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ABSTRACT

This study addresses the challenges of infinite impulse response (IIR) system identification by introducing an improved cooperation search algorithm (ICSA). Improved 
cooperation search algorithm enhances the original cooperation search algorithm (CSA) through the integration of a pattern search algorithm and opposition-based 
learning, aiming to improve both exploration and exploitation capabilities. The algorithm's performance was evaluated against diverse IIR plants of varying orders 
using convergence analysis, scatter plots, and statistical metrics. Results demonstrate ICSA's superiority over CSA, achieving significantly lower mean squared error 
(MSE) values across different system orders and model types. Notably, ICSA outperformed CSA by up to 27 orders of magnitude for matched-order models and up to 
95.85% for reduced-order models. The algorithm also exhibited more consistent performance, with substantially lower standard deviations in many cases. Statistical 
validation through the Wilcoxon signed-rank test further confirmed ICSA's enhanced performance. This research highlights ICSA's efficacy in producing efficient IIR 
systems, demonstrating its potential for more accurate system identification compared to existing methods.
Index Terms—Cooperation search algorithm (CSA), infinite impulse response (IIR), opposition-based learning (OBL), pattern search algorithm, system identification.
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I. INTRODUCTION

Adaptive filtering has emerged as a dynamic and crucial area of research with wide-ranging 
applications across various domains, including signal processing, audio/video/image processing, 
communication, and control systems. Its utility extends to noise and echo cancellation, channel 
equalization, spectrum analysis, and system identification tasks [1]. The field of adaptive filter-
ing predominantly employs two categories of digital filters: finite impulse response (FIR) filters, 
also known as non-recursive filters, and infinite impulse response (IIR) filters, also referred to as 
recursive filters [2].

The fundamental distinction between these filter types lies in their response characteristics. 
Finite impulse response filters generate output-based solely on current and previous input val-
ues, resulting in a FIR. In contrast, IIR filters derive their output from both current and previous 
input values, as well as current and previous output values, leading to an IIR [3]. This inherent 
difference endows adaptive IIR filters with superior modeling capabilities for physical systems or 
plants compared to their FIR counterparts, while simultaneously requiring significantly reduced 
computational resources [4].

Despite these advantages, adaptive IIR filters present certain challenges. A primary concern 
is stability monitoring, as the filter’s poles may potentially move outside the unit circle dur-
ing the adaptation process, inducing instability. Several strategies have been proposed to 
address this issue, including parameter space limitation, alternative filter structures such as 
lattice configurations [5, 6], and real-time pole calculation to ensure they remain within the 
unit circle [8]. Another significant challenge is the multi-modal nature of the error surface 
with respect to the filter coefficients [2], necessitating the implementation of sophisticated 
learning algorithms.

Conventional gradient-based learning algorithms, such as the least mean square (LMS) method, 
attempt to locate the global minimum of the error surface by moving in the direction oppo-
site to the gradient. However, these approaches are susceptible to convergence at local minima 
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rather than the desired global minimum [8-10]. In response to these 
limitations, researchers have explored the application of contem-
porary global optimization algorithms to achieve global minimum 
solutions. These investigations have encompassed a wide array 
of metaheuristic techniques, including artificial bee colony (ABC) 
optimization [4, 11] that demonstrates its superior performance 
compared to traditional optimization techniques on benchmark 
functions and IIR filter design problems. Cat swarm optimization 
(CSO) [6] demonstrates superior performance in IIR system identi-
fication compared to genetic algorithms. Simple genetic algorithm 
(SGA) [12] demonstrated the superiority of evolutionary digital fil-
ters in finding global minima on multi-peak error surfaces. Improved 
artificial rabbits optimization (IARO) [13] incorporates advanced 
strategies for enhanced performance across various IIR system 
orders. Additionally, numerous other studies such as, average dif-
ferential evolution with local search (ADE-LS) [14], firefly algorithm 
(FA) [15], grey wolf optimization (GWO) [16], harmony search (HS) 
algorithm [17], artificial immune algorithm (AIA) [18], particle swarm 
optimization (PSO) [19-27], inclined planes system optimization 
(IPSO) [28], weighted sum - variable length particle swarm optimi-
zation (WS-VLPSO) [29], artificial intelligent optimization (AIO) [30], 
Social Engineering Optimizer (SEO) [31], red deer algorithm (RDO) 
[32, 33], gravitational search algorithm (GSA) [34] indicate the use-
fulness of metaheuristic optimization algorithms in overcoming the 
challenges posed by IIR filter-based system identification. 

The persistent quest for enhanced signal processing and system 
identification methodologies continues to drive innovation in the 
field. Researchers and practitioners seek novel approaches to effec-
tively address the inherent challenges of IIR system identification. 
While conventional methods demonstrate some efficacy, they often 
encounter issues such as sensitivity to initial conditions, slow con-
vergence rates, and limited accuracy, resulting in suboptimal per-
formance. Recognizing these limitations, researchers are actively 
exploring new methodologies that aim to surpass the boundaries of 
existing techniques.

In this context, the development of artificial intelligence algorithms 
has played a pivotal role in addressing complex problems and sys-
tems. Motivated by these considerations, the present study proposes 
an enhanced version of the cooperation search algorithm (CSA), a 
recent addition to the meta-heuristic optimization landscape, as a 
novel optimizer for IIR system identification.

The CSA [35], while demonstrating promise with its rapid conver-
gence characteristics, exhibits certain limitations when confronted 
with complex optimization problems. Research conducted by Cao 
et al. and Niu et al. highlights the algorithm’s susceptibility to com-
mon pitfalls encountered by other metaheuristic approaches, par-
ticularly the tendency to become trapped in local optima and suffer 
from premature convergence. This phenomenon arises from the 
algorithm’s reliance on leading individuals for population updates, 
which constrains its exploration capabilities and potentially over-
looks superior solutions outside the immediate search space. 
The dependence on a single update mechanism can also result in 
reduced population diversity, further impeding the algorithm’s abil-
ity to escape local optima [36].

To address these shortcomings and enhance the algorithm’s effec-
tiveness, this paper introduces an upgraded version of the CSA, des-
ignated as Improved Cooperation Search Algorithm (ICSA). The ICSA 

incorporates two key enhancements: opposition-based learning 
(OBL) and pattern search (PS) algorithm.

The present study employs four IIR filter-based systems, ranging 
from second to fifth-order, along with their corresponding matched 
and reduced-order models, as benchmark functions. It is well-estab-
lished that matched-order system models serve as unimodal func-
tions, while reduced-order system models function as multimodal 
functions from an optimization perspective. Consequently, these 
benchmark systems provide a comprehensive testbed for evaluat-
ing the exploration and exploitation capabilities of the proposed 
algorithm.

The primary contributions of this study are as follows:

1. Development of an improved version of the recently proposed 
ICSA to mitigate its limitations and enhance its accuracy.

2. Application of the newly proposed ICSA for identifying matched-
order and reduced-order models of four IIR filter-based bench-
mark systems.

3. Implementation of the parameter space limitation method 
ensures modeled system stability, significantly reducing the 
computational burden on optimizers.

4. Comprehensive performance evaluation through convergence 
analysis, scatter plot visualization, and both parametric and 
nonparametric statistical tests demonstrates the superior per-
formance of the proposed ICSA over the original CSA and other 
state-of-the-art optimizers reported in the literature.

The remainder of this paper is structured as follows: Section II elu-
cidates the original CSA optimizer and introduces its improved ver-
sion, the ICSA. Section III presents the problem formulation for IIR 
system identification and details the implementation of the pro-
posed optimizer for identifying matched- and reduced-order mod-
els of the benchmark plants. This section also includes comparisons 
with other reported state-of-the-art optimizers. Finally, Section IV 
concludes the paper with a summary of findings and potential ave-
nues for future research.

II. COOPERATION SEARCH ALGORITHM AND THE PROPOSED 
IMPROVED VERSION

A. Cooperation Search Algorithm
The Cooperation Search Algorithm (CSA) is conceptualized as a 
meta-heuristic optimization technique that draws inspiration from 
corporate organizational structures and dynamics. The algorithm’s 
foundational principles are rooted in a corporate philosophy that 
emphasizes adaptability to dynamic environments, the maximiza-
tion of operational efficiency, and the pursuit of excellence. These 
objectives are achieved through the continuous enhancement of 
knowledge, skills, and productivity across all organizational levels, 
from entry-level employees to executive leadership.

Central to the CSA’s operational framework is the cultivation of a 
knowledge-sharing culture, coupled with a meritocratic approach to 
personnel management. This paradigm facilitates the replacement 
of underperforming individuals with more competent counterparts, 
thereby ensuring the continual optimization of the organization’s 
human capital. The framework places significant emphasis on seam-
less team collaboration, extending this principle to the highest ech-
elons of the corporate hierarchy. Notably, even top executives are 
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subject to replacement by talented newcomers if such a transition is 
deemed beneficial to the organization’s overall progress.

In the context of optimization problems, the CSA employs a meta-
phorical representation wherein each employee embodies a poten-
tial solution. These employees are aggregated into company teams, 
with the team’s composition reflecting the collective performance of 
its constituent members. Within this hierarchical structure, executive 
managers represent optimal solutions derived from their respective 
teams, while the board of directors encapsulates globally recognized 
best solutions. The chairperson, selected randomly from the board 
members, serves as the current global optimum.

The algorithm’s solution refinement process is facilitated through 
the application of three primary operators:

• Team Communication: This operator facilitates the exchange of 
information and strategies among team members, promoting col-
lective problem-solving and innovation.

• Reflective Learning: This mechanism enables individual employ-
ees to introspect and refine their approaches based on personal 
experiences and observations of successful strategies within the 
organization.

• Internal Competition: This operator introduces a competitive 
element that drives continuous improvement and ensures that 
the most effective solutions are propagated throughout the 
organization.

The CSA’s operational framework is outlined as follows:

1) Team-Building Phase
At this stage, all team members are randomly selected using (1). 
After evaluating the performance of all solutions, a subset of promis-
ing solutions, represented as M∈[1, I], is chosen from the initial pool 
to form the higher-ranking set.

x x x i I j J ki j
k

j j, , , , , , ,��� � ��� �� ��� �� �1 1 1  (1)

In this context, xi jk,  represents the jth value of the ith solution in the 
kth cycle, i indicates the total solution count in the current pack, and 
j signifies the variable count corresponding to the dimensions of the 
optimization problem. Additionally, Ø(L,U) denotes the function that 
generates a uniformly distributed random number within the range 
[L, U], where L and U are the lower and upper limits of the variables 
used in the optimization, respectively.

2) Team Communication Operator
Every staff member has the opportunity to gain new perspectives 
through knowledge exchange with higher-ranking individuals, 
including the supervisors’ and directors’ boards. As specified in (2), 
the communication process is segmented into three parts: A signifies 
the intellectual capacity of the chairperson, B represents the collec-
tive knowledge held by the directors’ board, and C denotes the com-
bined intelligence of the supervisors’ board. The board randomly 
selects the chairperson of directors to mimic a revolving mechanism. 
Additionally, the values of B and C are computed using identical 
positional information provided to all members of the supervisors’ 
and directors’ boards. 
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In this scenario, ui j
k
,
+1  denotes the jth value within the ith group solu-

tion during the (k+1)th cycle. The jth value of the ith personal best-
known solution at the kth cycle is represented as pbesti jk, . Similarly, 
gbestm j

k
,  indicates the jth value within the global best-known solu-

tion of the mth instance, spanning from the initial phase to the kth 
cycle. The value of m is randomly chosen from the set {1, 2, ..., M}. 
Knowledge assimilated from the chairman is denoted as Ai j

k
, . The 

learning factors α and β adjust the influence of Bi j
k
,  and Ci j

k
, , respec-

tively. Bi j
k
,  corresponds to the average knowledge derived from the M 

best-known solutions achieved so far across a broad spectrum, while 
Ci j

k
,  relates to the personal best-known solutions of I instances. The 

coefficients regarding computation (M, β, and α) are initially assigned 
the values 3, 0.15, and 0.1, respectively, as specified in the original 
paper introducing the CSA algorithm [35].

3) Reflective Learning Operator
In addition to gleaning insights from the top-performing contestant 
solutions, the team can acquire fresh insights by pooling its exper-
tise in the opposite direction, as illustrated by the equations below.
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where vi jk,+1  represents the jth value of the ith solution at the (k+1)
th cycle.

4) Internal Competition Operator
The team builds a more potent competitive edge over time by hold-
ing onto its top performers. This is achieved through the application 
of (10).
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In this expression, F(x) denotes the fitness value of the solution x. The 
total number of variables within solution x must be adjusted accord-
ing to (11) to conform to the feasible zone.

x max min x x xj j j j� � �� �, ,  (11)

The pseudocode of the CSA is given in Algorithm 1. 



Electrica 2024; 24(3): 733-747
Ersalı and Hekimoğlu. A Novel Method for System Identification

736

B. Opposition-Based Learning
Opposition-based learning is a recognized technique renowned for 
augmenting the exploration capabilities of metaheuristic algorithms 
[37]. The foundation of OBL lies in converging toward the optimal 
solution by simultaneously exploring the current position x and its 
opposite position x .

Consider x as a real number within the [L, U] range. The opposite 
position x  is defined for a one-dimensional space as given in (12).

x U L x� � �  (12)

In an n-dimensional space, where each component Xi resides within 
the range [Li,Ui], and i takes on values from 1 to n, the opposite posi-
tion x  is defined as given in (13).

x U L xi i i i� � �  (13)

Following the generation or recent update of all x positions, the cor-
responding opposite positions x  are computed. Subsequently, x 
and the x  positions’ fitness is evaluated, and the superior positions 
are retained. Finally, with each iteration, the approach converges 
progressively closer to the optimal solution.

C. Pattern Search Algorithm
Pattern search (PS) techniques represent a class of direct search algo-
rithms that leverage historical data to identify effective patterns for 
search point selection. These identified patterns are subsequently 
utilized to predict promising search points in subsequent iterations, 
thereby facilitating an efficient exploration of the solution space. 
Pattern search algorithm exhibits characteristics analogous to vari-
ous direct search methods, such as the Simplex algorithm [38].

In this context, Torczon [39] introduced the multidirectional search 
(MDS) algorithm in 1989, a derivative of the PS approach specifically 
designed to address unconstrained minimization problems. The 
MDS algorithm demonstrates particular efficacy in identifying opti-
mal solutions through a dual strategy: retaining the most promising 
vertex from the preceding iteration while simultaneously conduct-
ing line searches in multiple directions. This approach enables the 
accumulation of exploratory data, effectively converging toward the 
global minimum.

The efficiency of the MDS algorithm is largely governed by three key 
parameters: ρ, µ, and θ. These parameters control the step lengths 
relative to the original simplex edges. In this case, ρ, µ, and θ are set 
to 1, 2, and 0.5, respectively, as was chosen in [40]. Additionally, the 
initial step size requisite for constructing the initial simplex is estab-
lished at 0.05, while a critical tolerance value of 10-5 is implemented 
as the algorithm’s termination criterion by the guidelines provided 
in [40].

The operational framework of the PS algorithm is delineated in 
Algorithm 2, which provides a comprehensive pseudocode repre-
sentation of the procedure.

D. The Proposed Improved Version
While previous studies [41, 42] have demonstrated the superiority 
of the CSA over several traditional evolutionary algorithms, recent 
research [43] has identified certain limitations, indicating potential 
areas for enhancement. A notable drawback of CSA is the gradual 
reduction in population diversity over successive iterations, which 
may lead to premature convergence in global search operations [41].

To address this limitation, the integration of an OBL mechanism 
into the CSA framework has been proposed. In the ICSA (Improved 
Cooperation Search Algorithm) presented in this study, the OBL 
mechanism facilitates exploration in opposing directions within the 
global search space. This enhancement significantly increases the 
probability of identifying superior local search regions.

Furthermore, the incorporation of a PS method augments the 
algorithm’s exploitation capabilities. This dual enhancement strat-
egy aims to strike a balance between exploration and exploita-
tion, potentially leading to more robust and efficient optimization 
performance.

The operational framework of the proposed ICSA, including these 
enhancements, is delineated in Algorithm 3, which provides a com-
prehensive pseudocode representation of the procedure.

III. PROBLEM DEFINITION

A. Infinite Impulse Response Filter-Based System Identification
Fig. 1 shows the block diagram of the system identification process 
using the IIR filter. Eq. (14) governs the input–output relationship of 
an IIR filter.

y k b y k i a x k i M L
i
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i
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� �� �1 0

,  (14)

where x(k) and y(k) are the filter’s input and output, respectively. M 
(≥L) is the filter order. The filter’s input-to-output transfer function 
can be written in general form as given in (15).
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Hence, the design of the model to identify an unknown plant of P(z) 
can be considered a minimization problem of a cost function J(w), as 
stated in (16).

argmin w a a a b b b
w W

L M
T

�
� � ��� ��J w 0 1 1 2   (16)

where w is the filter coefficient vector with a dimension of D = M + L + 
1 and W is the coefficient search space. The goal is to find the optimal 
coefficients w, which minimize the cost function J(w). For practical 
reasons, the cost function is usually expressed as the time-averaged 

Fig. 1. Block diagram of system identification process using IIR filter.
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squared error given in (17). Additionally, p(k) is the perturbation, 
which is not taken into account in this particular example.

MSE J w E e k
N

d k y k
N

e k
k

N

k

N
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� �� �2

1

2

1

21 1  (17)

where E[.] is the statistical expectation operator, also called the 
ensemble operator. d(k) and y(k) are the desired and actual responses 
of the filter, respectively. e(k) = d(k)–y(k) is the output error function, 
and N is the number of samples used for the calculation of the cost 
function, which approximates the ensemble operation. Note that 
the cost function of MSE given in (17) can also be expressed in deci-
bel form as MSEdB = 10log10(MSE) for better comparison and interpre-
tation of results.

During the adaptive process, the stability of the IIR filter must always 
be maintained. This can be handled either by limiting the param-
eter space [5] or by choosing an alternative filter structure, such as 
a lattice structure instead of using a direct form structure [5, 6], or 
by calculating the model system’s poles to check whether they are 
located inside the unit circle [7]. In this study, the parameter space 
limitation method is chosen to assure the modeled system’s stability, 
which reduces the calculation burden of the optimizer significantly. 
This is because unstable solutions will be automatically discarded by 
the optimization algorithm due to having larger objective function 
values. This way, search agents will be forced toward stable solutions 
without calculating the modeled system’s poles or the parameters of 
a different filter structure during system identification.

B. Proposed ICSA Approach for IIR System Identification
In this subsection, based on the input–output data of an unknown 
plant, the plant will be represented either by its matched- or 
reduced-order model by minimizing the difference between their 
outputs. Fig. 2 illustrates the IIR system identification process using 
the proposed ICSA algorithm.

Here, the input data are processed by both adaptive IIR filter-based 
systems, namely the estimated model and the actual plant, and the 
proposed algorithm tries to find the optimal parameters of the esti-
mated model by minimizing the difference between both outputs. 
The input data used in this study is white noise uniformly distributed 
in the range of (−0.5, 0.5) with a length of N = 200 and is illustrated 
in Fig. 3. Note that the input data are also provided in the Appendix 
section for those readers who would like to duplicate the obtained 
results. All simulation experiments are conducted with a maximum 
iteration number of 500, a population size of 100, and a maximum 
run number of 30. The simulations are performed with MATLAB soft-
ware installed on a PC with an Intel i5-12600 3.30 GHz processor and 
16 GB RAM.

IV. SIMULATION RESULTS OF BENCHMARK IIR SYSTEMS

The benchmark examples utilized in this paper are second-, third-, 
fourth-, and fifth-order systems, which will be evaluated using both 
CSA and its improved version ICSA. The results obtained by both 
algorithms will be compared in detail with other results from the lit-
erature to assess their performance. Note that the additive noise will 
not be used for a fair comparison with the literature in all subsequent 
examples. Please be advised that the formulation of coefficients in 
the denominator of the plants’ transfer functions in the IARO [13], 
AHA [44], and ADE-LS [14] studies differ from that in the proposed 
method. As a result, the plus or minus signs of the denominator 

coefficients for the corresponding studies in Tables 1, 3, 5, and 7 were 
adjusted accordingly.

A. Example 1—Second-Order Plant
Transfer functions of the second-order plant and its matched- and 
reduced-order models are given as (18, 19, and 20).
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Fig. 2. IIR system identification process using the proposed ICSA 
algorithm.
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The coefficients of matched- and reduced-order IIR models obtained 
by CSA and ICSA are given in Table 1. The scatter plots of MSE values 
versus number of runs are shown in Fig. 4(a) and 4(b), while conver-
gence curves of best runs are given in Fig. 5(a) and 5(b).

In the case of the matched-order model of the second-order sys-
tem, the MSE values for ICSA, which are depicted in the scatter 
plot in Fig. 4(a), are much lower than the original CSAs. This shows 
that the ICSA algorithm can optimize the system coefficients with 
greater efficiency, resulting in enhanced performance. In the case of 
the reduced-order model, most data points acquired through ICSA 
are lower compared to those obtained with CSA, as seen in Fig. 4(b). 
Examining the convergence plot given in Fig. 5(a), one can see the 
faster convergence of the ICSA against CSA also with much lower 
MSE values. For the reduced-order model, very close MSE values are 
recorded as a convergence plot for the ICSA and CSA given in Fig. 

5(b). Additionally, because of the reduction in filter order, algorithms 
become trapped in local optimal solutions while conducting the 
search process. Hence, the premature convergence for both algo-
rithms in Fig. 5(b). 

In the analysis of the second-order system IIR filters, various metrics, 
including standard deviation, mean, worst, and best, are assessed. 
Reviewing Table 2 shows that the ICSA consistently surpasses CSA 
in yielding superior results throughout all metrics for the matched-
order model. For the reduced order, ICSA outperforms CSA in worst 
and standard deviation metrics, while CSA has a lower best value, 
and the mean values are exactly the same.

B. Example 2—Third-Order Plant
The transfer functions of the third-order plant and its matched and 
reduced-order models are given in (21, 22, and 23).

H z
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z z z
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1 2

1 2 3

0 2 0 4 0 5
1 0 6 0 25 0 2
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� � �

� �
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. . .
. . .

 (21)

Fig. 3. Input data used for IIR system identification.

TABLE 1. SECOND-ORDER SYSTEM’S MODEL COEFFICIENTS

Model Type Coefficients CSA ICSA IARO [13] AHA [44] ADE-LS[14]

Matched-order a0  0.050606728799885  0.05  0.05  0.05  0.05

a1 −0.402197481915466 −0.4 −0.4 −0.4 −0.4

b1 −1.127038715264740 −1.1314 −1.1314 −1.1314 −1.1314

b2  0.246094644851396  0.25  0.25  0.25  0.25

MSE  3.73514E-07  0  0  0  0

Reduced-order a0
’ −0.313641027643965 −0.313381211666222 −0.218395277719291 −0.3156 −0.297

b1
’ −0.906688872531020 −0.906716701813246 −0.923418356533178 −0.9082 −0.9065

 MSE  1.70199E-02  1.70200E-02  1.99497E-02  1.70336e-02  1.71509E-02

CSA, Cooperation Search Algorithm; ICSA Improved Cooperation Search Algorithm; IARO, improved artificial rabbits optimization; AHA, artificial hummingbird 
algorithm; ADELS, average differential evolution with local search. Bold values mean the better result, in this particular example it means the lower value.
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The coefficients of matched and reduced-order IIR models 
obtained by CSA and ICSA are given in Table 3. The scatter plots 

of MSE values versus number of runs are given in Fig. 6(a) and 
6(b), while convergence curves of best runs are given in Fig. 7(a) 
and 7(b).

For the matched-order model of the third-order system, the scatter 
plot in Fig. 6(a) illustrates 27 orders of magnitude lower MSE values 
for ICSA compared to the original CSA. In the case of a reduced-order 
system, values remain nearly similar to each other, as depicted in Fig. 
6(b). Fig. 7(a) displays the convergence plot, revealing the acceler-
ated convergence of ICSA over CSA with considerably lower MSE 
values. A similar convergence pattern is observed in Fig. 7(b); again, 
both algorithms experience premature convergence due to a reduc-
tion in filter order, leading them to get stuck in local optimal solu-
tions during the search process. 

Analyzing the third-order system in Table 4 reveals that ICSA outper-
forms CSA for matched and reduced-order models across all metrics 
except for the best value in the reduced-order model. The difference 
between the best values is only 0.0085%. Like the second-order sys-
tem, the ICSA algorithm demonstrates superior efficiency in optimiz-
ing system coefficients, thereby leading to improved performance.

C. Example 3—Fourth-Order Plant
Transfer functions of the fourth-order plant and its matched and 
reduced-order models are given in (24, 25, and 26).

H z
z z z

z z
P3

1 2 3

1 2

1 0 9 0 81 0 729
1 0 04 0 2775 0 2101

� � � � � �
� � �

� � �

� �

. . .
. . . zz z� ��3 40 14.

 (24)
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3
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� � �
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Fig. 4. Scatter plots of algorithms for matched-order and reduced-order models of the second-order plant.

Fig. 5. Convergence curves of algorithms for matched-order and reduced-order models of the second-order plant.

TABLE 2. STATISTICAL COMPARISONS OF THE COOPERATION SEARCH 
ALGORITHM AND IMPROVED COOPERATION SEARCH ALGORITHM FOR THE 
SECOND-ORDER SYSTEM

Model Type Metric CSA ICSA

Matched-order Best 3.73514E-07 0

Worst 2.88144E-03 1.14196E-32

Mean 4.08634E-04 5.21131E-33

Std 5.98878E-04 3.10492E-33

Reduced-order Best 1.70199E-02 1.70200E-02

Worst 1.70201E-02 1.70200E-02

Mean 1.70200E-02 1.70200E-02

Std 3.81077E-08 1.12507E-12

CSA, Cooperation Search Algorithm; ICSA, Improved Cooperation Search 
Algorithm. Bold values mean the better result, in this particular example it 
means the lower value.
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Fig. 6. Scatter plots of algorithms for matched-order and reduced-order models of the third-order plant.

Fig. 7. Convergence curves of algorithms for matched-order and reduced-order models of the third-order plant.

TABLE 3. THIRD-ORDER SYSTEM’S MODEL COEFFICIENTS

Model Type Coefficients CSA ICSA IARO [13] AHA [44] ADE-LS[14]

Matched-order a0 −0.200386817110689 −0.2 −0.199999999999999 −0.2 −0.2

a1 −0.401700466049329 −0.4 −0.4 −0.4 −0.4

a2  0.501906592226980  0.5  0.499999999999999  0.5  0.5

b1 −0.601561722125977 −0.600000000000001 −0.599999999999999 −0.6 −0.6

b2  0.246877427439000  0.25  0.250000000000001  0.25  0.25

b3 −0.203019236521218 −0.2 −0.199999999999999 −0.2 −0.2

MSE  1.24417E-06  3.24441E-33  2.10167E-31  0  0

Reduced-order a0
’ −0.202491709522824 −0.203057284352129 −0.212213933861540 −0.2173 −0.2463

a1
’ −0.566836483411288 −0.566829374374005 −0.593635989853768 −0.5764 −0.5829

b1
’  0.166048680026948  0.165388560659273  0.150804672088005  0.1609  0.1565

b2
’  0.398586630635224  0.398595308600334  0.363071095485534  0.3780  0.3495

MSE  1.29913E-03  1.29924E-03  1.42999E-03  1.33998E-03  1.55554E-03

CSA, Cooperation Search Algorithm; ICSA, Improved Cooperation Search Algorithm; IARO, improved artificial rabbits optimization; AHA, artificial hummingbird 
algorithm; ADELS, average differential evolution with local search. Bold values mean the better result, in this particular example it means the lower value.
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The coefficients of matched and reduced-order IIR models obtained 
by CSA and ICSA are given in Table 5. The scatter plots of MSE values 

versus number of runs are shown in Fig. 8(a) and 8(b), while conver-
gence curves of best runs are given in Fig. 9(a) and 9(b).

In this section, the performance evaluation of the ICSA is done 
for the fourth-order system. The results portrayed in Figs. 8 and 9, 
along with Tables 5 and 6, show the superiority of the ICSA com-
pared to CSA. Fig. 8(a) and 8(b) showcase scatter plots obtained 
from 30 runs regarding the fourth-order system, taking into account 
both matched- and reduced-order IIR filters. Fig. 8(a) and Table 5’s 
matched-order section indicate that the ICSA returned 18 orders of 
magnitude lower MSE values than CSA. Similarly, Fig. 8(b) highlights 
that most of the data points produced by ICSA came in lower than 
the ones acquired with CSA, underscoring the algorithm’s enhanced 
performance. Moreover, Fig. 9(a) illustrates the convergence behav-
ior for the matched-order model of the fourth-order system. Similar 
to prior cases, ICSA converges much faster and achieves lower objec-
tive function values than CSA, indicating its efficacy for minimizing 
errors and converging toward better solutions. In the reduced-order 
model of the fourth-order system, ICSA converges faster than CSA 
and also has lower MSE values, as depicted in Fig. 9(b). 

Table 7 reports statistical values for compared algorithms. Here, it 
becomes evident that the ICSA outperforms CSA in achieving the 
lowest best values for both matched- and reduced-order and lower 
mean values for reduced-order models. It should also be noted that 
CSA produces lower worst, mean, and standard deviation values for 
matched-order models, and lower worst and standard deviation val-
ues for the reduced-order model of the fourth-order system.

TABLE 4. STATISTICAL COMPARISONS OF THE COOPERATION SEARCH 
ALGORITHM AND IMPROVED COOPERATION SEARCH ALGORITHM FOR THE 
THIRD-ORDER SYSTEM.

Model Type Metric CSA ICSA

Matched-order Best 1.24417E-06 3.24441E-33

Worst 1.08018E-03 4.654E-29

Mean 4.86334E-04 2.81326E-30

Std 4.11923E-04 9.70101E-30

Reduced-order Best 1.29913E-03 1.29924E-03

Worst 1.30101E-03 1.29924E-03

Mean 1.29930E-03 1.29924E-03

Std 3.23206E-07 3.35617E-13

CSA, Cooperation Search Algorithm; ICSA, Improved Cooperation Search 
Algorithm. Bold values mean the better result, in this particular example it 
means the lower value.

TABLE 5. FOURTH-ORDER SYSTEM’S MODEL COEFFICIENTS

Model Type Coefficients CSA ICSA IARO [13] AHA [44] ADE-LS[14]

Matched-order a0  0.971199200866865  0.999999999997536  0.999999901046974  1  1

a1 −0.925355436183355 −0.900000000175921 −0.899999446607367 −0.9 −0.9

a2  0.900158825921694  0.810000000043018  0.809999381423445  0.81  0.81

a3 −0.747481373935235 −0.729000000065149 −0.728999769621451 −0.7290 −0.729

b1 −0.070978731377729  0.039999999816822  0.040000592685006  0.04  0.04

b2  0.209398714034827  0.277499999872700  0.277500038362770  0.2775  0.2775

b3 −0.242054004589077 −0.210100000070009 −0.210100173789422 −0.2101 −0.2101

b4  0.152456230349440  0.140000000016099  0.139999722985085  0.14  0.14

MSE  1.18228E-03  7.48299E-22  1.27628E-14  0  0

Reduced-order a0
’ 0.987397020943236 0.979315691174832 0.974795108953559 1.0048 1.0129

a1
’ 0.032307519423511 0.113969631247592 0.052616545573838 0.0442 0.0817

a2
’ 0.654202397062296 0.590632444308354 0.663473896344331 0.6080 0.6571

b1
’ 0.908558012429699 1.032082105086330 0.921607029275574 0.9289 0.9509

b2
’ 0.736872837418550 0.839347974784953 0.747757460347637 0.7289 0.7679

b3
’ 0.094978667095542 0.151226263626034 0.098218859095828 0.0871 0.1069

MSE 7.54069E-03 7.11818E-03 7.53734E-03 7.46118E-03 7.41056E-03

CSA, Cooperation Search Algorithm; ICSA, Improved Cooperation Search Algorithm; IARO, improved artificial rabbits optimization; AHA, artificial hummingbird 
algorithm; ADELS, average differential evolution with local search. Bold values mean the better result, in this particular example it means the lower value.
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D. Example 4—Fifth-Order Plant
Transfer functions of the fifth-order plant and its matched- and 
reduced-order models are given in (27, 28, and 29).
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The coefficients of matched- and reduced-order IIR models obtained 
by CSA and ICSA are given in Table 7. The scatter plots of MSE values 
versus number of runs are given in Fig. 10(a) and 10(b), while conver-
gence curves of best runs are given in Fig. 11(a) and 11(b).

In this section, the ICSA and CSA performance evaluations are 
conducted for the fifth-order system. Similar to prior sections, the 
outcomes given in Figs. 10 and 11, along with Tables 7 and 8, dem-
onstrate the superiority of ICSA over CSA. Fig. 10(a) and 10B exhibit 
scatter plots derived from 30 runs for the fifth-order system for both 
matched-order and reduced-order models. Fig. 10(b) and Table 5 
show that ICSA yields MSE values much lower than CSA. Similarly, 
Fig. 10(b) highlights that most data points produced by ICSA are 
significantly lower than the ones obtained by CSA, emphasizing the 
algorithm’s enhanced performance. Furthermore, Fig. 11(a) illus-
trates convergence behavior for the matched-order model of the 
fifth-order system. Analogous to previous cases, ICSA converges 
much faster and achieves lower MSE values compared to CSA, show-
casing its efficacy for minimizing errors and converging toward bet-
ter solutions. In the reduced-order model of the fifth-order system, 
once again, ICSA exhibits faster convergence than CSA, along with 
lower MSE values, as depicted in Fig. 11(b).

Table 8 presents statistical values for the compared algorithms. It 
becomes evident that ICSA outperforms CSA in achieving the low-
est best values for matched and reduced-order scenarios and lower 
values for all metrics in the reduced-order model. Additionally, it 
should be noted that CSA produces lower worst, mean, and standard 

Fig. 8. Scatter plots of algorithms for matched-order and reduced-order models of the fourth-order plant.

Fig. 9. Convergence curves of algorithms for matched-order and reduced-order models of the fourth-order plant.

TABLE 6. STATISTICAL COMPARISONS OF THE COOPERATION SEARCH 
ALGORITHM AND IMPROVED COOPERATION SEARCH ALGORITHM FOR THE 
FOURTH-ORDER SYSTEM

Model Type Metric CSA ICSA

Matched-order Best 1.18228E-03 7.48299E-22

Worst 2.04607E-02 1.489s02E+02

Mean 4.25539E-03 4.96358E+00

Std 4.02016E-03 2.67287E+01

Reduced-order Best 7.54069E-03 7.11818E-03

Worst 1.69281E-02 1.69576E-02

Mean 1.41052E-02 1.28398E-02

Std 2.34596E-03 4.05152E-03

CSA, Cooperation Search Algorithm; ICSA, Improved Cooperation Search 
Algorithm. Bold values mean the better result, in this particular example it 
means the lower value.
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deviation values for the matched-order model of the fifth-order 
system.

E. Non-Parametric Statistical Test
Here, the outcomes of the non-parametric Wilcoxon signed-rank test 
are presented. It is utilized to determine the statistical significance 
of variations in performance among the proposed ICSA and CSA 
for matched- and reduced-order models of second-, third-, fourth-, 
and fifth-order systems. Table 9 shows the results for the Wilcoxon 
signed-rank test, which indicate that the proposed ICSA performs 
better than the CSA in the majority of models. The resulting p-values 
are considerably smaller than 0.05 for most models, which is the 
determined significance level, indicating significant performance 
differences. In five of the eight cases, ICSA excels as the preferred 
method, emphasizing its ability to optimize system parameters and 

attain lower objective function values. These statistical results addi-
tionally confirm the effectiveness of ICSA in generating solutions 
with improved performance and precision across a range of IIR sys-
tem identification tasks.

V. CONCLUSION

This study investigates the application of the ICSA for designing opti-
mal IIR filter systems within an adaptive system identification frame-
work. The ICSA, which incorporates a pattern search algorithm and 
an OBL method, is employed to enhance exploratory capabilities and 
exploitation efficiency. Utilizing IIR filter systems from second to fifth 
order, the research employs the mean squared error (MSE) objective 
function to optimize filter coefficients for both matched-order and 
reduced-order models. Comprehensive performance evaluations, 

TABLE 7. FIFTH-ORDER SYSTEM’S MODEL COEFFICIENTS

Model Type Coefficients CSA ICSA IARO [13] AHA [44] ADE-LS[14]

Matched-order a0  0.116860344899451 0.108400031283855  0.108415440623010  0.1084 0.1084

a1  0.447275586714338 0.541878903194725  0.445050812699318  0.4492 0.5419

a2  0.661069422017368 1.083603682858840  0.634505033342557  0.6515 1.0837

a3  0.188472581365701 1.083531676634670  0.283668284692613  0.3109 1.0838

a4 −0.369575200750678 0.541765769741106 −0.113062384689373 −0.0959 0.5420

a5 −0.260343486851618 0.108358374075899 −0.103891170657143 −0.1006 0.1084

b1  0.261304999310042 0.985105546505000  0.091963933310944  0.1287 0.9854

b2 −0.051272907383393 0.973691874994718  0.417953338036308  0.4269 0.9738

b3 −0.188045714652736 0.386266680778307 −0.231718561869757 −0.2098 0.3865

b4 −0.267793791741098 0.111182430938613  0.000226928316145 −0.0016 0.1112

b5  0.047239489891187 0.011290766160077 −0.023273128348011 −0.0215 0.0113

MSE  9.64938E-05 1.16588E-12  1.02125E-05  1.00544E-05 1.94307E-09

Reduced-order a0
’  0.088201924500194 0.108541409266959 0.107788331761506  0.1089 0.1087

a1
’  0.487539379647886 0.497319694894943 0.497356787857328  0.4543 0.4982

a2
’  0.690417815328724 0.873237743003499 0.874769314421812  0.6848 0.8805

a3
’  0.422708349130072 0.701222228054601 0.704424827667655  0.4180 0.7107

a4
’  0.021342775749398 0.219856174035467 0.222506867289702  0.05 0.2259

b1
’  0.261272186899093 0.573220064192672 0.577526454538850  0.1647 0.5880

b2
’  0.553165151992960 0.686453685943388 0.688559929527913  0.5948 0.6893

b3
’ −0.015907647135098 0.099127831455708 0.101214412003194 −0.0974 0.1061

b4
’  0.061549498376859 0.044605392818530 0.044934419547747  0.0645 0.0438

MSE  4.76099E-04 1.97738E-05 1.97044E-05  4.31824E-05 2.00885E-05

CSA, Cooperation Search Algorithm; ICSA, Improved Cooperation Search Algorithm; IARO, Improved artificial rabbits optimization; AHA, artificial hummingbird 
algorithm; ADELS, average differential evolution with local search. Bold values mean the better result, in this particular example it means the lower value.
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including statistical analysis, convergence response, scatter plot 
analysis, and non-parametric tests, are conducted across diverse IIR 
plants, benchmarking against established methodologies such as 
IARO [13], AHA [44], and ADE-LS [14]. Results demonstrate the ICSA’s 
superior performance, achieving the lowest MSE values and exhib-
iting enhanced accuracy in coefficient identification across various 
IIR system orders. The Wilcoxon signed-rank test provides additional 
statistical validation of ICSA’s improved performance. These findings 

underscore the ICSA’s efficacy in generating efficient IIR systems and 
suggest its potential in related fields such as signal compression and 
integrated circuit design optimization. Future research directions 
include exploring ICSA’s application to nonlinear and time-varying 
systems, integrating it with advanced signal processing techniques 
for improved performance in noise-rich environments, and inves-
tigating its potential in machine learning, robotics, and network 
optimization. Additionally, scaling ICSA for large-scale system identi-
fication problems using parallel computing techniques could further 

Fig. 10. Scatter plots of algorithms for matched- and reduced-order models of the fifth-order plant.

Fig. 11. Convergence curves of algorithms for matched- and reduced-order models of the fifth-order plant.

TABLE 8. STATISTICAL COMPARISONS OF THE COOPERATION SEARCH 
ALGORITHM AND IMPROVED COOPERATION SEARCH ALGORITHM FOR THE 
FIFTH-ORDER SYSTEM

Model Type Metric CSA ICSA

Matched-order Best 9.64938E-05 1.16588E-12

Worst 1.74212E-02 7.45348E+05

Mean 3.04631E-03 3.95997E+04

Std 3.79108E-03 1.51832E+05

Reduced-order Best 4.76099E-04 1.97738E-05

Worst 1.30243E-02 7.60745E-03

Mean 3.35611E-03 6.71589E-04

Std 3.07882E-03 1.75872E-03

CSA, Cooperation Search Algorithm; ICSA, Improved Cooperation Search 
Algorithm. Bold values mean the better result, in this particular example it 
means the lower value.

TABLE 9. NON-PARAMETRIC WILCOXON SIGNED-RANK TEST FOR THE 
IMPROVED COOPERATION SEARCH ALGORITHM AND COOPERATION 
SEARCH ALGORITHM

System Model P Winner

Second-order system Matched-order 1.7344E-06 +

Reduced-order 2.2551E-03 +

Third-order system Matched-order 1.7344E-06 +

Reduced-order 6.5833E-01 =

Fourth-order system Matched-order 3.1123E-05 +

Reduced-order 1.7138E-01 =

Fifth-order system Matched-order 6.4352E-01 =

Reduced-order 4.8603E-05 +

CSA, Cooperation Search Algorithm; ICSA, Improved Cooperation Search 
Algorithm.
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expand its capabilities in handling complex, high-dimensional sys-
tems, potentially leading to significant advancements in signal pro-
cessing, control systems, and optimization across various domains.
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ALGORITHM 1. CSA’S PSEUDO CODE.

Start

Specify the starting variables and objective function

Initialize a diverse population of solutions within the feasible search space.

Subsequently, evaluate the fitness of each individual solution.

t = 0

Specify maximum iteration number

while t < maximum iteration do

for every solution within the population do

Execute team communication operator using Eqs. (3-5)

Determine group solution ui,j

Update the ui j
k
,
+1

 position

Execute the reflective learning operator.

if 
u c

x x
i j
k

j

j j

,
,

� �

�
��� �

1

0 1  then

Calculate ri jk, +1  and pi j
k
,
+1

 according to Eq. (7) and (8).

end if

if u ci j
k

j,
� �1  then

Calculate vi jk,+1  according to Eq. (6)

end if

Apply boundary check

Execute the internal competition operator.

if F Fi
k

i
ku v� �� � � � �1 1  then

Calculate xi jk,+1  according to Eq. (10)

end if

end for

Update the individual best-known solutions based on the initial population.

 Update the globally best-known solutions

 Advance iteration counter.

if t >= max_iteration then

Export the best solution.

 end if

end while

CSA: Cooperation search algorithm.



ALGORITHM 2. PSEUDOCODE OF THE PS ALGORITHM.

Specify the values for expansion factor (ρ), contraction factor (θ), and reflection factor (µ).

Generate the initial simplex (S0)

iter = 0

while iter <itermax & distance > tol do

Determine the fitness values for every vertex within the simplex.

Select the optimal vertex, denoted as the one vk
i  which has the one the lowest fitness value

Perform the reflection stage and find rik

if f r f vi
k

i
k� � � � �  then

Perform the expansion stage and find eik

if f e f ri
k

i
k� � � � �  then

Replace vik  with eik

else 

Replace vik  with rik

end if

else 

Perform the contraction stage and find cik

if f c f vi
k

i
k� � � � �  then

Replace vik  with cik

end if

end if

Advance the iteration.

end while

Export the best solution.

PS: Pattern search.



ALGORITHM 3. PSEUDOCODE FOR THE PROPOSED ICSA.

Start (population size, maximum iteration number, upper and lower limits for the parameters)

Produce various possible solutions and evaluate their efficacy for the intended results.

while t<tmax do

Execute CSA algorithm

Update the current population (x)

Compute the inverse of the revised population ( x )

Choose the optimal solutions from x and x  to constitute the subsequent updated population

Choose the optimal solution from the revised population.

if mod(iteration, 10) = 0 then

Perform a local search with PS

end if

Advance the iteration. counter

end while

Return the best solution.

ICSA: Improved Cooperation Search Algorithm.
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