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ABSTRACT

The current research focuses on the study of two main causes of bearing defects: load unbalance and bearing improper lubrication using Dspace 1104 card for 
three stator current signals acquisition. This study suggests a straightforward and effective technique for identifying and categorizing two different kinds of defects. 
It consists of introducing the current space vector (CSV) analysis technique to avoid loss of information between the three stator current signals; the resulting signal 
is then processed by wavelet packet decomposition (WPD) to calculate the energy of the final level WPD nodes. The node containing the highest energy values will 
be selected to train the Multilayer Perceptron Neural Network (MLP-NN) classifier implemented by round-robin cross-validation technique. The results confirm the 
efficiency of the proposed procedure in bearing causes defects classification with an average accuracy of 100% for the tests and 99.88% for the training.
Index Terms—Current space vector (CSV) analysis, energy, improper lubrication, load unbalance, multilayer perceptron neural network (MLP-NN), Wavelet packet 
decomposition (WPD)
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I. INTRODUCTION

The induction motor is an important equipment widely used in the industrial world due to 
its maintainability, ease of use, and its high efficiency. But this machine is faced with elec-
trical and mechanical failures causing its shutdown and this subsequently leads to a loss of 
productivity in terms of time and cost. It is for this reason and for decades, numerous studies 
concentrate on the diagnosis of various induction motor malfunctions using several diagnosis 
techniques such as current monitoring [1–3], acoustic emission [4–6], thermal [7], and vibra-
tion techniques [8, 9].

While the rolling bearings represent the most crucial elements in the induction motor so that 
many investigations are focused on the fault diagnosis of these components, dealing with outer 
race breakage, inner race, cage and ball breakage as the authors of [10] presented an unsuper-
vised fault diagnosis method for bearing faults diagnosis integrating short-time Fourier transform 
(STFT) with categorical generative adversarial networks (CatGAN); Ying Zhang et al. [11] also pro-
posed an enhanced convolution neural network (CNN) model using time–frequency images as 
inputs for bearing fault diagnosis to obtain better training results; While in [12] a multiple wavelet 
regularized deep residual network (MWR-DRN) has been developed by a set of auxiliary wavelet 
basis functions (WBFs) to increase the diversity of deep neural network input and prevent it from 
over fitting even with a small training set; Wang et al. [13] have used a Time-frequency symmetry 
dot pattern transformation technique to get two dimension representation, and a multi-scale 
transfusion network to diagnose bearing defect through vibration signals; the authors of [14] 
developed an on-rotor sensing system for wireless vibration measurement instead of traditional 
on-house sensing accelerometer to diagnose rolling bearing fault.

There are numerous internal and external issues that can lead to bearing breakage such as 
improper selection or design of bearings; improper material selection and quality; incorrect 
assembly, use, and maintenance; overload and poor lubrication [15, 16]. Therefore it would be 
better to diagnose and treat these causes to prevent bearing damages; some works are con-
ducted in this field where the authors of [17] have introduced the current space vector combined 
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with Wavelet Packet Decomposition (WPD) technique to diagnose 
load unbalance defect switch energy level variations, where a simple 
tool has been proposed by [18] analyzing the ranges values of the 
discrete wavelet transform to diagnose bearing improper lubrica-
tion defect. He et al. [19] provided an overview of frequent electrical 
bearing failure types in mechanical systems, covering different dam-
ages and lubrication failures; the problem of the influence of bearing 
installation faults on lubrication and bearing wear defects is solved 
in paper [20] using a finite difference approach and super-relaxation 
iteration method.

With the use of Dspace card for the acquisition of three stator current 
signals and current space vector (CSV) technique to prevent infor-
mation loss, the present work aims to address two primary causes 
of bearing faults: load unbalance and improper lubrication, which 
have not been widely considered when the current signals are con-
cerned. Additionally, the highest energy level of WPD is selected 
in order to train the MLP-NN classifier to diagnose the defects. To 
ensure the effectiveness of the neural network in defect classifica-
tion, a round-robin cross-validation technique was employed. The 
findings demonstrate the efficiency of the proposed approach in 
classifying bearing defects, based on the selection of the highest 
energy nodes, achieving an average accuracy of 100% in testing and 
99.88% in training.

II. THEORETICAL BACKGROUND

A. Bearing Defects
Rolling bearings are among the primary parts of induction motors 
(IMs) which consist of rolling elements, cages, and outer and inner 
rings.

As the WPD is used in this work, it is important to recall the well 
known equations of vibration frequencies caused by bearing failures 
[21]:
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where: fOR: outer race fault, fIR: inner race fault, fB: ball fault, fC: cage 
fault, Z: number of rollers/balls, BD: ball diameter, CD: pitch circle 
diameter of bearing, β: the contact angle in radians, and fr is the rota-
tional frequency.

The variation of stator current is a result of these mechanical vibra-
tions creating anomalies in the air gap flux density [21]. These fre-
quencies are computed as:

f f kfb e v� �  (2)

where: k = 1, 2, . . ., fb is the bearing defect frequency, fv represents 
one of the vibration characteristic frequencies calculated by (1), and 
fe represents the supply frequency.

Owing to several factors, bearings are progressively deteriorated as 
investigated in the literature [22–24], and the main causes of bearing 
defects are resumed as follows:

a. Lubrication failure: related to insufficiency, degradation or 
improper lubrication which can lead to bearing overheating.

b. Corrosion and contamination: caused by the insertion of foreign 
particles into lubricant or deteriorated corrosive solution.

c. Excessive load which means application of load excessively.
d. Incorrect assembly and misalignment: the interference fit 

mechanism should be used for mounting bearings on rotating 
rings and the lock nuts must be tight.

e. Load unbalance defect: 

As illustrated in Fig. 1, the irregular mass distribution along a rota-
tional axis represents the load unbalance fault. This mass experi-
ences a centrifugal force, which causes torque oscillations at specific 
frequencies that are frequently connected to the mechanical speed 
of the motor. As a result, peaks in the current spectrum are produced 
at certain frequencies that may be represented using the following 
formula [17].

f f kflu e r� �  (3)

with: flu: load unbalance frequency, fe: stator supply frequency, fr: 
rotation frequency, and k = 1, 2, 3 ….

B. Current Space Vector
The Current Space Vector (CSV) technique relies on the concepts of 
symmetrical components introduced by Charles Fortescue in 1918. 
This technique is used to analyze and control three-phase electrical 
systems by decomposing an unbalanced system into several bal-
anced systems [25, 26].

Fortescue’s concept involves decomposing a polyphase unbalanced 
system into several balanced systems, known as symmetrical com-
ponents. For a three-phase system, this results in three components:

*Positive Sequence Component (ip):

• The three vectors (phasors) have the same magnitude.
• They are spaced 120 degrees apart from each other.
• The phase sequence is the same as the original system Iabc.

Fig. 1. Load unbalance.
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*Negative Sequence Component (in):

• The three vectors have the same magnitude.
• They are also spaced 120 degrees apart from each other.
• The phase sequence is opposite to that of the original system.

i I a I aIn a b c� � �� �1
3

2  (5)

*Zero Sequence Component (i0):

• The three vectors have the same magnitude.
• They are in phase with each other (no phase difference).

i I I Ia b c0
1
6

� � �� �  (6)

The decomposition of the three-phase stator currents into these 
three components can be represented by a matrix. Generally, this 
transformation uses Clarke and Park transformations to move from 
phase coordinates to symmetrical component coordinates and vice 
versa.
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This matrix represents the transformation that allows moving from 
phase components to symmetrical components (zero, positive, and 
negative sequence).

In the Current Space Vector technique, these symmetrical compo-
nents allow for better analysis of currents in a motor or other three-
phase device. By using the symmetrical components decomposition, 
it is possible to:

• Identify and isolate imbalances and harmonics in the system.
• Improve modulation and control of currents in inverters.
• Optimize motor performance in real time by adjusting controls to 

compensate for imbalances and distortions.

The mentioned figures (Figs. 2–4) visually illustrate these 
components:

Figure 2 (Positive Sequence Component), shows three phasors of the 
same magnitude, spaced 120 degrees apart, in the same sequence 
as the original system.

Fig. 2. Current positive sequence components. Fig. 4. Current zero sequence components.

Fig. 3. Current negative sequence components.
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Figure 3 (Negative Sequence Component), shows three phasors of 
the same magnitude, spaced 120 degrees apart, but in an opposite 
sequence.

Figure 4 (Zero Sequence Component) shows three phasors of the 
same magnitude, with no phase difference between them.

The system will only consider the positive sequence if it is balanced, 
which means [27]:

i t i t ai t a i tas bs cs� � � � � � � � � � ��� ��
1
3

2  (8)

where: a = e-j2/3π is the Fortescue operator.

In summary, the Current Space Vector method allows for a detailed 
analysis and optimized control of three-phase systems, leveraging 
the concepts of symmetrical components to better understand and 
regulate currents in these systems.

C. Energy of Wavelet Packet Decomposition
The WPD generates, without data loss or redundancy, an approxi-
mation coefficient holding low-frequency information and a detail 
coefficient storing high-frequency information of the original sig-
nal at each level using a low-pass filter h[k] and a high-pass filter 

g[k], respectively [28]. Decomposed signals calculated at different 
decomposition levels can be calculated as:
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The procedure yields the tree structures seen in Fig. 5 and can be 
performed on several levels [29, 30].

The energy represents a strong indicator for fault classification that 
serves the purpose of quantifying the energy content of various fre-
quency bands or time intervals in order to capture significant signal 
features that are relevant for classification.

The energy eigenvalue of each frequency band at a decomposition 
level j is found as follows [31]:

E X nj

n

N

j� � �
�
�

1

2
 (10)

where: Xj(n) are the wavelet packet coefficients.

Fig. 5. WPD tree.

Fig. 6. Model of an artificial neuron.
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D. MLP-NN
MLP-NN is the most popular tool for fault classification due to its 
ease of use and its resistance to noisy input data, which is useful in 
fault classification tasks where measurement errors or noise may 
contaminate the input signals [32].

The most popular applications of MLP-NN are composed of an 
input layer, one or more hidden layers, and an output layer. Each 
layer’s output data represents entries for the layer that comes after 
it, where, these data are weighted by weights (wjn) subject to error 
learning, following rules and algorithms [33]. This whole procedure is 
illustrated by equation (8) and the diagram presented in Fig. 6.
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 (11)

where: xn: input data, Wjn: weights, bj: bias, Y: output and f: transfer 
function.

III. PROPOSED METHODOLOGY

The proposed methodology (Fig. 7) of this work consists of five steps:

Step 1: Data acquisition using Dspace 1104;

Step 2: Compute the CSV of the three-phase current signals (Ias: sta-
toric current phase A, Ibs: statoric current phase B, Ics: statoric cur-
rent phase C);

Step 3: Decomposition of the obtained CSV signals by WPD using 
Daubechies mother wavelet (db44) which is renowned for its 
orthogonality and high localization properties in both the time and 
frequency domains, which makes them useful in signal processing 
analysis and reconstruction processes [28];

Step 4: Calculation of energy for the WPD coefficients;

Step 5: Defects classification using MLP-NN enhanced by round 
robin technique, by giving as inputs the highest energy level of the 
WPD coefficients.

IV. EXPERIMENTAL SETUP FOR DATA ACQUISITION

The designed experimental setup (Fig. 8) consists of one pole pair 
induction machine with an encoder, a PC, connectors, three cur-
rent sensors coupled to a Dspace 1104 acquisition card, elastic 

claw coupling, bearing unit, and balanced flywheel (load). The 
current signal used in this application was collected at a sampling 
frequency of 5 KHz, for a rotation speed of 3000 rpm, under dif-
ferent operating conditions: healthy state, improper lubrication 
of ball bearing element and load unbalance of 10 g as shown 
in Figs. 8 and 9. Table 1 shows the parameters of the bearing 
geometry.

V. RESULTS AND DISCUSSIONS

The following computer programs and results are provided using 
Matlab 2016.b.

Stage 1: Data acquisition

Figure 10 represents the three phases of stator current of the several 
states: healthy motor, bearing defect and load unbalance. These sig-
nals were recorded as explained in the experimental setup. Where 
the database is composed of 90 signals (90 samples): 30 signals of 
healthy states, 30 signals of bearing improper lubrication defect and 
30 signals of load unbalance defect.

In order to prevent loss of information between the three phases (Ias, 
Ibs, and Ics), the CSV analysis method was applied to the stator cur-
rent signal phases using the formula (5). The resultant signal will be 
used in stage 2 to be decomposed by the WPD.

Fig. 7. The flow chart of the proposed methodology.

Fig. 8. Experimental setup.
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Stage 2: Signal decomposition and energy calculation

The WPD of the CSV signal is performed using Daubechies’ ‘b44’ 
mother wavelet, and the decomposition level is computed as fol-
lows [34]:

N=int
log f

f
log(2)

+2
s

e� ��

�

�
�
�

�

�

�
�
�

 (12)

with: fs: sampling frequency (fs = 5 kHz), fe: supply frequency (fe = 
52 Hz), and so N = 8. 

The energy values associated with the eighth-level WPD nodes are 
shown in Fig. 11. These findings make it clear that the node (8.3) has 
the energy concentration. So, the energies corresponding to this 
node will be introduced as inputs to train the MLP-NN.

Stage 3: Fault classification

With the parameters gathered in Table 2, MLP-NN performs the 
defect classification.

Fig. 9. Adressed faults: a) improper lubrication bearing defect, b) 
load of 10g, c) load wheel.

TABLE I. BEARING PARAMETERS (MM): BALL BEARING 6004-2RSH SKF

Inside 
Diameter

Outside 
Diameter Thickness

Ball 
Diameter

Pitch 
Diameter

20 42 12 6 31

Fig. 10. Stator current signals, a) healthy state, b) improper 
lubrication defect, c) load unbalance defect.

Fig. 11. Energy values at eight level nodes.

TABLE II. MLP-NN DESIGN PARAMETERS 

Learning Type Supervised

Activation function 
Hidden layer 
Output layer

 
Tansigmoid 
Purlin

Performance MSE

Weights initialization Random

Stopped criteria 
Minimum gradient 
Max.Epochs 
Mu

 
10−7

1000
0.001
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In order to ensure the performance of the MLP-NN, a round-robin 
cross-validation algorithm was applied. This technique is based on 
the decomposition of the dataset into k equal-sized parts. (k−1) parts 
were used for the training of the MLP-NN and one remaining part 
for the test [35]. The same process will be held on all the parts, this 
ensures that each part is represented adequately in both the training 
and testing phases [36].

In our case, the dataset is divided into 10 equal parts.

For each class, 9 out of 10 parts are used for training, and the remain-
ing 1 part is used for testing.

The process is repeated in a round-robin manner, meaning that each 
class takes turns being the focus of training and testing.

A confusion matrix is generated to summarize the results. The rows 
of the table represent the true class labels, while the columns repre-
sent the assigned class labels predicted by the model. Each cell in the 
table contains the estimated value for the number of samples falling 
into that category.

Additionally, the standard deviation of each entry in the contingency 
table is calculated. Since the estimates in the contingency table fol-
low a multinomial distribution, the standard deviation can be easily 
computed.

Figure 12 illustrates the MLP-NN classifier implemented using 
Matlab. This classifier consists of:

Input layer: contains one input corresponding to a vector of energy.

Hidden layer: comprises 20 neurons, determined through extensive 
performance testing with various neuron counts. This layer uses a 
hyperbolic tangent “Tansigmoid” activation function to center acti-
vations around zero, aiding convergence during training and facili-
tating backpropagation.

Output layer: contains 3 neurons, representing bits that correspond 
to different classes as detailed in Table 3. This layer employs the 
“purelin” linear activation function, which outputs its input directly 
without any non-linear transformation.

The performance rate is calculated as the ratio of correct classifica-
tions to total tests of classification:

P
C
T

% = 100  (13)

where: P: the performance rate, C: the number of correct classifica-
tion and T: the number of total tests.

Figures 13–22 represent the best validation performance, and train 
and test confusion matrix for the ten rounds. For the mean square 
error, it is clear that the training is well done when both train, test, 
and validation do not exceed the value of 1e−4. The MLP-NN per-
forms 100% for all the rounds’ tests and trains, except round 5 accu-
racy achieved only 98.8% due to the misclassification of one sample. 
However, this misclassification in round 5 does not affect the tests 
performance.

Fig. 12. MLP-NN architecture.

TABLE III. DEFECTS CODIFICATION

Condition Class Codification

Healthy state 1 100

Improper lubrication 2 010

Load unbalance 3 001
Fig. 13. Round 1: a) Best validation performance, b) Train confusion 
matrix, c) Test confusion matrix.
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Fig. 14. Round 2: a) Best validation performance, b) Train confusion 
matrix, c) Test confusion matrix.

Fig. 15. Round 3: a) Best validation performance, b) Train confusion 
matrix, c) Test confusion matrix.

Fig. 16. Round 4: a) Best validation performance, b) Train confusion 
matrix, c) Test confusion matrix.

Fig. 17. Round 5: a) Best validation performance, b) Train confusion 
matrix, c) Test confusion matrix.
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Fig. 18. Round 6: a) Best validation performance, b) Train confusion 
matrix, c) Test confusion matrix.

Fig. 19. Round 7: a) Best validation performance, b) Train confusion 
matrix, c) Test confusion matrix.

Fig. 20. Round 8: a) Best validation performance, b) Train confusion 
matrix, c) Test confusion matrix.

Fig. 21. Round 9: a) Best validation performance, b) Train confusion 
matrix, c) Test confusion matrix.
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Table 4 summarizes the total regression, the training accuracy, 
and the test accuracy for the ten rounds. When categorizing data 
based on defect types of three classes, with an average accuracy of 
100% for the tests and 99.88% for the training with a high regres-
sion superior to 0.999, except for round 5 where the regression is 
equal to 0.99315; however, this regression does not affect the tests 
performance. These results confirm the effectiveness of the pro-
posed method for load unbalance and improper lubrication bearing 
defects classification.

The effectiveness of the classification is then confirmed, providing 
other quality measures represented by the following metrics [37]:

Sensitivity, also called recall or true positive rate, measures the pro-
portion of true positives correctly identified among truly positive 
cases.

Specificity measures the proportion of true negatives correctly iden-
tified among truly negative cases.

Precision measures the proportion of correct positive predictions 
among total positive predictions.

F1-Score is the harmonic average of precision and sensitivity. It pro-
vides a balance between the two, especially useful when classes are 
unbalanced.

Matthews Correlation Coefficient (MCC), is a measure that takes 
into account TP, TN, FP, and FN and gives a balanced assessment 

of classification performance, even if the classes are of very differ-
ent sizes. The MCC ranges from −1 to 1, where 1 represents perfect 
classification, 0 represents random classification, and −1 represents 
opposite classification.

To calculate the MCC, F1-Score, sensitivity, specificity, and precision 
metrics, the following formulas of equation (14) were calculated for 
the different confusion matrices.

Sensitivity
TP

TP FN

Specificity
TN

TN FP

Precision
TP

TP FP

F

�
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�
�

�
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 (14)

where:

TP (True Positives): Number of true positives (positive cases correctly 
identified).

TN (True Negatives): Number of true negatives (negative cases cor-
rectly identified).

FP (False Positives): Number of false positives (negative cases incor-
rectly identified as positive).

FN (False Negatives): Number of false negatives (positive cases incor-
rectly identified as negative).

Table 5 represents Sensitivity, Specificity, Precision, F1-Score, and 
MCC mean values for the ten rounds for both train and tests. The met-
rics’ results show that the classification model performs extremely 
well on the training and test data.

Fig. 22. Round 10: a) Best validation performance, b) Train confusion 
matrix, c) Test confusion matrix.

TABLE IV. CLASSIFICATION RESULTS

Round Total R Train Acc (%) Test Acc (%)

1 0.99911 100 100

2 0.99997 100 100

3 0.99997 100 100

4 1 100 100

5 0.99315 98.8 100

6 0.99975 100 100

7 0.99988 100 100

8 0.99994 100 100

9 1 100 100

10 0.99998 100 100

Average / 99.88 100
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VI. CONCLUSION

In this paper, an online fault diagnostic procedure combining WPD 
with MLP-NN classifier architecture has been proposed for fault 
diagnosis for a fixed-speed IM in three operating conditions: healthy 
state, improper lubrication bearing defect and load unbalance. The 
procedure is based on using Dspace for currents acquisition and 
the current support vector (CSV) technique for three-phase stator 
currents analysis. The resultant current signal is decomposed into 
different frequency groups by the WPD process, and the energy 
of each frequency sub-band of the eight-level decomposition was 
computed, then the highest energy node was selected to train the 
MLP-NN enhanced by a round-robin technique with 10 rounds. The 
findings validate the effectiveness of the proposed method in classi-
fying bearing causes defects, achieving an average accuracy of 100% 
in test scenarios and 99.88% during training, caused by the misclassi-
fication of one sample during the fifth round of training. This method 
can also be extended and employed to identify other kinds of induc-
tion motor defects in real-time applications.
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