are mim-
icked by a computational model called ANN. It consists of many 
interconnected processing units known as neurons, which collabo-
rate to process and analyze information. The Multi-Layer Perceptron 
(MLP) is a popular type of ANN used in machine learning and pattern 
recognition [25]. Multiple layers of neurons are used to process the 
output of the previous layer until a final output is obtained.

In an MLP, neurons are organized into layers, with each neuron 
receiving input from the neurons in the previous layer and produc-
ing an output that is sent to the neurons in the next layer. The first 
layer is the input layer, the last layer is the output layer, and the hid-
den layers are the layers in between. A weighted sum of inputs is cal-
culated by every neuron in an MLP, and then an activation function is 
applied to produce its output. The weights and biases of the neurons 
are adjusted during training using algorithms like backpropagation 
to enhance the accuracy of the network’s predictions.

In this research, the selection and identification of the optimal num-
ber of hidden layers for the ANN model are accomplished through 
a trial-and-error process that aims to maximize accuracy. The best 
results are achieved by setting the number of nodes equal to the 
number of input features to determine the most suitable number of 
hidden layers. The calculation of the model output is derived using 
(3) for a single hidden layer.

y f yi
j

n

j
i

m

ij t i j� � ��
�
�

�
�
�

� �
�� �� � � �0

1 1
0  (3)

The equation (3) is used to calculate the model output, which 
involves several parameters, including “m” representing the num-
ber of input layer nodes, “n”’ denoting the number of hidden layer 
nodes, α, β are weights, and “f” as the transfer function. In this paper, 
a log-sigmoid function is used.

C. Long Short-Term Memory
Hochreiter and Schmidhuber proposed LSTM in 1997, and it has 
been improved by several researchers to become a highly effective 
architecture for RNNs. The primary purpose of LSTM is to address the 
issue of vanishing gradients, which occurs in standard RNNs when 
they attempt to handle long-term dependencies. The structure of a 
typical RNN is made up of a series of similar modules, each of which 
contains a straightforward hidden network, like a single sigmoid 
layer. In contrast to the normal RNN, the LSTM’s hidden layers have 
a more intricate structure. In each concealed layer of the LSTM, a 
gate and a memory cell are specifically introduced. LSTM’s memory 
block is made up of four parts: self-connected memory cells C, an 
output gate o, an ignore gate f, and an input gate I. The output gate is 
responsible for filtering and sending pertinent cell activations to the 
following network, while the input gate is responsible for entering 
activations into the memory cell.

The network can reset the memory cells and ignore previous 
incoming data thanks to the forget gate. In order to mitigate the 

Fig. 2. Input features correlation with load.
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vanishing gradient problem, multiplicative gates are also used to 
enable memory cells to access and store data for lengthy periods 
of time [26]. Because of this, LSTM is an appropriate architecture for 
tasks with long-term dependencies. The model faces several chal-
lenges, one of which is the inherent “black-box” nature of LSTMs. 
This characteristic makes it difficult to interpret the internal work-
ings of the model and understand the logic behind specific pre-
dictions. Additionally, effective training of LSTMs often demands 
a substantial amount of data, particularly when dealing with long-
term dependencies. The tuning of hyperparameters, including the 
number of layers, hidden units, and learning rates, is another chal-
lenge associated with LSTMs.

VI. RESULTS

Three prediction tools, GPR, ANN, and LSTM, have been selected to 
develop load forecasting models in this paper. The training and test-
ing results of each tool are discussed in subsequent subsections.

A. Results Obtained by Using GPR
The load dataset from Southern DISCOM of Odisha for the year 
2022 has been used to develop a GPR-based load forecasting 
model. A training dataset selected from the database is used to 
train the model using a GPR model with exponential kernel func-
tions and a constant basic function. The training plot of estimated 
load and actual load along with error for the complete 2022 year 
dataset consisting of 35 040 data points is shown in Fig. 3. It sig-
nifies that the forecasting model is fitting the training data well. 
In other words, the model is able to learn the patterns and hid-
den relationships, and trends in the training data and produce 
forecasted values that are very close to the actual values for that 
period. The histogram plot of error during training is shown in 
Fig. 4, which highlights the distribution of errors made by the fore-
casting model during the training phase. The difference between 
the actual values and the forecasted values for the electrical load 

is typically the reason for the error. To test the model, the dataset 
for January 2023 is used as the testing dataset. The testing results 
are presented in Figs. 5 and 6, which show the estimated load and 
actual load along with error, and the histogram plot of error during 
testing, respectively.

It has been observed that the predicted load and actual load pat-
tern variations match and overlap each other, which signifies that the 
model is capable of capturing the underlying patterns and trends in 
the data and is able to make accurate predictions based on available 
information. By analyzing the histogram of errors during testing, we 
can identify areas where the forecasting model needs to be improved 
and determine if the model is suitable for its intended use. Additionally, 

Fig. 3. Training of GPR-based LF model for the year 2022 dataset (365 × 96 = 35 040 data points). (a) Actual and predicted load. (b) Error.

Fig. 4. Error histogram of load prediction during training of GPR-
based LF model for the year 2022 dataset.
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the histogram of errors can be used to set appropriate thresholds for 
alerts when the forecasted load deviates from the actual load beyond 
an acceptable margin. It is clear from Fig. 3 that the absolute error in 
the prediction of load demand using GPR is in the range of ±20 MW 
during training, whereas during testing with the January 2023 data-
set, it is ±50 MW as depicted in Figs. 5 and 6. The MAPE of the corre-
sponding model for January 2023 is calculated as 0.6201.

B. Results Obtained by Using ANN
Artificial neural network has been trained with a training dataset 
from the year 2022 to estimate the load demand with one hidden 
layer, thus forming a multilayered network with seven input features 

or seven neurons in the input layer, 30 neurons in the hidden layer, 
and one neuron in the output layer representing the day-ahead 
load demand every 15 minutes. Furthermore, a log-sigmoid acti-
vation function is used for all layers, and ANN is trained with the 
Levenberg–Marquardt training algorithm. The learning curve of 
the ANN model for the train, test, and validation dataset is shown 
in Fig. 7, wherein x-axis represents the number of epochs and the 
y-axis represents the Mean Square Error obtained during training. 
The training results are presented in Figs. 8 and 9, which depict the 
actual and forecasted plot of load demand in MW and the error 
histogram plot in MW, respectively. It is implied that actual and 

Fig. 6. Error histogram of load prediction during testing of GPR with 
January 2023 dataset.

Fig. 7. Learning curve of the ANN model for train, test, and 
validation dataset.

Fig. 5. Testing of GPR-based LF model with January 2023 dataset. (a) Actual and predicted load. (b) Error.
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forecasted plots should overlap as much as possible, indicating that 
the model is able to accurately predict the electric load based on the 
available data. During training, it’s important to monitor both actual 
and predicted loads as well as histogram plot of error to ensure that 
the model is learning from the training data and making accurate 
predictions. It is clear from Figs. 8 and 9 that the absolute error in the 
prediction of load demand for the complete 2022 year dataset con-
sisting of 35 040 data points using ANN is in the range of ±100 MW 
during training, whereas during testing it is ±50 MW as depicted in 
Figs. 10 and 11. By analyzing these plots, adjustments can be made 
to the model’s architecture or training parameters to improve its 
performance.

The trained neural network has been tested with the year 2023 test-
ing data to assess its performance, which is entirely different from 
the training dataset. The actual and forecasted loads have been 
compared in Fig. 10, while an error histogram plot of testing data 
is shown in Fig. 11. It is important to note that the testing data has 
not been used in the training of the neural network. This ensures 
that the performance of the model on new and unseen data can be 
accurately assessed. Fig. 10 demonstrates that the neural network 
has performed reasonably well in forecasting the load for the test-
ing period. However, it is evident that the actual load values deviate 
from forecasted values, indicating that the model may not be fully 
accurate.

Fig. 11 provides a histogram plot of the error, which shows the distri-
bution of the actual load values. This plot can be used to assess the 
accuracy of the neural network’s forecasted value, which shows that 
the absolute error lies in the range of approximately ±60 MW. The 
MAPE of the ANN during testing is evaluated as 0.2567%.

C. Results Obtained by Using LSTM
The primary objective of an LSTM network is to learn from data with 
both long-term and short-term dependencies, which is crucial for 
accurate predictions and forecasts. However, the effectiveness of the 

learning process is heavily influenced by the type of input data that 
is used. If the input data is insufficient or leads the network in the 
wrong direction, the LSTM will not be able to accurately predict or 
forecast future data. In this specific case, one input feature (histori-
cal load) is used as input data which consists of 35 040 datapoints, 
thus forming a 1 × 35 040 input dataset for the LSTM network. The 
model is trained using 12 months of historical data, and one month 
is used for validation purposes to assess the accuracy of the forecast 
by Adam optimizer with LSTM layers of 400 hidden units followed 
by one fully connected layer having one neuron. The optimizer by 
default selects Root Mean Squared Error (RMSE) as the loss function 
in the regression process. Fig. 12(a) and (b) illustrates the learning 
curve of the LSTM model obtained during training, where Fig. 12(a) 

Fig. 8. Training of ANN for year 2022 dataset. (a) Actual and predicted load (b) Error.

Fig. 9. Error histogram of load prediction during training of ANN for 
year 2022 dataset.
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represents the RMSE and Fig. 12(b) represents the loss function in 
the case of training and validation dataset. It shows a decreasing 
trend, approaching zero; here, the dotted lines indicate validation 
performance, whereas smooth lines illustrate training performance 
at each iteration. The proximity of the loss to zero throughout train-
ing suggests accuracy in the model’s performance on the training 
and validation dataset.

Fig. 13 displays the training progress of both actual and predicted 
load for the complete 2022 year dataset consisting of 35 040 data 
points, as well as the associated error. To ensure that the LSTM can 
effectively learn the relevant features and patterns in the data, it 
is important to select and process the input data carefully. Fig. 14 
depicts a histogram of RMSE during the training phase. It is clear 
from Figs. 13 and 14 that the absolute error in the prediction of load 
demand using the LSTM model is in the range of ±50 MW during 
training; however, for most cases, it is between ±25 MW.

In the testing phase, Fig. 15 displays both the actual and predicted 
load along with error, and Fig. 16 shows a histogram plot of the abso-
lute error during testing, which confirms the error values between 
±10 MW approximatly. During training, Fig. 13 shows how well the 
LSTM model is able to fit the training data. A high degree of overlap 
signifies how well the model fits the data. The histogram in Fig. 14 
is used to monitor the model’s performance during training and to 
identify any areas where the model needs to be improved.

During testing, Fig. 15 shows how well the LSTM model is able to 
generalize to new, unseen data. It can be observed that the pre-
dicted load and actual load pattern variation are matched and over-
lap each other. This signifies that the model is able to capture the 
underlying patterns and trends in the data and make accurate pre-
dictions based on available information. Fig. 16 shows the distribu-
tion of error ranges between actual and forecasted load during the 
testing phase, which lies within ±10 MW. The MAPE during testing is 
calculated as 0.2134%.

As accurate results are obtained by using the LSTM, further 1-day 
and 1-week predictions can be observed for more clarification of 
the load forecasting using LSTM. Figs. 17 and 18 show the actual 
and forecasted load pattern along with error for 96 data points of 
1 January 2023 and 31 January 2023, respectively. Similarly, Fig. 19 
shows the comparison of actual and forecasted plots along with 
error for the first week of January, which is 672 data points. It can be 
observed that the predicted load and actual load pattern variations 
are matched and overlapped each other.

A separate dataset is prepared to test the proposed model for 1-day 
load forecasting of 22 March 2023. Fig. 20 illustrates the prediction 
of load demand for 22 March 2023 using the LSTM. In testing, 1-week 
load data from 15th to 21st March 2023 has been taken for predict-
ing the load demand of 22nd March 2023.

Fig. 11. Error histogram of Load Prediction during testing of ANN 
with the January 2023 dataset.

Fig. 10. Testing of ANN with the January 2023 dataset. (a) Actual and predicted load. (b) Error.
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V. COMPARISON

The three models can be compared based on their computational 
complexity. The GPR generally requires more time to train the data 
compared to ANN and LSTM models, which typically have shorter 
training times. Additionally, LSTM models may require higher sys-
tem memory compared to the other two techniques due to their 
architecture and memory cell structures. These factors are important 
considerations when evaluating the performance and practicality of 
each model for a given application. Table 2 indicates that the LSTM 
model is superior to the GPR and ANN models in terms of load fore-
casting accuracy, as demonstrated by its lower Mean Absolute Error 
(MAE) and MAPE. Specifically, the LSTM model achieves 5.9443 MW 
of MAE, which is significantly lower than the ANN model’s 11.1976 
MW and the GPR model’s 22.0412 MW with “exponential” kernel 
function, 19.9441 MW with “squared exponential” kernel function, 
21.3106 MW with “rational quadratic” kernel function, and 20.9792 

MW with “Matern 5/2” kernel function. Furthermore, the MAPE 
obtained using the LSTM is the least of 0.2134% as compared to 
0.2567% with ANN and 0.3877% with GPR. Similarly, RMSE is also 
the least using the LSTM. It is important to note that the comparison 
of different models is dependent upon various factors such as data-
sets, input parameters, training and testing data sizes, and evalua-
tion metrics.

In this paper, the success ratio is calculated based on various per-
formance plots and metrics, which are shown in Figs. 15–20; these 
metrics provide a comprehensive evaluation of system performance 
in achieving its objectives, which include:

• Error plots: An error plot is the difference between actual and fore-
casted values of loads that indicate model performance.

• MAE: Measures the average absolute difference in regression tasks 
presented in Table 2 for all models.

Fig. 12. (a) RMSE value curve of LSTM model during training and (b) loss function curve of LSTM model during training (dotted line = validation, 
smooth line = train).

Fig. 13. During training of LSTM for the 2022 year dataset. (a) Actual and predicted load. (b) Error.
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• MAPE: Measures average absolute percentage in regression tasks 
presented in Table 2 for all models.

• The R-squared (R2) value is determined by comparing actual and 
predicted load demand, which provides an indication of the fore-
casting model’s performance. A higher R2 value, closer to 1, sug-
gests a better fit of the forecasting model to the actual data. The 
R2 value obtained for the different models is depicted in Table 3, 
wherein the LSTM offers the highest R2 value of 0.959 as compared 
with other models of ANN and GPR. Thus, it is clear that LSTM out-
performs the other two models.

In particular, Fig. 15 depicts that the actual and the forecasted load 
demand plots during the testing phase overlap with each other, and 
the absolute error is within ±10 MW.

Thus, a comparative study with existing schemes is done and 
reported in Table 4. Furthermore, when compared to other load 
forecasting models from the literature [4, 14, 15, 17–20], the LSTM 
model appears to have the lowest error metrics, as illustrated in 
Table 4. From Table 4, the proposed LSTM-based model achieves 
the highest prediction accuracy by using the minimum number of 
input features. It is imperative to mention here that the proposed 
scheme simply uses the raw signals of meteorological data and 
previous day load data collected at 15-minute intervals and then 
applies the input features to the LSTM model to predict the next 
day’s load demand at every 15-minute interval. Therefore, there is 
lower computational complexity involved only in running the LSTM 
model compared with hybrid methods. Moreover, the proposed 
model does not need auxiliary methods to optimize the tuning 
parameters. Results shown in Tables 2, 3, and 4 confirm the efficacy 
of the proposed model.

Fig. 15. During testing of LSTM with January 2023 dataset. (a) Actual and predicted load. (b) Error.

Fig. 16. Histogram plot of error during testing of LSTM.

Fig. 14. Absolute error histogram of load prediction during training 
of LSTM for the year 2022 dataset.
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VI. CONCLUSION

This paper develops load forecasting models utilizing GPR, ANN, 
and LSTM methods, and these are applied to real-time datasets col-
lected from the Load Dispatch Centre of Odisha, an Indian State. 
The model considered historical load and meteorological data from 

2022-2023, and the performance of all three models is assessed to 
determine which indicates the most accurate load predictions. The 
absolute error obtained using LSTM is in the range of ±10 MW dur-
ing the testing phase, as compared with ±50 MW obtained using 
GPR and ANN. The LSTM model achieves the least MAE of 5.9443 
MW. Furthermore, the MAPE in the prediction of load demand 

Fig. 17. On 1stJanuary 2023. (a) Actual and predicted load plot and (b) error.

Fig. 18. On 31st January 2023. (a) Actual and predicted load. (b) Error.
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using LSTM is 0.2134%, which is least in comparison with earlier 
reported schemes. Furthermore, numerical results confirm that the 
LSTM has better performance in comparison to the GPR and the 
ANN in terms of load forecasting accuracy. These findings show 
the efficacy of the proposed LSTM model for predicting future load 
patterns. The future scope of this paper involves long-term load 
forecasting, extending up to a year ahead. Additionally, it aims to 
explore forecasting methods based on historical load data, consid-
ering the impact of holidays on load patterns, conducting seasonal 
and trend analyses of load data, and identifying other meteorologi-
cal factors closely associated with load demand. Furthermore, the 
study intends to develop alternative artificial intelligence-based 

algorithms to enhance forecasting accuracy. The dependency on 
meteorological data can occasionally restrict the forecasting hori-
zon due to data availability constraints. Moreover, increasing the 
number of features increases the complexity of the model, thereby 
prolonging simulation time. Therefore, future works could focus 
on reducing this complexity while adding the number of input 
features. Additionally, efforts can be made to mitigate the depen-
dency on meteorological datasets.

Fig. 19. During first week of January 2023. (a) Actual and predicted load. (b) Error.

Fig. 20. Actual and forecasted plot of 22nd March 2023.

TABLE 2. EVALUATION METRICS

Model Name MAE MW MAPE % RMSE MW

Exponential GPR 22.0412 0.6201 1.1880

Squared exponential GPR 19.9441 0.4987 1.0846

Rational quadratic GPR 21.3106 0.5803 1.3139

Matern 5/2 GPR 20.9792 0.6008 1.5033

ANN 11.1976 0.2567 0.3877

LSTM 5.9443 0.2134 2.8743

TABLE 3. R2 VALUE OF DIFFERENT MODELS

Model Name R2 

GPR 0.853

ANN 0.949

LSTM 0.959
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