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ABSTRACT

This paper presents the practical implementation of a Generalized Model Predictive Control (GPC) algorithm using low-cost microcontrollers. The computational 
efficiency of the predictive controller is achieved through an explicit analytical solution calculated offline. The proposed approach is implemented, reviewed, and 
compared with academic benchmarks and complex dynamic systems. Experimental results are provided using both Black-Box and White-Box models based on a boost 
converter, with a comparison between the two models. The algorithm demonstrates good control performance with low computational time, making it suitable for 
real-time applications in systems with fast dynamics.
Index Terms—Boost converter, fast dynamic systems, microcontroller, MPC controller, reduction of time calculations
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I. INTRODUCTION

Predictive control, an evolved method under optimal control techniques, is often known as 
Model-Based Predictive Control (MBPC). The conceptual scheme of MBPC is given in [1]. The main 
idea is to find an optimal control sequence for each iteration by considering the future behavior 
of the process predicted by a model. This technique is mainly used in chemical and petroleum 
industries, distinguished by slow processes. Predictive control, which relies on solving an optimi-
zation problem online, is mostly expensive in terms of computation time and can require signifi-
cant resources. Therefore, although it provides high performance over long control horizons, it 
comes at the cost of consuming time and resources.

In contrast, shorter control horizons reduce the computational burden but increase the risk of 
unfeasibility. Predictive control was initially developed for linear systems. Early formulations 
involve establishing analytical expressions for optimal solutions, which can be solved using opti-
mization techniques such as quadratic programming to handle constraints. Among these formu-
lations, we may mention generalized predictive control [2-4].

The computational time required to solve quadratic programming problems can be critical 
for short sampling times [5]. Moreover, presenting significant challenges [6] and [7]. However, 
such techniques remain a largely open problem for fast systems due to the computational time 
needed to solve the quadratic problem. As a result, model predictive control is limited to a slow 
process with a sampling time of seconds or minutes [8, 9]. With fast digital signal controllers, it is 
now possible to develop model predictive control algorithms for fast dynamic systems requiring 
short sampling times, less than a second. There are examples of fast model predictive control 
applications given in [10, 11].

Significant results and advances in the implementation of embedded applications have been 
applied to relatively slow plants [12, 13]. The online optimization procedure is used both in slow 
industrial process control systems and in many embedded applications [14]. Many works pro-
pose a method to speed up the model predictive control algorithms without reducing the com-
putation load, as cited in [15-18].
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In many publications, for selected parameters such as prediction and 
control horizon, model predictive control algorithms work very well 
[19, 20], but the influence of computation time and the necessary 
memory allocation for the algorithm is not studied [21-23].

In our work, we focus on developing a predictive control algorithm 
that considers the minimization of calculation time on the one hand 
and the allocated memory space on the other, making it easy and 
possible to use in fast systems.

It should be noted that the setting of predictive control parameters 
has an influence on the computational load. So, indeed, when the 
sampling periods become too short, while the computation time 
is too long, the generalized predictive control algorithm does not 
work. On the other hand, the execution time requires only tens of 
microseconds when it comes to fast algorithms [24, 25].

Various devices have been introduced to enable digital control, 
with the dSPACE platform standing out as one of the most widely 
adopted due to its flexibility in controlling power electronic con-
verters [26-28]. The increasing accessibility of high-performance 
microcontrollers has also facilitated the adoption of advanced con-
trol techniques, such as Model Predictive Control (MPC), in power 
electronics [29-31].

In this work, an implementation of Generalized Predictive Control 
(GPC) on a boost converter has been presented, effectively avoiding 
the need for an optimization procedure.

The organization of the paper is structured into several sections. 
Section 2 describes the model predictive control algorithms. In 
Section 3, we present the software and hardware implementation 
algorithm using the microcontroller. An experimental case is studied 
in the lab; it concerns a boost converter. Some results are presented 
and discussed to illustrate the performance of the proposed new 
approach in time computing. This part concerns Section 4. Finally, a 
conclusion is presented to close the paper.

II. MODEL PREDICTIVE CONTROL ALGORITHM DESCRIPTION

In our study, we focus on a single input/single output (SISO) system 
described by a CARIMA model:
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where A(z−1), B(z−1) and C(z−1) are the polynomials:

A z a z a z a zn
n

a
a( )� � � �� � � � �1

1
1

2
21   (2)

B z b z b z b zn
n

b
b( )� � � �� � � �1

1
1

2
2   (3)

C z c z c z c zn
n

c
c( )� � � �� � � � �1

1
1

2
21   (4)

and Δ(z−1) = 1 − z−1

By using the incremental form:
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ξ(k) is the white noise with zero-mean which we ignore for the best 
prediction:
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and nA = na + 1

Let Hp denote the prediction horizon. The difference equations for Hp 
ahead prediction are obtained in recursive form as follows:
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where Hc is the control horizon, there is no control action after Hp 
steps, i.e. Δu(k + l | k) = 0 for l ≥ Hc. It is easier to use the compact 
matrix/vector form:
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Therefore:

C y + H y = C u + H uA A past zb zb past∆ ∆  (10)

The output prediction is:

y = H u + P u + Qypast past∆ ∆  (11)

where:

H = C C , P = C H and Q = -C HA
-1

zb A
-1

zb A
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A  (12)

A. Matrix Coefficients of H, P and Q
These coefficients will be determined recursively. The first step in 
prediction is:
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Introducing the notion of the prediction horizon ( )[ ]⋅ i  designed to 
denote the i-step ahead prediction, such that in general:
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The other rows of the matrices H, P, and Q are obtained recursively:
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B. Synthesis of the Controller
The future increments are calculated online by the MPC algorithm.
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By substituting the general expression of y given by equation (11), 
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The manipulated variable u(k) to be applied to the process is defined 
by: u(k) = ∆u(k) + u(k − 1).

Without anticipation, the ri coefficients are determined offline by: 
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∆uk is independent of Hp and Hc.

III. PLATFORM OF MPC ALGORITHM IMPLEMENTATION

The MPC algorithms have been successfully implemented on the 
low-cost STM32F746 Discovery board. The STM32F746, clocked at 
216 MHz, is a digital signal controller (DSC) based on an Arm RISC 
Cortex-M7 32-bit core that supports single-cycle SIMD and DSP 
instructions and integrates a hardware floating point unit (FPU). 
These characteristics make it a great candidate for real-time embed-
ded applications, requiring good performance and low power 
consumption.

The digital signal controller is programmed using the Keil µvision 
MDK-ARM toolchain. The integrated development environment 
platform (IDE) includes necessary tools for developing embedded 
applications, such as a macro assembler, C/C++ compiler, linker, and 
programmer. Moreover, it generates HEX files and AXF files for pro-
gram debugging.

We configured the analog-to-digital converter ADC1 in scan mode 
in conjunction with the Direct Memory Access (DMA) for transferring 
the converted data of regular group channels to SRAM after each 
conversion operation. A timer (TIM10) is used to generate a Pulse 
Width Modulation (PWM) signal to control the boost converter tran-
sistor. This signal has a frequency of 80 kHz and a resolution of 0.1% 
on the duty cycle.

In terms of programming techniques, using the hardware float-
ing point unit (FPU) and the DSP_lib library developed by ARM for 
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processing matrix operations considerably improves the calculation 
time. The program embedded in the microcontroller has two phases: 
offline and online. Thus, the MPC algorithm is divided into two parts: 
Initialization and Control.

A. Initialization Part
This part consists of determining the necessary vectors to calculate 
the control action, which is greedy in memory and execution time. 
Generally, these vectors are automatically calculated offline by soft-
ware such as Matlab. In this work, we opted to implement the whole 
algorithm in the microcontroller and consequently estimate the exe-
cution time of each phase. This phase includes the following stages:

Define the prediction horizon Hp, the control horizon Hc, the λ fac-
tor, and the different coefficients ai and bi of the Boost model. For 
example:

#defineHp 15 //prediction horizon
#defineHc5 //control horizon
#definenB2 //numberofcoef. in B
#definenA3 //number of coef. in A
float32_t B[nB] ={0.7935, 0.00833};
float32_t A[nA] ={1, -0.9411, 0.3266};

• Calculate the polynomial coefficients A(z−1)∆,
• Calculate the matrix coefficients H, P, and Q,
• Calculate the vectors Pk, Nk and Dk.

B. Control Part
The sampling period is set by a timer SysTick at 1 ms. The target sam-
ples are pre-programmed in a table. At the start of each sampling 
period, the following sequences are carried out:

1. Offset of past samples from the system output.
2. Measurement of the output signal. This value is recorded at the 

start of the past vector of the outputs.
3. Calculation of the new value of the manipulated variable.
4. Shifting the previous samples of the used variable and saving 

the new command at the head of the table.
5. Application of the new command to the system.

We introduced a one-period delay in the model to compensate for 
the execution time of the GPC algorithm. At a given time k, the incre-
mental control variable is obtained in a very compact way with a few 
lines of code.

for(i= 0; i<nh ; i++)
 du[k]= du[k] + Pr[i]*r[k+i];
for(i= 0; i<nA ; i++)
 du[k]= du[k] + Dk[i]*yp[i];
for(i= 0; i< nB-1 ; i++)
 du[k]= du[k] + Nk[i]*dup[i];
u[k]= u[k-1] + du[k];

Our system is controlled by a pulse width modulation (PWM) signal 
whose duty cycle is limited between 0 and 0.8. Optimal control can 
generate a command that exceeds the physical constraints of the 
system; these constraints are generally addressed in the optimiza-
tion problem. In order to avoid overloading the control action, we 
have opted to make a slight modification to the control law by limit-
ing the control variable between two saturation thresholds, Umin and 
Umax. The saturation of control variables is given by:

if(u[k]>Umax)
 {  u[k] = Umax;
  du[k] = Umax - u[k-1];
 }
else
 if(u[k] <Umin)
 {
 u[k] = Umin;
  du[k] = Umin - u[k-1];
 }

IV. EXPERIMENT RESULTS

A. Emulated SISO process
In order to compare the proposed strategy, we consider the follow-
ing example taken from [32]. It is defined by the continuous-time 
first-order transfer function given by:

G s
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The implementation of the proposed algorithm in the uncon-
strained and constrained cases is shown in Fig. 1. The algorithm is 
able to control the process so that where the set-point is changed, 
the output follows the set-point without any steady-state error. In 
the constrained case, the process control input, delimited by 0 ≤ u 
< 3, is also respected. The time calculation is evaluated to be about 
1.74 μs compared to 2.17 μs given in [26], which is typically small. 
Thus, this approach improves a strong point by solving computation 
for fast dynamics systems.

To verify the ability of the proposed concept to reject disturbances, 
an output disturbance of the values −0.4 and 0.4 is introduced, 
respectively, at 250 ms and 720 ms (Fig. 1). The disturbance is elimi-
nated, revealing a satisfactory ability to reject disturbances. As part 
of a simulation-based comparison, it is proved that our system con-
trol algorithm is able to deliver a significantly improved performance 
compared to conventional MPC. Therefore, the difficulty of mini-
mizing a performance function for MPC is avoided. Thus, the con-
ventional MPC usually uses at each sampling time a programming 
technique whose time consumption cannot be neglected.

B. Boost Process
The control signal is supplied by a PWM module. This signal controls 
the switching of the power transistor via the MOSFET driver. The out-
put of the boost converter is connected to the input of the analog-
to-digital converter (ADC) of the microcontroller. The system to be 
identified has the following characteristics:

Supply voltage: Vg = 12V,

Output voltage : Vo = 24 V,

Switching frequency: 80 kHz,

Load resistance: R = 50Ω,

Inductance: L = 430 μH

Capacitance: C = 440 μF

ESR of capacitor: Rc = 80 mΩ
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The boost converter bloc diagram is given in Fig. 2.

Several methods are used to identify system parameters. In this work, 
we use two approaches for modeling the boost converter: the white-
box and black-box methods, and compare the two approaches.

C. White-Box Model
Figure 3 illustrates the topology of a boost converter operating in 
Continuous Conduction Mode (CCM). In this model, both the transis-
tor and the diode are assumed to be ideal.

1) Switched model
The modeling of the switched system involves establishing differen-
tial equations for each of the converter’s operating states [33, 34]. 
Two distinct states are considered: one where the switch is in the 
closed position and the diode is non-conductive, and another where 
the switch is open and the diode allows current flow. The first state, 
corresponding to the closed switch, is characterized by the state-
space equations (28) and (29).
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2) Averaged state-space model
Equations (30) and (31) can be combined in an averaged form to 
yield a single continuous-time representation of the state-space, as 
shown below:
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Fig. 1. Emulated SISO process: results of the experiments using STM32.

Fig. 2. Boost converter bloc diagram.
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where d(t) represents the duty cycle, considered as the averaged 
control input, and d t d t� � �( ) ( )1 .

The averaging process smooths out the high-frequency variations of 
the system, resulting in a time-invariant nonlinear model where the 
nonlinearity arises from the multiplication of the control signal d(t) 
by the state variables.

3) Small signal linear model
The ultimate goal is to develop an equivalent linear model to analyze 
the system and design a GPC controller. The process begins by iden-
tifying the equilibrium or steady-state operating point, followed by 
linearizing the system around this operating condition.

At the equilibrium point (X, D, U), the state-space averaged model 
that describes the converter is:
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The uppercase letters X = [IL, Vc]T, D, Y = Vo and U = Vg denote the vari-
ables at the operating point. The dc state equations (34) therefore 
become
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Given the values of Vg and Vo, (36) can be analytically solved to derive 
the values of IL and D.
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The numerical application based on the parameters of the boost 
converter gives us IL = 0.96A and D = 0.502. To facilitate the computa-
tion of the transfer function, we take D = 0.5; consequently, the value 
of the state vector X will be [0.956A 23.9V]T.

The primary objective, however, is to create a corresponding linear 
model. To achieve this, we introduce perturbations to the averaged 
equation around the operating point.

x X x( ) ˘ ( )

( ) ˘( )

( ) ˘( ) ( ) ˘( )

t t

y t Y y t

d t D d t d t D d t

� �

� �

� � � � � ��

 (40)

We assume that the variation in the supply voltage is zero and ˘( )d t  
represents a small AC perturbation of the duty cycle. The vectors 
˘ ( )x t  and ˘( )y t  represent the resulting small AC perturbations in the 

state and output, respectively. These AC perturbations are assumed 
to be much smaller than their corresponding steady-state values.

The linearized (ac, small-signal) system can now be obtained 
from (33):

˘ ( ) ˘ ( ) ˘( )

˘( ) ˘ ( ) ˘( )

x A x B

C x E

c c

c c

t t d t

y t t d t

� �

� �
 (41)
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Fig. 3. Circuit of the boost converter.
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Assuming zero initial conditions, the Laplace transform of (41) is:
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The state vector is:
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Given that ˘( ) ˘ ( )y t v to= , the transfer function of the converter’s out-
put as a function of the duty cycle is:

H s
v s
d s

so( )
˘ ( )
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( )� � � ��C I A B Ec c
1  (48)

Based on the parameters of the boost converter, the transfer func-
tion H(s) is given by (49).
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The presence of a Right-Half Plane (RHP) zero in the model of a boost 
converter significantly affects its behavior in closed-loop control. The 
RHP zero introduces a non-minimum phase characteristic, which 
complicates the design of stable closed-loop controllers. This effect 
restricts the achievable bandwidth and necessitates precise tuning 
to prevent instability and excessive overshoot.

In digital predictive control, such as on a microcontroller, it is essen-
tial to incorporate a delay in the model to accurately capture the 
system’s dynamics. This delay represents the influence of previous 
control inputs on the future state of the system. To determine the 
transfer function in the z-domain, MATLAB’s toolbox was utilized, 
enabling the effective integration of this delay into the model.

H z
z z
z z

W ( )
. .

. .
�

�
� �

� �

� �

26 37 26 37
1 0 7668 0 8709

1 2

1 2  (50)

The subscript “W” refers to the white-box model.

D. Black-Box Model
Black-box modeling is an experimental approach that uses data to 
determine the system’s transfer function. The identification test con-
sists of superimposing a low-amplitude pseudo-random sequence 
(Pseudo Random Binary Sequence: PRBS) on the system’s input. This 
sequence approximates zero-mean white noise without altering the 
system’s operating point.

The experimental data collected from the identification test is 
processed by a recursive identification algorithm, thus providing 

good precision of the system parameters [35]. The amplitude of the 
pseudo-random sequence ∆PRBS[k]∆PRBS[k] = ±0.025. The com-
mand entry: d[k] = D0 + ∆PRBS[k].

Using the CARIMA model, the discrete transfer function for the boost 
converter can be described as:
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with,
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where
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The subscript “B” refers to the black-box model.

There are two objectives to study from these experiences. The first 
is to validate the implementation of the generalized predictive con-
trol (GPC) algorithm on a microcontroller. The second is to study the 
influence of certain parameters of predictive control, such as the 
need for memory consumption and the maximal response time of 
the generalized predictive control (GPC) algorithms.

E. Hardware Simulation
The simulation in MATLAB does not allow for an accurate estima-
tion of the computation time of the Generalized Predictive Control 
(GPC) algorithm; even a Processor-In-the-Loop (PIL) simulation does 
not enable a precise estimation of the loop’s computation time. 
Therefore, we opted for a purely hardware-based simulation; the 
code for the GPC control algorithm and the boost converter model 
is loaded onto the microcontroller. This on-chip simulation phase 
allows for a precise determination of the response time of the GPC 
algorithm for different values of the prediction and control hori-
zons. The CoreSight debugger’s capabilities in the ARM architec-
ture, including the Instrumentation Trace Macrocell (ITM) module, 
facilitate the collection of system information for subsequent offline 
analysis (Data Logger). In all tests, the sampling period is set to 1 ms. 
The computational complexity of the control increment depends 
on the order of the boost model and the prediction horizon, while 
the control horizon only affects the offline part. The GPC algorithm 
performs correctly; each time the setpoint changes, the correspond-
ing response reaches it without error, even in the presence of dis-
turbances injected into the output at 0.08s and 0.22s. The dynamic 
response is shown in Fig. 4(a); the overshoots observed in the white-
box model are due to the Right-Half Plane (RHP) zero.

For a comparative study, we implemented a PID controller on both 
models. The responses of the two models, as shown in Fig. 4(b), 
clearly illustrate the effect of the RHP zero on the dynamics of the 
white-box model.

The time required for the manipulated variable is studied. Fig. 4 rep-
resents the computation time of the control sequence as a function 
of the prediction horizon. This time is relatively short, i.e., 2.95µs for 
Hp = 50. Without anticipation, this computation time is reduced to 
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0.54µs independently of Hp. It is also important to study the memory 
occupation and the offline time calculation.

The results presented in Table 1 are a function of Hp and Hc. For exam-
ple, for a long (Hp = 5 and Hp = 50) the memory allocation does not 
exceed 4Ko.

The calculation time does not exceed 20% of the sampling period. 
In fact, for example, in the case of Hp = 50, the offline time calcula-
tion is evaluated as 180 µs, which is about 20% of the sampling 
period (200 µs). The remaining 80% can be useful for implement-
ing more complex algorithms when the constraints on the control 
are considered. Fig. 5 illustrates the execution time of the offline 
part and the online part as a function of Hp for both cases of Hc = 3 
and Hc = 5.

F. Hardware Real-Time Application
Hardware real-time application was carried out on the STM32 micro-
controller for the boost converter across both models. The GPC algo-
rithm performs correctly; each time the setpoint changes, the system 
response reaches the setpoint without error, even in the presence 
of disturbances injected into the output at 0.175 s and 0.325 s. The 
results for the two cases are illustrated in Fig. 6(a), while the perfor-
mance of the PID regulator is shown in Fig. 6(b).

The evaluation of computation times yielded results of 4.64 μs for 
Hp = 5 and 5.6 μs. These findings demonstrate the efficiency and 
effectiveness of the implemented control strategies in managing 
the boost converter’s performance while maintaining low compu-
tational overhead.

Considering the study previously presented, we can arrive at the fol-
lowing remarks:

• It is like an optimization procedure; the new execution algorithm 
is very favorable.

• The computational load necessary for the process control is mini-
mized by taking into account the analytical solution.

• The creation of the control is easily researched without recourse 
to any optimization.

Fig. 4. Control performance with disturbances for both models: (a) GPC responses, (b) PID responses.

TABLE 1. MEMORY ALLOCATION ALGORITHMS IN BYTE

HC/HP 3 5 7 10 15 20 25 30 40 50

1 188 252 316 412 572 732 892 1052 1372 1692

3 316 412 507 652 892 1132 1372 1612 2092 2572

5 - 636 468 956 1276 1596 1916 2236 2876 3516

Fig. 5. Online and offline computational time requirement.
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• The implementation time required for the solver and the process 
command are minimized.

V. CONCLUSION

This paper presented the implementation of a Model Predictive 
Control (MPC) strategy on a low-cost microcontroller, specifically 
the STM32F746, for a boost converter. Both white-box and black-
box modeling approaches were utilized to represent the converter’s 
dynamics. The white-box model, developed using an average state-
space approach, provided an analytical description of the system, 
while the black-box model was identified using a Pseudo-Random 
Binary Sequence (PRBS).

On-chip simulations were conducted with both the GPC and a PID 
controller applied to the two models. The results indicated that the 
black-box model exhibited greater stability in both control scenar-
ios, while the predictive control anticipated system behavior more 
effectively, leading to a faster response. The overshoots observed in 
the averaged model were due to the presence of a Right-Half Plane 
(RHP) zero, which restricted the tuning options for the PID controller 
and resulted in slower dynamics compared to the black-box model.

Furthermore, the computational requirements for the MPC algo-
rithm were analyzed. The results demonstrated that the algorithm’s 
execution time remained well below 20% of the sampling period, 
and the memory footprint occupied less than 2% of the total avail-
able data memory. These findings suggest that it is feasible to imple-
ment more complex control algorithms, such as nonlinear predictive 
control, on the same platform.

Experimental validation confirmed the simulation results, demon-
strating the effectiveness of the proposed MPC strategy.
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