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The sections of this article are structured as follows: The ASM model is shown in Section 2. Section 3 presents the three BFs and their distinctive frequencies. The 
FL-DTC control is the subject of Section 4. Section 5 gives an overview of the HT. Section 6 presents and interprets the results, and Section 7 finishes this work.
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ABSTRACT

Asynchronous motors (ASMs) have attracted significant attention due to their extensive use in industrial applications and processes, particularly when it comes to 
adjusting speeds. Several speed control methods, including fuzzy logic-direct torque controller (FL-DTC), have been suggested to regulate the speed of ASMs by 
accurately following the desired reference speed. The fluctuating reference speed directly influences the operational frequency of the ASM stator current, a critical 
factor in the identification of bearing faults (BFs). Notably, BFs contribute to 40% of all ASM failures. This article describes the detection of BFs in ASMs via a combination 
of the Hilbert transform (HT) and the FL-DTC. Hilbert transform is employed to analyze the non-stationary nature of the stator’s current with speed variations. These 
variations come in two forms: those caused by the control itself and those resulting from BFs. The FL-DTC control contributes to reducing current harmonics, torque, 
and speed ripples. This highlights and makes the effects induced by BFs more distinct, thus rendering them more proportional. As such, the FL-DTC control is not only 
employed to enhance the performance of the ASM, but it is also utilized for the diagnosis of BFs. The performance of the selected approach is tested in the MATLAB/
Simulink environment.
Index Terms—Asynchronous motor (ASM), bearing fault (BF), fuzzy logic-direct torque controller (FL-DTC), Hilbert transform (HT), motor current signature analysis 
(MCSA)
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I. INTRODUCTION

Compared to direct current (DC) and synchronous machines, asynchronous motors (ASMs) are 
employed in many more applications because of the tremendous advancements and dramatic 
cost reduction in power electronics [1, 2]. These uses are not just for motors but also for gen-
erators, particularly for wind applications, with the two well-known types being self-excited and 
doubly fed induction generators [3–5]. Particularly for the squirrel cage type, ASMs are distin-
guished by their simple structure, controllability, and low maintenance requirements. In reality, 
because of their extensive usage, ASMs now perform essential tasks, necessitating higher levels 
of dependability as well as the need to maintain high levels of production. As a result, while using 
ASM in the majority of applications, two key factors, defect diagnosis and control, must be taken 
into account.

From a control standpoint, the induction motors’ speed should be controlled since load fluc-
tuations have an impact on it. Many research projects improve the control strategies for electric 
machines. The first one is the scalar control (SC) [6], which has an open-loop control unit and is 
highly well-liked in the industry. However, at low speeds, the machine parameters become non-
negligible, causing a voltage drop for this regime. The second is vector control, which includes 
many types and seeks to be improved. Direct flux orientation control (DFOC) requires the imple-
mentation of flux sensors in the motor air gap. The indirect flux control (IFOC) overcomes the 
use of using these sensors in DFOC. The reliability and stability of the systems, however, can-
not be guaranteed by IFOC. Sliding mode control (SMC) was designed to increase stability and 
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dependability. However, it results in the “Chattring” phenomenon, a high-frequency vibration 
that degrades the machine’s life. The direct torque control (DTC) proposed by Takahashi [7] and 
Depenbrock [8] presents the best-performing solution. The main advantages of this strategy lie in 
its robustness, simplicity, and limited sensitivity to machine parameter variation. Yet, its primary 
drawback is flux and torque ripples that produce acoustic noise and mechanical vibrations [9, 10, 
11–13]. To improve the effectiveness of the DTC control in this respect, researchers used artificial 
intelligence (AI) to minimize the torque ripples [9, 12–14]. Artificial neural networks (ANNs) was 
presented to support the DTC, and ANN-DTC in ASM [12, 13]. The results demonstrate that the 
ASM stator current’s performance in terms of flux and torque profiles as well as total harmonic 
distortion (THD) has improved [12, 13]. Fuzzy logic (FL) was integrated into the DTC control to 
develop a new FL-DTC control. In this combination, FL-DTC substitutes the hysteretic compara-
tors and the switching table with affuzzy logic controller to simplify the structure of the controller 
[14–16]. The authors have demonstrated that this intelligent control offers better performances 
in terms of electromagnetic torque, rotational speed, and THD of line current.

While from the diagnoses standpoint, a failure in one of the machine’s components can stop the 
whole production process, resulting in significant financial losses [17]. The faults within the ASMs 
can be classified into three groups: electrical faults in the stator (38%), electrical faults in the rotor 
(10%), and bearing faults (BFs) (40%); the other faults represent about 12% [18].

Both the manufacturers and the users of electrical machines have already installed basic pro-
tections against overcurrents, overvoltages, isolation failures, etc. While the tasks performed 
by these protections were not always easy, they were critical. As the sophistication of these 
machines’ tasks increased, so did the requirement for enhancements in fault detection. From this 
review, bearing faults (BF) is the most frequent fault in ASM. The early stages of these issues are 
usually identified and diagnosed via vibration monitoring. However, this method is extremely 
expensive and challenging since the interpretation of vibration signals calls for specialist equip-
ment, specialized knowledge, and a complete understanding of certain mechanics [19–21]. The 
most widely used technique for identifying BFs as an alternative to mechanical techniques is 
motor current signature analysis (MCSA). This is so because currents are simple to measure and 
can reveal a variety of faults.

By using the Fast Fourier Transform (FFT), MCSA may provide specialized spectra that can be 
used to identify certain ASM faults [22–24]. But for the researchers, the non-stationarity of the 
current signal and the continuous variation of the rotational speed represent a great challenge. 
If the ASM drives use an inverter or a closed-loop control such as a DTC, the current is no longer 
constant, thus making it more challenging to use an FFT that is sufficient to process it.

To address the problem of non-stationary signals, advanced signal processing methods present a 
more effective solution. Several techniques, including the wavelet transform (WT) [25] or discrete 
wavelet transform (DWT) [26], the Hilbert transform (HT) [20, 25, 27, 28], and the short-term fourier 
transform (STFT) [14], are used to diagnose faults in electrical equipment with non-stationary signals.

The HT-based approach has proven to be effective for both vibration signal analysis and current 
signal analysis [19]. The main key features of HT benefits of this transform are its low sensitivity to 
fluctuations in load torque and the simplicity of its mathematical model [10, 29]. In ref. [10], the 
HT was used for broken rotor bars (BRBs) detection in an ASM controlled by DTC. Additionally, HT 
was preferred by the authors for the diagnosis of BRBs in ASM as concluded in ref. [24]. A hybrid 
technique based on DWT and HT is developed in ref. [2] for identifying and categorizing differ-
ent ASM faults and is also used in combination with FFT for the detection of induction machine 
outer race BF in ref. [30]. This technique is effective in identifying faults in the ASMs fed by invert-
ers where the line current is non-stationarity. Therefore, machine control must be considered 
when selecting diagnostic procedures. For the BFs’ accuracy and diagnostic effectiveness, the 
rotational speed signal quality is crucial as the rotational frequency has a significant influence 
on the harmonic spectra [31]. Even in the presence of BFs or minor load torque fluctuations, the 
control must function effectively and robustly, following the reference speed.

The aim of this work is to explore the use of FL-DTC for the diagnosis of BFs ASMs, and its pri-
mary role in improving its performance. The process involves reducing the amplitudes of electric 
current harmonics, including those caused by BFs. However, the ratio of the amplitudes of the 
BF spectrum to the fundamental frequency increases, allowing more accurate detection of BFs 
from the current spectrum, particularly when the fault frequency is higher than the fundamental. 

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?

• Asynchronous motors (ASM) are 
commonly used in industrial applications 
that require precise speed control.

• Several speed control methods such as 
Fuzzy Logic - Direct Torque Controller 
(FL-DTC) have been proposed to control 
the ASM speed by precisely following the 
desired reference speed.

• Bearing failure (BF) is a leading 
cause of ASM failures, accounting for 
approximately 40% of all failures.

• Speed   variations affect the stator current 
frequency, which can be used to detect BFs.

• Closed-loop controls such as DTC cause 
current non-stationarity, which calls for 
the use of advanced signal processing 
methods such as Hilbert Transform to 
diagnose broken rotor bars.

• Enhanced DTC control by the neural 
network with the adoption of Hilbert 
Transform is also effective in helping to 
diagnose BFs.

WHAT THIS STUDY ADDS ON THIS 
TOPIC?

• This study introduces a combination 
of Hilbert transform (HT) with FL-DTC 
method for BF detection in ASM. It is 
emphasized that FL-DTC control not only 
improves efficiency by reducing current 
harmonics, torque and speed waves. But 
it also expands the effect of BF, making 
detection easier. It demonstrates the ability 
of this integrated approach to optimize 
ASM and facilitate bearing fault diagnosis. 
especially in the phase of confirmation 
and precise localization of BF. Also, 
even if a high-performance control can 
compensate for the effect of faults on the 
current, but according to studies it can 
also better distinguish spectra indicating 
mechanical-type faults such as BFs. 
Essentially, the added contributions are 
the detection of the three bearing faults 
on the MAS (inner ring, outer ring, ball), 
taking advantage of the presence of DTC 
control enhanced by fuzzy logic and the 
Hilbert transform.
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This distinction in the spectrum can help to improve the accuracy of 
future intelligent classification of BFs based on electrical current data.

In addition, the HT is designed to extract the frequency spectra gen-
erated by the BFs independently of the variation in supply frequency, 
resulting directly in fault location. The following is a summary of this 
paper’s important contributions:

• Create an FL-DTC control to minimize rotation speed deviations 
and to follow the reference speed, whose value allows the extrac-
tion of the BFs’ characteristic frequencies.

• Torque ripples are reduced by more than half when compared to 
traditional DTC.

• A comparison of results obtained using direct fed (DF), traditional 
DTC, and FL-DTC.

• Spectral analysis of the stator current envelope (SSCE) of the ASM 
by HT and FFT.

• Diagnosis of the three types of BFs.

II. ASYNCHRONOUS MACHINE MODEL

In this study, the BFs modeling is implemented in the mechanical 
part, which concerns the load torque. Therefore, a basic model of the 
ASM is useful. The ASM’s nonlinear system, which is characterized by 
electromagnetic and mechanical parameters, may be represented 
by the following equations [28]:

• Electrical equations:
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• Magnetic equations:
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• Mechanical equations:
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iii. bearing faults

A bearing is used to guarantee the rotational guidance for shafts in 
rotating machinery and prevent any other movement except rota-
tion. Ball bearings are the most standard, as shown in Fig. 1. They 
consist of the balls (Ball), inner race (IR), outer race (OR), and the cage 
or train. Electrical machines usually have two bearings by which the 
ends of the rotor shaft are held.

Bearing faults generally cause vibrations, increases in the sound 
level emitted by the machine, and rotor eccentricity, which results in 
a magnetic attraction that is not balanced. Additionally, they cause 
harmonics in the current signal and oscillations in the load torque of 
the machine [9, 20, 25, 31].

Bearing condition monitoring techniques based on current analysis 
or vibration analysis are developed to detect and locate the three 
specific fault frequencies, namely IR, OR, and ball [27, 30].

Bearing dimensions and machine rotation frequency determine the 
values of the characteristic frequencies [22, 27, 30].

• Frequency of bearing outer race fault:
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• Frequency of bearing ball fault:
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The corresponding frequency of the BFs is obtained by the following 
equation [27, 32, 33]:

f f k fd s c  =  .±  (7)

Fig. 1. Composition of a ball bearing and location of the bearing faults.
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k: Harmonic’s order.

The BFs cause oscillations in the load torque, which allows us to 
model them by (8), where a constant component is expressed by 
amplitude T0 and BF-related torque oscillations by amplitude Tc and 
frequency fc are used to express the load torque [34].

T t T T f tr c c( ) .cos( . )� �0 2�  (8)

IV. DIRECT TORQUE CONTROL BASED ON FUZZY LOGIC

Direct torque control is one of the most popular controls in the 
industry [10] because of its improved torque dynamics and robust-
ness. Still, its main disadvantage is the torque and flux ripples caused 
by hysteresis comparators [14], which cause audible noise and 
mechanical vibrations that reduce machine life [9].

To overcome these problems and improve the performance of this 
control, researchers are incorporating AI into their work to design a 
new, more robust, and better-performing intelligent DTC strategy. 
The replacement of hysteresis comparators and switching tables by 
FL-based controllers are among the solutions adopted in this regard 
in several research works [14–16].

A. Classical direct torque control
Direct torque control has become very popular and was initially 
introduced in the 1980s by Depenbrock and Takahashi [7, 8]. This 
strategy is based on the use of hysteresis comparators and control 
quantity estimates of electromagnetic torque and stator flux. The 

estimates are determined from the voltages and electric currents 
of the ASM lines (Eqs. 9 and 10), with no need for flux sensors posi-
tioned in the machine air gap [9, 11].

• The estimated flux:
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• The estimated torque:

T  = p. i   is -est s s -est sm est� �� �� �� � � �  (10)

The block diagram of the classical DTC and the diagnostic flowchart 
diagram are shown in Fig. 2.

1) Hysteresis comparator
The two-level hysteresis comparator in Fig. 3a delimits the flux vec-
tor extremity. The comparator, which concerns the couple with three 
levels of hysteresis shown in Fig. 3b, is designed to control the motor’s 
electromagnetic torque in both senses of rotation by developing a 
positive or negative torque. Fig. 4c shows a circular ring where the 
flux vectors are bounded by a band known as the hysteresis band.

Fig. 4 Illustrates the fuzzy logic-based direct torque control struc-
ture for an ASM powered via a voltage inverter. A block estimation 

Fig. 2. Direct torque control for ASM and fault diagnosis block.
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of the stator torque and flux is done by knowing the imposed 
voltage vector and the measured stator currents; this estimation 
is based on the direct calculation method. The rotation speed is 
compared to its reference, and a Proportional-Integral-Derivative 
(PID) controller regulates the error to generate the electromagnetic 
torque reference.

2) Switching table
The voltage vectors are calculated from the sectors and variations of 
flux and electromagnetic torque, allowing the flux and torque set-
points to be followed [11, 12]. Table I, the switching table, shows the 
procedure for selecting the appropriate voltage vector.

B. Fuzzy logic-based direct torque control
Fuzzy logic, generally known as uncertainty treatment, is considered 
one of the AI classes [35, 36]. It consists of studying and represent-
ing imprecise knowledge and approximate reasoning. It was initially 
known as a mathematical branch complementary to the theory of 
classical logic [37, 38].

Currently, FL has found its place in the control field for a wide range of 
systems, particularly in electrical engineering. It allows the synthesis 

of controllers that generate efficient control laws without knowing 
precisely the process to be controlled [39]. This controller type is not 
based on mathematical expressions but on inferences with different 
rules using linguistic variables.

The application of FL to direct torque control improves the per-
formance and robustness of the control system. Therefore, a FL 
controller is used instead of traditional switchboard and hysteresis 
controllers to improve the system’s performance and reduce the 
electromagnetic flux and torque ripples.

In this system, the inputs to the FL controller are the flux error, the 
torque error, and the flux angle [35].

• The flux error:

� � � ��s s ref s s� � �� ˘ �  (11)

• The torque error:

�T m m ref m mT T T� � ��
˘ �  (12)

The variations between a quantity determined using data from the 
control and the predicted quantity make up these error functions. 
To improve control while utilizing the fewest possible relations, each 
input is split into a specific number of fuzzy sets.

Fuzzification, using a rules table to decide the output depending on 
inputs, and defuzzification are the typical three processes involved 
in FL [7].

The typical DTC switching table requires that the control rules be set 
based on the input and output variables. Fig. 5 shows the FL control-
ler’s organizational structure.

By establishing membership functions for each input variable, the 
fuzzification process aims to convert input variables into linguistic 
variables.

The flux error is shown as the first input variable in Fig. 6a, and its 
domain of discourse is divided into two fuzzy sets:

(i) The flux error is positive (P); (ii) the flux error is negative (N), and 
the membership functions used for both fuzzy sets are trapezoidal. 
The electromagnetic torque error is the second input in Fig. 6b.

Three fuzzy sets comprise its discourse universe: torque error is one 
of three different values: positive (P), zero (Z), and negative (N). It is 
decided to use trapezoidal membership functions for the two fuzzy 
sets (P) and (N).

While the fuzzy set’s triangle membership function is selected (Z).

The stator flux position is the third input variable. Fig. 6c depicts the 
membership functions of the six fuzzy sets (numbered 1–6) that 
comprise the universe of discourse for this variable.

The selected membership function is triangular for all angles θi.

The output variable is separated into two fuzzy sets and three sub-
outputs that represent the three switching values (S1, S2, and S3) of 
the two-level inverter switches (zero and one).

In Fig. 7, the “zero” and “one” states of the output are represented by 
the blue and yellow horizontal surfaces, respectively.

Fig. 3. Hysteresis comparators: (a) Two-level flux. (b) Three-level 
torque. (c) Flow trajectory.
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Table II shows the fuzzy relationships for calculating the controller 
output variables depending on the input variables:

The control algorithm has 36 relations and uses Mamdani’s tech-
nique, which is based on the Max–Min decision and has the 
advantages of being simple to implement and producing good 
results.

The control rules in terms of input and output variables are expressed 
as follows:

If (θ is X) and (εTm is Y) and (ε𝜓 is Z) then (V is Vi). Where the fuzzy set of 
input variables X, Y, and Z, as well as the fuzzy set of output variables, 
is expressed by Vi (S1, S2, S3).

Fig. 4. Block diagram of a FL-DTC control for ASM and the fault diagnosis block

Fig. 5. Illustration of the internal steps of the fuzzy switching table.

TABLE I. SWITCHING TABLE

 Sectors

H (Ψs) H (T) S1 S2 S3 S4 S5 S6

1 1 v2 v3 v4 v5 v6 v1

0 v7 v0 v7 v0 v7 v0

-1 v6 v1 v2 v3 v4 v5

0 1 v3 v4 v5 v6 v1 v2

0 v0 v7 v0 v7 v0 v7

-1 v5 v6 v1 v2 v3 v4
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V. HILBERT TRANSFORM

Currently, MCSA remains one of the most important techniques, 
often used in conjunction with other topologies for detecting 
faults in ASM. According to ref. [40], there are two main families 
of diagnostic procedures, model-based methods and the model-
free methods. In all of these procedures, MCSA is used at the initial 
stage.

Fault diagnosis in ASM using model-based techniques requires prior 
knowledge of the system. It also necessitates an initial hypothesis 
about the operating conditions to accurately represent the system’s 
performance. The signals generated by mathematical models assist 
in detecting and identifying faults occurring in the ASM.

Moreover, model-based techniques are primarily dependent on 
an accurate dynamic model of the system, which equips them 
to detect unforeseen faults. These approaches leverage “distur-
bances” or “residuals,” which refer to the differences between the 

outputs of the real physical system and its corresponding math-
ematical model.

On the other hand, signal-based approaches do not necessarily 
require a specific model of the system. They rely solely on the signals 
obtained at key points of interest, typically the input and output ter-
minals. All analyses are conducted either through signal interpreta-
tion (by comparing with an ideal case) or via expert systems, which 
primarily employ pattern recognition techniques. For the sake of 
simplicity, signal-based approaches are more commonly used today 
due to their ease of implementation and the fact that most are non-
invasive. Fault analysis for ASMs using this approach is conducted in 
both stationary and transient states.

As mentioned in the introduction, the non-stationarity of the current 
waveform reduces the fault estimation accuracy when employing 
FFT-based analysis. That opens the door for the researchers to add 
other diagnostic methods based on the advanced signal analysis 
tools in the MCSA framework, such as HT [10, 11, 41].

Fig. 6. Membership function of (a) flux linkage error, (b) electromagnetic torque error, and (c) flux position.

Fig. 7. Membership functions for the output variables: (a) output S1, (b) output S2, and (c) output S3.

TABLE II. SET OF FUZZY RELATIONS

ε𝜓 εTm θ1 θ2 θ3 θ4 θ5 θ6

N N v5(001) v6(101) v1(100) v2(110) v3(010) v4(011)

N Z v0(000) v7(111) v0(000) v7(111) v0(000) v7(111)

N P v3(010) v4(011) v5(001) v6(101) v1(100) v2(110)

P N v6(101) v1(100) v2(110) v3(010) v4(011) v5(001)

P Z v7(111) v0(000) v7(111) v0(000) v7(111) v0(000)

P P v2(110) v3(010) v4(011) v5 (001) v6(101) v1(100)
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In addition to offering a high degree of resolution, HT is one of the 
most advanced signal analysis techniques for machine fault diagnos-
tics [11, 40, 42].

The HT of the actual signal x(t) is the result of the convolution of this 
signal and the function 1/t. The mathematical expression of HT is 
given by [33]:

X t
t

x t
x t
t

d( ) * ( )
( )

� �
���

��

�1 1
� � �

�  (13)

Since the original signal and its HT are orthogonal, HT is a signal with 
the same amplitude as the actual signal but with a frequency com-
ponent that is 90° out of phase with the original signal. As a result, 
sinusoidal functions become cosinusoidal and vice versa as depicted 
in Fig. 8 [33, 40].

The HT instantaneous amplitude a(t) and phase φ(t) of the HT can be 
defined as follows [10, 40]:

• The instantaneous amplitude:

a t x t X t( ) ( ) ( )� �2 2  (14)

• The phase:

�( )
( )
( )

tant
X t
x t

� �
�
�

�
�
�

�1  (15)

The analytical or envelope signal for the HT is shown in Fig. 9.

As a result of the fault within the motor and the lack of a controller, 
the stator current envelope signal is not distorted and has almost no 
ripples, as depicted in Fig. 9.

DC components are eliminated from the envelope signal in the fre-
quency domain, while harmonic components are presented; HT in 
the frequency domain is demonstrated by calculation in refs. [24, 
33]. Fig. 10 shows the impact of a fault in the IR of a bearing on the 
frequency content of the stator current and its envelope. The instan-
taneous frequencies of the harmonic spectra related to the BFs are 
given directly by the spectrum of the stator current envelope (SSCE). 
In contrast, for the current spectrum, these frequencies are related 
to the supply frequency, and if there is a variation of this supply fre-
quency, as in the case of the use of an inverter, this spectrum of the 
current becomes useless. This clearly demonstrates HT’s interest. In 
the following part, the simulation results in the frequency domain 
will be limited to the analysis of the current envelope, by which the 
instantaneous frequencies will be extracted and interpreted with-
out having recourse to the calculation as a function of the supply 
frequency.

VI. SIMULATION RESULTS AND DISCUSSIONS

A Simulink model for the ASM has been constructed for healthy 
and BF conditions with FL-DTC. Two controller approaches, DF 
and conventional DTC, are explored in order to demonstrate the 
performance of the suggested system along with the proposed 
controller. The simulation time chosen is 10 s which is sufficient 
to show the behavior of the machine while using an appropriate 
sampling frequency of 10 kHz. The motor used in this study is ASM 
1.5 KW, whose parameters are given in Table VI in the appendix. 
The characteristics for the bearing reference 62052RSC3 are shown 
in Table VII, while the parameters calculated to identify the char-
acteristic frequencies of BFs are shown in Table VIII. The oscillatory 
components caused by BFs are simulated by increasing the load 
torque of the ASM with an amplitude of 2N.m and a frequency of 
fc. In all test cases, the ASM is started at no load, then at t = 4 s, 
a load torque of (Tref = 4 N·m), which is 40% of the nominal load 
torque (Tn = 10 N·m) is applied. Initially, the impact of the BFs on 
the mechanical performance of the ASM in the form of ripples in 
the electromagnetic torque and rotational speed is investigated. 
Then, this impact was studied by implementing MCSA based on 
two points. The first one is the extraction of the SSCE, which indi-
cates the characteristic frequencies of the BFs by the FFT of the 

Fig. 8. Hilbert transform of an ASM stator phase current.

Fig. 9. ASM stator current and its envelope without control (a) and with a direct torque control (b).
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stator current envelope. To calculate the effect of the BFs on the 
stator current, the second step is to determine the THD of the line 
current.

It is noteworthy to carry out this simulation for an ASM fed by DF 
before implementing the classical DTC and the intelligent control to 
show the effect of these control methods on the waveforms.

A. Simulation results for direct flux of the ASM
In this case, the effect of the BF on the mechanical and electrical 
characteristics will be examined by comparing them to the healthy 
operation while DF. The profile of the mechanical characteristics 
(load torque and speed) and electrical characteristics (motor cur-
rent) are unaffected by the ASM’s healthy operation, as shown in 
Fig. 11. The speed is 1471 rpm at no load and 1375 rpm when the 
load torque is increased at 4 s as depicted in Fig. 11a. The current, 
speed, and torque signals are normal and show no ripple, so the THD 
in this ideal case is zero.

The BFs events in the form of some added ripples impact the 
mechanical and electrical characteristics. The three BR faults, includ-
ing IR, OR, and Ball Torque, are simulated in this case. The effects of 
these three BFs on both mechanical and electrical characteristics will 
be studied. According to Fig. 12, the ripples in torque and speed are 
seen for each of the three BFs.

Although the THD is quite little (between 0.03% and 0.09%), the pro-
file of the ASM stator current shown in Fig. 13 illustrates the effect of 
these BFs on the electrical characteristics in the harmonic spectrum 
in the SSCE and THD.

From these results, the bearing ball fault generates the largest rip-
ples in both the speed and electromagnetic torque with 0.85 rpm 
and 0.025 N·m respectively. The speed and torque of the two other 
BFs faults (IR and OR) have fewer ripples, with their ripple amplitudes 
not exceeding 0.5 rpm and 0.015 N·m, respectively. In the case of DF, 
the current THD in the case of BFs depends on the amplitude of the 

Fig. 10. Spectra of the stator current and its spectrum of the stator current envelope.

Fig. 11. Mechanical and electrical performances in the healthy state of the ASM with DF: (a) rotation speed, (b) electromagnetic torque, (c) stator 
current total harmonic distortion, and (d) spectrum of the stator current envelope.
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ripples of the torque and speed magnitudes. As a result, the bearing 
ball fault causes a higher THD (0.09%), compared with (0.03% and 
0.05%, respectively) in the case of the other two BFs (IR and OR).

The rotational frequency and the bearing dimension have the most 
effects on the characteristic frequencies of BFs, which is confirmed in 
(3–5). Each BF has two spectra: one at zero load and the other with 
a load on the left and right side of Fig. 13, respectively. The spec-
tra change positions permanently when the supply voltage or load 
torque fluctuates, making the diagnostic more challenging and 
inconclusive.

Fig. 14a–14c shows that in order to determine the severity of the 
fault, it is crucial to compare the amplitudes related to the BFs to 
those of the fundamentals. A ratio between the amplitudes of the 
BFs and the fundamental of SSCE (rdf) may be used to assess this 
comparison as

r
Mag

Mag
df

BFs

fundamental
=  (16)

The value of rdf is 0.01, 0.03, and 0.04, respectively, for the three 
defects IR, OR, and Ball.

Fig. 12. Mechanical performances in the faulty state of the ASM with direct flux_ rotation speed: (a) inner race, (b) outer race, (c) Ball.Torque: (d) 
inner race, (e) outer race, and (f ) ball.

Fig. 13. Electrical performances in the faulty state of the ASM with direct flux_ spectrum of the stator current envelope of the faulty ASM: (a) 
Inner race. (b) Outer race. (c) Ball. Total hormonic distortion of the stator current: (d) Inner race. (e) Outer race. (f ) Ball.
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This showed that the amplitudes of the BF spectra are small in front 
of the fundamental, particularly in the concrete case where the 
network includes numerous harmonics, making it difficult to distin-
guish between different spectra. In the literature, most of the works 
have recourse to vibratory analysis in the case of mechanical defects 
because of the MCSA constraints.

The MCSA has difficulties in identifying the BFs when the DF directly 
provides the ASM with a continual change in speed, and the BFs 
themselves produce changes in the ASM rotation speed. That calls 
for the identification of momentaneous frequencies unrelated to the 
fundamental frequency.

It is also encouraging to note from these results that the severity of 
the fault is dependent on the bearing defective element and its char-
acteristic frequency. This correlation is shown in Table III.

According to Table VI, the rdf is inversely proportional to the char-
acteristic BF’s frequency, so this frequency depends mainly on the 
rotation speed. In the confirmation phase of the presence of BFs, a 
test at a fixed speed while keeping a reference value should be car-
ried out in order to effectively exhibit the spectra showing their exis-
tence by increasing the rdf ratio. Then the machine must be isolated 
from other harmonic sources if the DF is harmonious. Effective and 
dependable controls can mitigate this drwaback.

First, these controls, which have an inverter, make sure that the ASM 
and DF are kept apart. Only the inverter’s harmonics are present in 
this case, and the HT utilized in this study allows for their distinction. 
Also, they permit the desired speed to be maintained, which contrib-
utes to the accurate localization of the BFs.

The remaining simulations involve using a FL-DTC to execute the 
ASM and comparing its performance to that of a traditional DTC to 
demonstrate its effectivness.

B. Simulation results for the controlled healthy ASM
To display the spectrum produced by BFs, a reference speed of 1200 
rpm was used. This speed is consistent for all BF types and their 
severity. In this case, the bearing’s characteristic frequencies are cal-
culed according to (4), (5), and (6):

f Hz f Hz f HzIR OR Ball= = =108 6 71 4 46 4. ; . ; .

Figs. 14 and 15 show the mechanical and electrical features of the 
simulation results when DTC and FL-DTC control the ASM. These con-
trols ensure a constant reference speed of 1200 rpm at time t = 1 s.

Fig. 14a shows the motor speed profile that is compatible with the 
reference speed in a healthy state, with some overshoots that cease 
at 0.5 rpm for DTC and 0.17 rpm for FL-DTC. Additionally, the FL-DTC 
control results in a torque ripple amplitude of 0.8 N·m compared to 
1.7 Nm for the traditional DTC control, demonstrating the influence 
of the proposed FL-DTC on the mechanical performance of the ASM. 
The conventional DTC produces large harmonic amplitudes in the 
frequency range of 150–200 Hz, as depicted in Fig. 15a. When using 
the FL-DTC, spectral noise is practically eliminated, as seen in Fig. 
15b.

The suggested FL-DTC approach is more effective than the DTC 
method, as shown in Fig. 16a and 16b, where the THD for the cur-
rent is 15.23% when using DTC and 6.55% when using the proposed 
FL-DTC method. This intelligent control aids in filtering the signal 
that has to be analyzed since, in the context of the MCSA’s diagnos-
tic, it corresponds to a drop of around 60%.

C. Simulation results for controlled faulty ASM
In this case, the efficacy of the suggested FL-DTC will be assessed, 
and its performance will be compared to DTC when the machine is 
working under three different BFs scenarios.

1) Inner race fault of the ASM with direct torque control and fuzzy 
logic-direct torque control
The IR fault causes some in the speed, torque, and current profiles, 
as depicted in Figs. 18–20. When compared to the DTC, as shown in 
Fig. 17a and 17b, the suggested FL-DTC was successful in tracking 
the reference speed and the reference torque with reduced ripples. 
According to Figs. 18 and 19, employing FC-DTC and DTC, respec-
tively, the THD decreased to 6.31% compared to 15.2%.

2) Outer race fault of the ASM with direct torque control and fuzzy 
logic-direct torque control
The proposed FL-DTC succeeded in tracking both the reference 
speed and the reference torque with fewer ripples when com-
pared to the DTC as depicted in Fig. 20; also, the FL-DTC control 

Fig. 14. Mechanical performances of a healthy ASM with direct torque control and fuzzy logic-direct torque control: (a) Speed. (b) Torque.

TABLE III. IMPACT OF THE BFS’S FREQUENCY ON THE ELECTRICAL AND 
MECHANICAL QUANTITIES

BFs fc (Hz)
Magnitude of Tm 

Ripples (N·m)
Magnitude of nr 

Ripples (rpm) THD% rdf

IR 120.2 0.01 0.3 0.03 0.01

OR 79 0.015 0.55 0.05 0.03

Ball 51.4 0.025 0.85 0.09 0.04

THD, total hormonic distortion.
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decreases this THD to 6.55% compared to 15.37% as illustrated in 
Figs. 21 and 22.

3) Ball bearing fault of the ASM with direct torque control and fuzzy 
logic-direct torque control
The proposed FL-DTC succeeded in tracking both reference speed 
and torque with less ripple than the DTC, as shown in Fig. 23. In 

addition, FL-DTC reduced THD to 6.88% compared to 15.03%, as 
shown in Figs. 24 and 25.

D. Discussion Summary
1) Mechanical performances
According to Figs. 17, 20, and 23, BFs cause amplitude ripples in 
the speed signature of about 1.5 rpm when the ASM is controlled 

Fig. 15. Spectrum of the stator current envelope of a healthy ASM.

Fig. 16. THD of the stator current of a healthy ASM with _ (a) direct torque control and (b) fuzzy logic-direct torque control.

Fig. 17. Mechanical performances with IR fault of the ASM with direct torque control and fuzzy logic-direct torque control: (a) Speed. (b) Torque.
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by conventional DTC, and amplitude ripples in the electromagnetic 
torque exceed 1.75 N·m when FL-DTC controls the ASM. These values 
become 1.3 rpm and 0.85 N·m for speed and torque, respectively, 
when FL-DTC controls the motor.

2) Electrical performances
In this diagnostic context, the primary performance of the FL-DTC 
control is the distinction of spectra related to BFs, rendering them 
more precise than those caused by the control (Figs. 15, 18, 21, and 

Fig. 18. Spectrum of the stator current envelope with IR fault in the ASM (Top) with (a) zoom of SSEDTC-IR and (b) zoom of SSE FL-DTC-IR.

Fig. 20. Mechanical performances with outer race fault of the ASM with direct torque control and fuzzy logic-direct torque control: (a) Speed. 
(b) Torque.

Fig. 19. THD of the stator current with IR fault in the ASM with (a) direct torque control and (b) fuzzy logic-direct torque control.
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Fig. 22. Total hormonic distortion of the stator current with outer race fault in the ASM with (a) direct torque control and (b) fuzzy logic-direct 
torque control.

Fig. 21. Spectrum of the stator current envelope with outer race fault in the ASM.

Fig. 23. Mechanical performances with Ball bearing fault of the ASM with direct torque control and fuzzy logic-direct torque control: (a) Speed. 
(b) Torque.
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24); the ratio rdf measures this performance. In fact, even if these 
spectra are clearly distinguished, the use of FL-DTC makes them 
more evident by reducing spectral noise caused by the control and 
increasing the amplitudes of the dependent spectra of BFs, as shown 
in Fig. 22 for the OR fault, where this ratio rdf is 1.10 in the case of clas-
sical DTC and 2.08 in the case of FL-DTC.

Moreover, in Figs. 19, 22 and 25, which show the THD of the current in 
the case of BFs, the values of this rate for the conventional DTC arrive 
at 15.37% and 6.88% for the FL-DTC; this proves that for diagnostic 
purposes, the THD is not conclusive in the presence of the controls, 
as these values are very close for the three BFs (IR, OR, and Ball). Also, 
the harmonics proportion caused by the BFs is significantly inferior 
to those caused by the two controls (0.09% in the DF case, 15.37% in 
the DTC case, and 6.88% in the FL-DTC case).

The summary of the performance of FL-DTC and DTC during the 
three BFs is summarized in Table IV.

The benefits of the chosen approach are shown in Table VI, where 
it is highly evident how the FL-DTC control affects the mechanical 
performance of speed and electromagnetic torque in a healthy con-
dition. In fact, the speed fluctuations are nearly zero (0.17 Rpm) com-
pared to 0.5 Rpm when traditional DTC is used, significantly reducing 
torque ripples (0.8 N·m for FL-DTC vs. 1.7 N·m for classic DTC).

The FL-DTC control limits the amplitudes of the torque and speed 
variations to 0.85 N·m and 1.3 rpm successively in the case of BFs in 
the bearing ball, as compared to 1.75 N·m and 1.5 rpm in the case of 
traditional DTC, i.e. a reduction of 13% in the amplitudes of the speed 
variations compared to the traditional DTC control, which is 0.025 
N·m and 0.85 rpm in the case of DF, i.e. a reduction in the amplitudes 
of speed variation of 13% compared to the traditional DTC control. 
In the cases of the IR and OR faults, the amplitudes of speed varia-
tions are reduced by 25% and 23.5%, respectively, when compared 
to traditional DTC. Similarly, the amplitudes of the torque ripples in 
the presence of these three BFs (IR, OR, and Ball) are decreased by 

Fig. 24. Spectrum of the stator current envelope with Ball bearing fault in the ASM.

Fig. 25. THD of the stator current with Ball bearing fault in the ASM with (a) direct torque control and (b) fuzzy logic-direct torque control.
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61.25%, 53.12%, and 51.42%, respectively, with FL-DTC compared to 
conventional DTC.

Furthermore, in the case of DF, the THD values clearly show the 
impact of each BF on the stator current; however, in the presence of 
both controls, these values do not give any useful information about 
the faults in the ASM.

The values of the rdf ratio are the most essential parameter because 
they illustrate the advantage of FL-DTC in distinguishing the spectra 
indicating BFs, especially for the two BFs, IR and OR (0.64 for the clas-
sical DTC against 1.15 for the FL-DTC). Also, for the Ball fault, whose 

characteristic frequency is very close to the voltage frequency at 
the output of the inverter, this ratio is almost the same (1.2 for the 
classical DTC against 1.1 for the FL-DTC) Indeed, for the results to 
be conclusive, it is better to choose reference speeds that result in 
characteristic frequencies sufficiently higher than the fundamental 
frequency.

3) Comparison with some recent studies
In this section, the Table V shows a brief comparison is made with 
other recent works which take into account the control in the context 
of fault diagnosis in ASMs. the criteria for this comparison concern 
the type of fault, the control, the signal processing method adopted 

TABLE IV. COMPARISON OF THE PERFORMANCE IN A HEALTHY STATE AND IN THE PRESENCE OF BEARING FAULTS.

Variable Analyzed Control Technique Control Performances Etat Sain IR BF OR BF Ball BF

Current Open loop DF rdf 0 0.01 0.03 0.04

Closed loop DTC 0 0.64 1.1 1.20

Closed loop FL-DTC 0 1.15 2.08 1.1

Current Open loop DF THD (%) 0 0.03 0.05 0.09

Closed loop DTC 15.23 15.20 15.37 15.03

Closed loop FL-DTC 6.55 6.31 6.55 6.88

Torque Open loop DF Torque ripples (N·m) 0 0.01 0.015 0.025

Closed loop DTC 1.7 1.6 1.6 1.75

Closed loop FL-DTC 0.8 0.62 0.75 0.85

Speed Open loop DF Overshoot (rpm) 0 0.3 0.5 0.85

Closed loop DTC 0.5 0.8 0.85 1.5

Closed loop FL-DTC 0.17 0.6 0.65 1.3

BF, bearing faults; DF, direct fed; DTC, direct torque control; FL-DTC, fuzzy logic-direct torque control; IR, inner race; OR, outer race; THD, total harmonic distortion.

TABLE V. COMPARISON WITH SOME OTHERS RECENT STUDIES

Studies ASM Fault Control Variable Method Control (Contributor or Disturber)

[2] BRB DTC Current DWT Disturber

[3] BRB IFOC Current ANN and HT Disturber

[4] BRB FOC Current DWT Disturber

[5] BRB FOC Current FFT Disturber

[12] Short-circuit Frequency converter Vibration CWT and CNN Disturber

[40] BFs ANN-DTC Current HT and FFT Contributor

[43] Short-circuit IFOC Current, torque, and speed RMS, Average,... Disturber

[44] BRB—short-circuit Frequency converter vibration ANNs Disturber

[45] BRB—short-circuit IFOC Torque DWT and ANN Disturber

This study BFs FL-DTC Stator current HT and FFT Contributor

ANN, artificial neural networks; BF, bearing faults; BRB, broken rotor bar; DTC, direct torque control; DWT, discrete wavelet transform; FFT, fast fourier transform; 
FL-DTC, fuzzy logic-direct torque control; HT, Hilbert transform; IFOC, indirect field oriented control. CWT, continuous wavelet transform; CNN, convolutional neural 
network; FOC, field-oriented control.



Electrica 2025; 25: 1-20
El Idrissi. Asynchronous Motor Bearing Fault Diagnosis and Speed Control

17

and whether the control represents a contributing or disturbing ele-
ment for fault diagnosis in this type of machine.

This comparison, presented in Table VI, shows that the majority of 
studies in the literature that consider control focus on BRBs faults 
and treat the control as a disturbing element, which leads them to 
adopt advanced signal processing and/or intelligent methods. The 
authors in ref. [40] addresses BFs and utilizes the ANN-DTC control to 
aid in the diagnosis. In ref. [46], another recent study presents a com-
parison between ANN-DTC and FL-DTC in terms of their contribution 
to the diagnosis of BFs.

VII. CONCLUSION

This research employs a method of diagnosing BFs based on MCSA, 
which was partnered with a HT and an intelligent speed control 
FL-DTC. The purpose of this research is to design a control that is effi-
cient and has the least amount of THD, as well as maintain the rota-
tional speed at a specific reference value; this will allow the analysis 
of the stator’s current envelope in the domain to be employed to 
extract the instantaneous frequencies and to differentiate the spec-
trum of BFs from the others, this will increase the effectiveness of 
diagnostics in ASMs that are controlled by closed-loop systems.

First, the parts that oscillate in the BFs were recreated. The FL-DTC 
protocol is then employed to control the ASM. Subsequently, a time 
frequency domain analysis of the current profile was conducted. The 
results of the simulation using MATLAB/Simulink, as well as their 
understanding, are listed below:

1. The diagnosis of LFs is accurate thanks to the control of the 
speed of the ASM by the FL-DTC and the reduction in THD com-
pared with conventional DTC of more than 50%, in all cases.

2. The FL-DTC method reduces the amplitude of the harmonic 
spectrum produced by the control, and better distinguishes 
harmonics from BFs. The values of the rdf ratio illustrate the 
advantage of FL-DTC in distinguishing the spectra indicating 
BFs, especially for the two BFs, IR and OR (0.64 for the classical 
DTC against 1.15 for the FL-DTC).

3. Because it is less sensitive to alterations in load rotation, enve-
lope current analysis using HT and FFT is very useful for recog-
nising mechanical faults. In this way, the specific frequencies in 
the spectrum that indicate faults (fIR, fOR, fball) are easily recogniz-
able and are not linked to the supply frequency, making it easier 
to identify BFs.

Future research could develop this work to test it experimentally in 
the presence of various electrical faults such as BRBs and mechanical 
faults such as BFs. Also, the processing of ASM current and noise data 
instead of signal processing would be interesting and would make it 
possible to carry out intelligent classification of the various faults in 
rotating machines.
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APPENDIX

Nomenclatures

isα, isβ, irα, and irβ Stator currents and rotor currents in (α, β) plan

vsα, vsβ, Stator voltages and rotor voltages in (α, β ) plan

Ψsα, Ψsβ, Ψrα, and Ψrβ Stator fluxes and rotor fluxes in (α, β) plan

Lm Mutual inductance

Lf Leakage inductance

Rs, Rr Stator resistors and rotor resistors

p Pairs of poles number

ωm Stator angular speed

Ω Rotation speed

Tm Electromagnetic torque

Tr Load torque

J Moment of inertia

f Viscous friction coefficient

nr Rotation speed

fr Rotation frequency

Dc Diameter of the cage

Db Diameter of a ball

Nb Number of balls

α Contact angle

fs Supply frequency

fc Specific frequency of the fault

fBall Specific frequency of bearing ball fault

fOR Specific frequency of outer race fault

fIR Specific frequency of inner race fault


