
789

Xia et al.

Active Distribution Network Fault Location Based on Petri Nets and Improved Particle Swarm 
Optimization Algorithm

Corresponding author: 
Yunfeng Xia

E-mail: 
YunfengXia5@163.com

Received: May 29, 2024

Revision Requested: August 22, 2024

Last Revision Received: October 2, 2024

Accepted: October 6, 2024

Publication Date: November 8, 2024

DOI: 10.5152/electrica.2024.24047

ORIGINAL ARTICLE

Active Distribution Network Fault Location Based on Petri Nets and 
Improved Particle Swarm Optimization Algorithm
Yunfeng Xia , Jie Yang , Junan Chen , Yeming Lai , Sheng Ye
Hainan Power Grid Co., Ltd., Transmission Maintenance Branch, Hainan, Haikou, China

Cite this article as: Y. Xia, J. Yang, J. Chen, Y. Lai and S. Ye, "Active distribution network fault location based on petri nets and improved particle swarm optimization 
algorithm," Electrica, 24(3), 789-798, 2024.

ABSTRACT

To address issues such as inadequate fault tolerance, long computation time, and limited universality in fault location for active distribution networks, this paper 
proposes a fault location method that combines Petri nets with an improved particle swarm optimization (PSO) algorithm. This method enhances the efficiency of 
fault location in distribution networks with distributed power sources, demonstrating good applicability and convergence, especially in complex network scenarios. 
The results from two test functions and simulation analyses of two types of node distribution networks show that (1) in the single-point fault simulation, the improved 
algorithm successfully located the fault in the ninth iteration, outperforming the 14th iteration result of the standard PSO algorithm. (2) In networks with randomly 
interconnected distributed power sources, the algorithm accurately located both single and multiple faults. (3) Experimental verification further supports the simulation 
results, proving the effectiveness of this method in practical applications.
Index Terms—Active distribution network, fault location, Petri nets, particle swarm optimization algorithm.
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I. INTRODUCTION

As modern power grid technology advances, the distribution network has become increas-
ingly resilient, playing a less burdensome role in the overall power system [1]. This ensures the 
distribution network’s stable operation, allowing swift identification and resolution of faults. 
Consequently, electricity users can rely on a safe and uninterrupted power supply. The inclu-
sion of distributed energy sources adds complexity to fault detection in the distribution grid, 
which in turn reduces the reliability and consistency of the power supply for consumers [2]. It 
is particularly important to ensure the reliability and continuity of user electricity consumption. 
Therefore, it is very important to quickly detect faults and ensure the speed and reliability of fault 
location, so as to facilitate rapid maintenance by power grid maintenance personnel [3]. In 2008, 
the International Large Grid Conference introduced the concept of active distribution networks. 
This concept aims to effectively manage the diverse distributed generation (DG) sources con-
nected to the network. The goal is to optimize the utilization of existing distribution network 
infrastructure and resources to address the evolving requirements of the distribution network. 
Automation in distribution networks relies on data gathered by feeder terminal units (FTUs) to 
facilitate fault location algorithms. These fault location methods are categorized into direct and 
indirect approaches [4]. Fossil fuels such as coal, oil, and gas are a finite resource that is being 
exhausted, while wind, solar, geothermal, and other renewable energy sources are being applied 
more and more. As distributed power sources continue to integrate into the power grid, they 
significantly alter its network structure. This complexity in the grid’s layout results in shifts in 
power flow distribution and compromises the reliability of the distribution network system. 
Consequently, traditional fault localization methods become inadequate, exacerbating the chal-
lenges in pinpointing faults [5]. Given that the distribution network serves as the sole conduit for 
electricity users, it bears immense significance in meeting the rising electricity demands accom-
panying China’s economic growth and improved living standards. Thus, ensuring the safety and 
reliability of electricity consumption is paramount, alongside safeguarding the integrity of the 
power grid itself. Therefore, further research on fault location in distribution networks has great 
theoretical significance [6].
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II. Literature Review
Faced with power grid fault diagnosis with temporal information 
constraints, improvements have been made in Petri net fault diag-
nosis both domestically and internationally. As proposed by Xu et al., 
the time information in alarm information is applied to the Petri net 
fault diagnosis model, which makes the fault diagnosis results more 
accurate and also provides a certain degree of fault tolerance for 
uncertain alarm information [7]. Moreover, this approach enables the 
prediction of component failure timing by leveraging the outcomes 
of the fault diagnosis process. It also aids personnel in assessing pro-
tection mechanisms and circuit breaker actions indicated in alarm 
data. Cheng et al. proposed a new approach combining Fuzzy Petri 
net (FPN) and Comprehensive Learning Particle Swarm Optimization 
(CLPSO). They employed this approach in diagnosing faults in intri-
cate motor systems. The research results showed that using the 
established system model for fault diagnosis can accurately and 
intuitively express the fault propagation process of motors, and it 
is possible to improve failure treatment and device maintenance of 
motors [8]. Jiang et  al. proposed using Petri nets to formalize and 
integrate the structures of power transmission systems and their 
control systems, which can avoid output interruptions during impor-
tant power source fault diagnosis and fault recovery processes [9]. 
However, both of these methods require experienced supervisors 
to choose the appropriate fault recovery method, which still relies 
to some extent on manual experience. Jiang et al. designed an off-
line expert system for diagnosing faults in distribution networks, 
utilizing the operational structure and functions of relays and circuit 
breakers [10].

But when diagnosing power grid failure, it is very hard to forecast its 
topology. When faults occur, the protection of suspicious faulty com-
ponents and the action of circuit breakers are complex, and the cor-
responding database applied by the expert system is also changing. 
Therefore, when conducting fault diagnosis, the knowledge base 
and rule base often require more time for searching and reason-
ing, but in practical work, they often cannot meet practical needs. 
KAluđer et al. proposed applying rough set theory to fault diagno-
sis of power transformers and transmission lines, which can effec-
tively determine the types of transformer equipment faults and line 
faults [11]. This paper explored the method of power transformer 
fault diagnosis using rough set theory, and combines the advan-
tage based rough set technology. advantage-basedThe advantage 
based rough set method was applied to the research of power 
transformer orderly maintenance, and the algorithm flow chart of 
transformer orderly maintenance was established. Furthermore, 
this paper presents an integrated failure diagnosis system with DS 
Proof Theory to solve the problem of uncertain information and 
data loss in the failure of transformer, and has achieved good per-
formance in information fusion. Fault diagnosis of power lines in 
distribution networks is also an important component, responsible 
for the transmission of electricity and energy. Liu et  al. proposed 
applying a genetic optimization algorithm to fault location of DC 
distribution network lines. By adopting the genetic algorithm in 
the distribution network, not only can a series of interference fac-
tors be avoided, such as the interference caused by errors in fault 
information collection, but this method also has strong resistance 
to transition resistance [12]. However, for large and complex distri-
bution networks, simple genetic optimization algorithms are prone 
to premature convergence of optimization results, leading to local 
optima. Dashtdar and colleagues proposed a novel approach utiliz-
ing the impedance matrix and phasor measurement units (PMUs) 

within the network to enhance fault localization, considering vari-
ous fault types and resistances during line faults. Their study sug-
gests that increasing the number of PMUs enhances the accuracy 
of fault localization [13]. This approach identifies fault locations by 
analyzing impedance transfer between PMUs and faults, using the 
fault distance as a key parameter. It notably factors in uncertain-
ties in network parameters and applies the least squares method for 
fault data to achieve the best possible outcome. One key advantage 
of this method is its resilience to variations in fault types and short-
circuit resistances, ensuring robust fault localization regardless of 
these factors.

The use of Petri nets can indeed quickly and accurately locate faults 
in small distribution networks with fewer nodes, and Petri nets have 
many advantages [14]. However, in reality, large-scale distribution 
networks have a vast number of nodes, leading to complex fault 
localization, significant computation, and model scalability issues, 
especially with the integration of distributed power sources. The 
network structure evolves from a traditional single power source to 
a complex multi-power source network, making it difficult to pre-
dict actual conditions and necessitating multiple assumptions when 
using Petri nets. Therefore, a single Petri net-based fault localization 
method is insufficient for fast and accurate fault detection in distribu-
tion networks with distributed power sources. It is necessary to use 
optimization algorithms to enhance Petri nets for fault localization in 
such networks, ultimately meeting the need for rapid and accurate 
fault detection in complex distribution networks with distributed 
power sources. Particle swarm optimization possesses strong global 
and local search capabilities, and the Petri net model is suitable for 
analysis within discrete event-related dynamic models. Theoretically, 
the search operations of PSO correspond to discrete dynamic events, 
providing a solid rationale for using PSO to optimize Petri net-based 
fault localization methods [15].

Therefore, this paper adopts an improved PSO algorithm to enhance 
the Petri net-based fault localization method. The inertia weight 
of the improved PSO is updated in a nonlinear dynamic adaptive 
manner, while the learning factor is updated asynchronously. This 
accelerates the search speed in the initial iterations, prevents the 
algorithm from converging prematurely to a local optimum, and 
improves search precision in later iterations, thereby enhancing the 
accuracy of the PSO. Experimental results and simulations demon-
strate that the improved algorithm shows high efficiency and accu-
racy, particularly in complex network structures, and outperforms 
other methods in terms of computational load and fault tolerance, 
ensuring faster convergence and fault detection.

III. RESEARCH METHODS

A. Basic Concepts of Petri nets
Definition 1: Elementary Petri nets, as illustrated in (1):

� � � �C S T F M, ; ,    (1)

∑ C has the following transition occurrence rules:

1) For any transition t ∈ T, if (2):

� � � ��
� �s S s t M s: ,1  (2)

Then it is said that t has permission to occur at the identifier M, 
marked as M [t>;
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2) If M [t>, then t can satisfy the condition in M, as shown in (3):

0 � ��� �� � � �q min M s tM t s,  #  (3)

3) If q (M, t) occurs and t obtains a new identifier M’ (denoted as M [t, q 
(M, t)>M’), then (4) is used:
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Definition 2: Let ∑ D = (B, E; F, c0) be one basic network, e1, e2 ∈ E, c be 
one state of ∑ D, if (5) and (6):

c e c e1 2� ����� ;  (5)

c e c c e c e c c e1 1 1 2 2 2 2 1 0� � � � � ������
�

�
��

 (6)

Then it is said that e1 and e2 are concurrent in state c, denoted as c 
[{e1, e2}>.

Definition 2: The basic network system sublimated from Definition 
1 can be used to analyze the occurrence of parallel states [16, 17].

B. Basic Particle Swarm Optimization Algorithm
Particle swarm optimization is a method to solve the problem of 
finding the best way to solve the problem. In each iteration, the algo-
rithm updates the system’s velocity vi and position xi by recalculat-
ing their values. The iteration process is governed by (7) and (8):
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x x vid
k

id
k

id
k� �� �1 1  (8)

In the formula, xidk+1  and vidk+1  represent the position and velocity of 
particle i in the next iteration, respectively; ω is the inertial weight, 
c1 and c2 are the learning factors, and r1 and r2 are any real numbers 
produced in the present iteration from [0,1].

In the equations, xidk+1  and vidk+1  denote the position and velocity of 
particle i in the upcoming iteration, respectively. The parameterol 
represents the inertia weight, while c1 and c2 are the cognitive and 
social learning factors. r1 and r2 are random real numbers from 0 to 
1 produced during the current iteration; p id

k
best ,  is the historical best 

position of the iteration cutoff point i; g id
k
best ,  is the overall optimal 

position for the time cutoff point subgroup iteration [18].

Calculated to the k+1st order, the update site of the ith particle can 
be obtained from (9) [19].
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In (9), rand (ned from (9) is the i-th subgroup iteration earning fac-
tors, r1, [0, 1]. The sigmoid function is defined in (10):
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From (10), it can be seen that the higher the velocity, the closer the 
value of the sigmoid function is to 1, and when the velocity is very 
small, the value of the sigmoid function also tends to 0 [20]. In order 
to prevent overflow of the sigmoid function due to excessive particle 
velocity, the particle velocity is set within the range of [−4, 4], and 
the corresponding sigmoid function is adjusted within the range of 
[−0.98, 0.98], as shown in (11):
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C. Improving Particle Swarm Optimization Algorithm
In order to address the common phenomenon of premature con-
vergence in standard PSO algorithms, improvements are usually 
made to the algorithm in terms of its own parameters and inte-
gration with other optimization algorithms [21]. In this paper, the 
basic parameters of PSO, the inertial mass, and the learning fac-
tors c1 and c2 have been specified. The effect of these two factors 
on PSO optimization is seen as follows: increasing the number 
increases the overall search power of the algorithm, but reducing 
it increases the local search power. Specifically, c1 and c2 represent 
the significance of individual and collective experience in the pop-
ulation’s search process. To strengthen the global search perfor-
mance, increasing c2 and decreasing c1 is required. Conversely, to 
enhance local search capability, c1 should be raised, and c2 should 
be reduced.

The author’s discussion on inertia weight ω using the nonlinear 
dynamic adaptive update method shown in (12) explains that the 
learning factors c1 and c2 are updated according to asynchronous lin-
ear laws, as shown in (13) and (14). Inertia weight in the initial stage 
of optimization iteration ω learning factor c1 has a larger value and 
c2 has a smaller value, which is opposite in the later stages of itera-
tion. This approach is advantageous as it speeds up the search at 
the beginning of the iteration, avoids the convergence of the PSO 
method to the local optimum, and increases the precision of the final 
iteration, thereby enhancing the accuracy of the PSO algorithm [22].
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In the formula ωmax, ωmin——inertial weight ω upper and lower limits; 
f—the fitness function value of a certain particle; favg—the average 
fitness function of the current population; fmax—maximal number 
of Fit Function for Current Population; C15, C1e—the initial and final 
values of the learning factor c1; C2s, C2e—initial and terminal values 
of the learning factor c2; titer— current iteration count; and titer,max—
Maximal Iterative Count of Algorithm.
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D. Research on Fault Location Method for Distribution Network 
Based on Particle Swarm Optimization Petri Net
Exploring fault localization methods in distribution networks with 
distributed energy sources presents significant potential for reduc-
ing the impact of these sources on overall network performance. 
The Petri net fault location method discussed earlier has drawbacks 
such as a complex process, large computational load, and easy 
model enlargement. The utilization of the Petri net approach for fault 

localization in distribution networks with distributed power sources 
is constrained by significant limitations. Thus, in the next chapter, 
PSO is introduced as a way to enhance Petri Nets governance. This 
improved methodology can then be effectively employed for real-
world analysis of fault sections within distributed power distribu-
tion networks. The conclusion that the optimization algorithm can 
accurately locate fault sections is drawn, proving the feasibility of the 
optimization algorithm.

1) Petri Net Optimization Based on Particle Swarm Optimization
The Petri network, which is improved by PSO, makes use of the 
advantages of PSO. This synergy ensures optimal control of the Petri 
net, enhancing its effectiveness in fault localization within distribu-
tion networks. That is, the problems to be processed by the Petri net 
are first divided into blocks and then processed by the Petri net. This 
greatly improves the computational speed and saves a lot of time 
by reducing the size of the problem. There are generally two meth-
ods for block processing. The first is domain decomposition, which 
decomposes a large problem area into multiple small problem areas 
and then processes them one by one. The second method is func-
tional decomposition, which decomposes a large problem into mul-
tiple small problems and then processes them one by one [23]. The 
Petri net optimized by the PSO Algorithm adopts the first method 
mentioned above, which is the domain decomposition method. 
The subgroup grouping process and population grouping process 
of the Petri net algorithm based on PSO are shown in Figs. 1 and 2, 
respectively. Before using optimization algorithms for fault location, 
the first step is to set the encoding method in the form of 1, 0, −1, 
and construct switch functions and evaluation functions. Then, com-
bined with the structure of the distribution network, label the switch 
nodes and sort the corresponding lines of each node. The fault sta-
tus information is provided by the feeder terminal device and pro-
cessed before the 1 or −1 element appears, the circuit corresponding 
to element 0 must have no faults. The more elements there are, the 
faster the operation speed. Moreover, there are continuous and 

Fig. 1. Subgroup grouping flowchart based on the optimization 
algorithm.

Fig. 2. Flow chart of population grouping based on optimization algorithm.
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concentrated areas corresponding to element 0 that can be directly 
processed by optimization algorithms through block operations.

To validate the optimization algorithm’s feasibility, its performance 
was assessed using two test functions: the Sphere function and the 
Rosenbrock function. Testing parameters and cycles were uniformly 
set, with values of 50 and 500, respectively. The test type focused 
on evaluating the average values. Table I presents the test results, 
accompanied by (15) and (16) below:

Spherefunction: f a a
i

k

i� � �
�
�

1

2  (15)

Rosenbrock function:f b b b b
i

k
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�

�

��
1

1

1
2 2

100 1  (16)

From Table I, it is evident that Petri nets optimized based on PSO 
have superior performance compared to ordinary Petri nets and can 
significantly save computational time.

2) Petri Net Fault Location Process Based on Particle Swarm 
Optimization
Employing Petri nets, which are improved by PSO, is used to locate 
the fault in the grid. These steps outline the optimization algorithm’s 
implementation process effectively [24]:

1. Begin by initializing all parameters associated with the optimi-
zation algorithm. The population size is set to N, the space is 
defined as d, and the largest iteration count is set as K. Finally, 
set two acceleration factors to C1 and C2, with C1 = C2.

2. Initialize the positions and velocities of all particles in the opti-
mization algorithm as vid and Xid, respectively.

3. According to the established maximum number of K steady 
operations, calculate the evaluation function values of each 
particle through the fitness function.

4. Compare the calculated evaluation function value with the 
pbest value.

5. Compare and select the optimal evaluation function value with 
GBest through comparison and contrast.

6. By comparing the information sequence with the feeder termi-
nal device, check if they match. If they match, end the operation 
and directly output the result. If they do not match, continue 
the operation according to the established maximum of K times 
until they match or the number of iterations is exhausted [25].

3) Fault Localization in Distribution Networks with Distributed 
Power Sources Based on Optimization Algorithms
Considering the IEEE standard node distribution network intercon-
nected with distributed power sources as a case study, the inclu-
sion of distributed power sources necessitates a modification in 
line coding. Specifically, a “−1” notation needs to be introduced 
alongside the traditional “0-1” form to accommodate these con-
nections. This means that the feeder terminal device measures the 
current information state opposite to the specified positive direc-
tion, monitors the line status through the feeder terminal device 
in the distribution network, and outputs a sequence of fault sta-
tus information based on the alarm information. According to the 
pre-set function expression, the fault state information sequence is 
operated on, and the Petri net is enhanced and managed through 
grouping with the PSO algorithm. Then, by using the optimized 
algorithm, a failure can be recognized in a power grid, which can 
accurately determine the position of a failure by means of a com-
prehensive comparison.

The flowchart of Petri net fault localization based on PSO is shown 
in Fig. 3.

For Petri nets optimized based on PSO, in what aspects are they 
superior to the original Petri net algorithm?

TABLE I. TEST RESULTS

Tested Functions Number of Tests Test Cycle Test Type Petri Net Optimization Algorithm

f(a) 50 500 Average value 6.0502 × 100-1-2-3-4-5-6-7-8 2.1861 × 100-1-2-3-4-5-6-7-8-9

f(b) 50 500 Average value 10.5363 1.4704

Fig. 3. Flow chart of Petri net fault localization optimization based on particle swarm optimization.
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1. Through testing with the Sphere function and Rosenbrock func-
tion, it was found that the optimized algorithm significantly 
improved computational speed and saved computational time.

2. In distribution networks featuring extensive distributed 
power sources, the optimization control facilitated by the PSO 
Algorithm streamlines the process by requiring only a single 
assumption of the positive direction. In contrast, conventional 
Petri nets necessitate multiple assumptions of the positive 
direction when applied to fault localization in such networks.

3. Optimization algorithms can achieve immediate priority pro-
cessing of faulty sections, greatly improving the accuracy of the 
algorithms.

4. The Petri net optimized based on PSO is not affected by the 
increase of lines and the connection of distributed power 
sources, while the ordinary Petri net is greatly affected by the 
above two reasons and has limitations [26, 27].

IV. RESULT ANALYSIS

A. Example 1
Assuming the active distribution network example shown in Fig. 4 
contains three DGs, k1–k15 are switch nodes with FTUs, l1–l18 are the 
feeder sections corresponding to each switch node, and Figure 4 is a 
single point fault schematic diagram of l3 fault [28].

When iterating the improved particle swarm, the particle swarm has a 
dimension of 20 and iterates 25 times. The learning factor c1 = c 2= 2.1 
is used, and the weights are assigned between 0.2 and 0.9 for debug-
ging. According to flowchart 3, write a program for single-point fault 
simulation. When all three DGs are connected to the distribution 
network and the iterative calculations yield consistent results with 
the overcurrent information uploaded by the FTU—denoted as [111-
1-1-100-1-1-1]—it indicates that DG l3 has encountered a failure. This 
is illustrated by the convergent profile of the single-spot failure, as 
shown in Fig. 5. Remarkably, PSO reaches the optimum solution in 
the ninth iteration and is able to quickly detect the failure. On the 
other hand, the PSO can only get the best result at the 14th iteration, 
which is not as effective as the modified one. These differences show 
that the PSO is more effective in optimizing the location of the fault 
in the grid [29].

In comparison with PSO, this approach makes use of the Petri net’s 
concurrent operational properties, significantly curtailing the time 

needed for fault localization. Comparison of operations between the 
two methods. As shown in Table II.

B. Example 2
To further validate the accuracy of the optimization algorithm, this 
section chooses a more representative structure of the IEEE standard 
33-node distribution network, illustrated in Fig. 6.

Fig. 6 illustrates the configuration of the distribution network, where 
G serves as the primary power source, and DG1, DG2, and DG3 are 
distributed power sources connected to the end of each branch. RL 
represents the connected load [30]. Simulation results are summa-
rized in Table III.

By applying optimization algorithms to perform various experiments 
on IEEE standard 33-node distribution networks with integrated 
distributed power sources, the experimental results in the table 
above show that in various situations of distributed power source 
access, that is, by randomly integrating distributed power sources 
into the distribution network, the optimization algorithm can effec-
tively identify faults within networks that include distributed power 

Fig. 4. Simulation example.

Fig. 5. Single point fault convergence curves of two algorithms.
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sources, addressing both single and multiple point faults [31]. This 
proves that the optimization algorithm has high accuracy. When 
ordinary Petri nets are applied to fault location in distribution net-
works with distributed power sources, the exponential increase in 
the amount of state information often occurs due to the addition 
of equipment and the expansion of the network, resulting in a 
decrease in the fault tolerance ability of Petri net methods. It is dif-
ficult to detect erroneous alarm information and cannot meet the 
basic requirements of accurate and fast fault location in distribution 
networks with distributed power sources.

C. Experimental Verification
The test is conducted on a 30-node grid with a nominal voltage 
of 12.45 KV, which is composed of 28 branches, 10 connecting 
switches, 10 condenser sets, and 2 distributed power supplies. 
The distributed supply has a reactive power range of 0–750 KW, 
3 MW of active power, and a nominal capacity of 3715 KW. The 
three phase power foundation is 10 MVA, and the baseline is 12.45 
KV. Each two nodes are grouped into one section, dividing the 
network into 15 sections. Fifteen wireless sensors are installed, 
collecting 1.26 GB of state data, and MATLAB is used to simu-
late and supplement the historical fault data. According to the 
design approach, the error location is automatic, and 8 randomly 
chosen results are selected (as illustrated in Table IV). The results 
indicate that the detected fracture segments are consistent with 
the real fault segments. The detailed performance of the location 
approach is assessed.

Based on the above experiments, multiple test results of automatic 
fault location in distribution networks can be obtained. To achieve 
quantitative testing of fault location performance, the experiment 

TABLE II. COMPARISON OF OPERATIONS BETWEEN TWO ALGORITHMS

Algorithm Convergence Times Simulation Time/ms

Basic particle swarm 
optimization

14 20.72

Particle swarm otimization 
algorithm based on Petri nets

9 14.65

Fig. 6. Schematic diagram of a 33-node distribution network with multiple distributed power sources.

TABLE III. LIST OF SIMULATION RESULTS FOR 33 NODE DISTRIBUTION NETWORK

Fault Information Fault Type Number of DG Connections Final Solution Anchor Point

[1110 00000 00000 00000 0011- 10000 0000] Single-point DG1 [0000 00000 00000 00000 00010 00000 000] 23

[11-1-1-1-100000000
00000 00-1- 1-1-1 -1-1- 1-1-1 -1-1] 

Single-point DG1,G2 [0100 00000 00000 00000 00000 00000 000] 2

[1111 11111 1-1-1 -1-1- 1-1-1 00000 00000 00000 ] Single-point DG1, DG3 [0000 00000 10000 00000 00000 00000 000] 10

[1111 11000 00000 00000 00000 11111 1-1-1 ] Single-point DG2 [0000 00000 00000 00000 00000 00000 100] 30

[1111 11111 11111 10000 001-1 -1000 00000 ] Multipoint DG1 [0000 00000 00000 10000 00100 00000 000] 15, 22

[1111 11000 00000 00011 00000 11111 11-1] Multipoint DG1, DG2 [0000 00000 00000 00001 00000 00000 010] 19, 31

[1110 00000 00000 00000 0010- 10000 0000] Multipoint DG1, DG2, DG3 [0000 00000 00000 00000 00101 00000 000] 22, 24

[1111 11111 11111 1-1-1 00000 00111 1-1-1 -1-1] Multipoint DG2, DG3 [0000 00000 00000 10000 00000 00010 000] 15, 28

[1111 111-1 -1-1- 1-1-1 -1-1- 1-100 00000 11100 000] Multipoint DG1, DG3 [00000010000000000
000000000100000]

7, 27

[1111 11111 11111 11-10 0001- 1-111 11111 -1] Multipoint DG1, DG2, DG3 [00000000000000010
000010000000010]

16, 22, 31

[1111 11111 11-1- 1-1-1 -1-11 11011 00000 0000] Multipoint DG2, DG3 [00000000001000000
001001000000000]

11, 20, 23



Electrica 2024; 24(3): 789-798
Xia et al. Active Distribution Network Fault Location Based on Petri Nets and Improved Particle Swarm Optimization Algorithm

796

uses the zone selection error rate and Root Mean Square Error 
(RMSE) as accuracy evaluation metrics for the automatic fault loca-
tion method. The region choice error ratio is defined as the ratio of 
misrecognized samples to the sum of failure samples, which can be 
used as a measure of the precision of failure location. A formula is 
given in (17).

�Line
cor %� � �1 100

N
N

 (17)

In the equation, ηLine represents the zone selection error rate for 
fault location in the distribution network. Ncor denotes the num-
ber of accurately identified fault zones, while N refers to the total 
number of fault samples. A lower zone selection error rate indi-
cates higher accuracy in fault location. Root Mean Square Error, 
which measures the precision of fault location, is calculated 
using (18).

RMSE
m

r r
m

� �� ��
�
�1

1

2
 (18)

In the formula, RMSE represents the Root Mean Square Error of fault 
location in the distribution network; m is the number of fault sam-
ples; r is the located value; and a ′r  is the actual value. A higher RMSE 
indicates lower accuracy in fault location.

Based on these two metrics, a comparison is made between the pro-
posed method, the quantum annealing algorithm-based method, 
and the basic PSO-based method. Experimental data are substituted 
into (17) and (18), resulting in the distribution network fault zone 
selection error rate (Table IV) and RMSE for automatic fault location 
(as shown in Fig. 7).

By analyzing the information presented in Table IV and Fig. 7, the fol-
lowing conclusions can be drawn regarding the zone selection error 
rate. The proposed method performs best, with a maximum rate of 
only 1.54%, nearly 11% lower than the quantum annealing algo-
rithm and 15% lower than the Hilbert-Huang transform algorithm. 
This indicates almost no mislocation, enabling accurate fault local-
ization. Regarding RMSE, the basic PSO algorithm shows the highest 
error, followed by the quantum annealing algorithm. The proposed 
method achieves a maximum RMSE of 0.17, far lower than the other 
two methods, demonstrating excellent automatic fault location per-
formance with high accuracy.

V. CONCLUSION

Given the rapid advancement of distributed power generation, 
there is a pressing need to efficiently address faults that arise within 
the distribution network. To overcome the limitations of the con-
ventional particle swarm algorithm, the author suggests enhancing 
it by incorporating the parallel reasoning attributes of Petri nets. 
This approach aims to mitigate the risk of encountering local extre-
mum points during the particle swarm algorithm’s computation 
process, ensuring more accurate fault localization and expedited 
fault resolution. Applying this method to abnormal state search in 
active distribution network operation, constructing a switch func-
tion, and conducting experiments using MATLAB software, the 
feasibility and good convergence of this method for fault location 
in some areas of active distribution networks are obtained, which 
improves the fault tolerance of active distribution system fault 
searches, shortens computation time, and achieves its universality 
requirements. Moreover, it provides a theoretical basis for the in-
depth study of multipoint fault localization in the next active dis-
tribution network.
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