

ISTANBUL UNIVERSITY ENGINEERING FACULTY
JOURNAL OF ELECTRICAL & ELECTRONICS

YEAR
VOLUME
NUMBER

: 2002
: 2
: 1

(447-451)

ANALYSIS OF EFFICIENT FILE STRUCTURES FOR

PARTIAL-MATCH RETRIEVAL

KISMÝ-EÞLEME ERÝÞÝMÝ ÝÇÝN UYGUN DOSYA YAPILARININ
ANALÝZÝ

Oðuzhan ÖZTAÞ

Istanbul University, Engineering Faculty, Department of Computer Engineering
34850, Avcýlar, Ýstanbul, Turkey

e-mail: oguzhan@istanbul.edu.tr

ABSTRACT

In this study, the patial-match retrieval was examined. This access method is an access method to
needed for different purposes. It is mostly used for office automation. There are different methods for
these access type. We discussed here each method in general perspective and tried to obtain the best
result of them by comparing these technics eachother on a simple data model.

Key Words: Partial-Match Retrieval, Database, Index methods, Search

ÖZET

Yapýlan çalýþmada, Kýsmi-Eºleme Eriºimi incelenmiºtir. Bu eriºim yöntemi çeºitli amaçlar için ihtiyaç
duyulan bir eriþim yöntemidir. Özellikle ofis otomasyonunda çok kullanýlýr. Bu eriþim üzerine çeþitli
yöntemler vardýr. Biz burada bu yapýlardan her birini genel hatlarýyla anlatýp, bu teknikleri genel ve
basit bir yapý üzerinde birbiri ile mukayese ederek aralarýnda en iyi sonuç vereni saptamaya çalýþtýk.

Anahtar Kelimeler: Kýsmi-Eºleme Eriºimi, Çokluortam, Veri Tabaný, Ýndeks yapýlarý, Arama

1. INTRODUCTION
Partial-match retrieval is a problem involving
searching on secondary keys. A number of
approaches have been suggested. One way to
tackle the problem is to search the entire file in
response to each query, using a string or a
regular expression based pattern matching
algorithm. Although, regular expressions provide

considerable flexibility in posing queries,
particularly those concerned with text, the
requirement of having to search through the
entire file to answer each query limits this
technique to files that are not too large, unless
queries can be batched or special hardware is
available.

Analysis Of Efficient File Structures For Partial-Match Retrieval

Oðuzhan ÖZTAÞ

448
A number of alternative schemes have been
suggested to reduce the amount of information
that needs to be searched to answer a query. One
such class off schemes associates with each
record a short representative code word.
Searches can then be performed over the shorter
code word file to determine which records are
potential answers to a given query (or,
equivalently, to exclude records that cannot
possible be answers). Another comman approach
is to construct an inverted index list for each
field. A query can be answered by intersecting
the index lists for each specified field.

Some of the methods for partial-match retrieval
are shown in the following case:

1- Extendible Hashing
2- Indexed Descriptor Files
3- Signature Files

Review of Extendible Hashing and Its
Application to Partial Match Retrieval
The file is contained in a number of pages (or
buckets). There are two kinds of pages. Leaf
pages contain the records themselves and
directory pages contain the directory. The
directory is organized as a linear array of m=2a
entires where d is called the global depth of the
directory. m is always a power of two and
changes (doubled or halved) in response to the
changes in the volume of the file. Each entry in
the directory contains a pointer to a leaf page.
Each leaf page has a header that contains its local
depth d′. For a leaf page with local depth d′,
there are 2(d-d′) directory entires pointing to it.
Fig.1shows a file organization when d=3.

Associated with the file is a hashing function
h:KEYàD where KEY is the domain of the
primary key of the file, D={0, 1, 2, 3, …, 2dmax-
1}, and 2dmax is the maximum allowable size of
the directory. To locate or insert a record with
primary key value V, we calculate the pseudokey
V′ as the first d bits of h(V). V′ is then used as an
index into the directory. The indexed directory
entry contains a pointer to the leaf page where
the record will be found or inserted.

When inserting a record into a full leaf page with
local depth d′, d′< d, we split the bucket into two
buckets, distribute the records between the two
buckets according to their pseudokey values, and
then change the pointers in the appropriate

directory entries. However, when inserting a
record into a full leaf page with local depth d ′=d,
we double the size of the directory; global depth
d is then increased by one. Each directory entry
becomes two complement directory entries with
identical pointer values. Now the overflow leaf
page can be split similarly as before.

Lloyd has Ramamohanarao extended this single-
key file organization to handle partial-match
retrievals in the following way. Let n be the
number of fields in the record structure of the
file. With each field of the record structure,
associate a hashing function hi:Fià Bi, i=1,2,
…,n where Fi is the key space of the ith field and
Bi is the pseudokey space of a certain length mi.
The index of a record (r1, r2, … , rn) into the
directory is assembled using the pseudokeys
h1(r1), h2(r2), … , hn(rn) and the choice vector (…,
i3, i2, i1). If ij=p in the choice vector, then the jth
(rightmost) bit in the index should come from the
pth pseudokey hp(rp).

The choice vector has important consequences
on the performance of the file. It dynamically
adapts to the current state of the system
according to the distribution of occurrences of
each field in the record structure in the file
operations performed thus far. This is done by
deferring the calculation of ij until the directory
size grows to 2j. The procedure, called Minimal
Marginal Increase (MMI), used to calculate the
choice vector, and the theory behined it are
discussed in [7].

The operations of insertion, searching, bucket
splitting, directory doubling, etc., are then similar
to the single-key case.

Example 1: Let the global depth=5, record
R=(v1, v2, v3, v4) and the choice vector=(…, 4, 2,
2, 3, 2). Let h(v1)=am…a1a0, h(v2)=bm…b1b0,
h(v3)=cm…c1c0, and h(v4)=dm…d1d0 where
am…a1a0 , bm…b1b0 , cm…c1c0, and dm…d1d0 are
binary numbers with a sufficiently large number
m of digits. Then the address of record
R=d0b2b1c0b0.

Indexed Descriptor Files
Pfaltz et al. applied the technique of disjoint
coding to a file structure called the indexed
descriptor file. The idea behind the technique is
to speed up retrieval of records by encoding
information about the records in an efficient
manner. Basically, the information in a single

Analysis Of Efficient File Structures For Partial-Match Retrieval

Oðuzhan ÖZTAÞ

449
record is represented by a descriptor word and
the descriptor words of all records stored in one
bucket (on disk) are bitwise OR’d together to
form a bucket descriptor DB. The directory of an
indexed descriptor file is just the collection of all
bucket descriptors.

A descriptor Dr of a record r=(r1, r2, … , rk)
where ri ∈Di for 1≤i≤k is a bit string of w (for
width) bits. Each descriptor is divided into k
disjoint fields. Each field Fi consists of wi bits;
therefor,

 ww
k

i
i =∑

=1

 (1)

There are k functions Hi:Dià{1, 2, … , wi} for
1≤i≤k. In a descriptor Dr of a record r={r1, r2, …
, rk}, the Hi(ri)th bit in Fi is set to 1 (the
remaining wi-1 bits are set to 0). There are
exactly k bits set to 1 in a record descriptor.

A descriptor Dq for a query q=(A1=a1, A2=a2, … ,
Ak=ak) is a bit string of w bits with the Hi(ai)th
bit in Fi set to 1 if ai=* for 1≤i≤k and the rest of
the bits are 0. Note that the number of bits set to
1 in a query descriptor is equal to the number of
uniquely specified attributes in the query.

The search algorithm for a given query in an
indexed descriptor file is simply to compare Dq
to the descriptor DB of each bucket B and access
all buckets B whose descriptors have 1’s in all
the same positions as Dq; the values contained in
the other bit positions in DB do not need to be
considered. Note for a bucket B whose bucket
descriptor satisfies the above criterion, this
method does not guarantee that B contains at
least one record in R(q) (a “false hit”).

Signature Files
A content-addressable scheme for a message file
system has been proposed here. This scheme
uses an idea similar to that of the indexed
descriptor files described Fig.2. In this scheme, a
descriptor file called a signature file is created
for each message in the file system. The
descriptor file F′ for a message F is created by
concatenating the descriptors of all uncommon
words in message F. Whereas Pfaltz and Cagley
set exactly one bit to 1 in each field descriptor, a
word descriptor in the message-file scheme is a
string of bits which represents (not uniquely) the
word.

There are many algorithms for transforming a
word into its descriptor. One method is to use a
hash function to hash each word into a string of
bits. Another method is to divide each word into
overlapping triplets of letters and then to hash
each triplet into into a fixed number of bits. The
main idea behind both methods is that a
descriptor requires much less storage space than
an actual word. This reduces the amount of data
requiring access when comparison are made.

The use of the signature file is illustrated in the
following: a user generates a query that specifies
a variable number of words and a pattern among
those words. The pattern is a boolean expression
involving combinations of words. For example, a
user can specify five words where the pattern is
the conjunction of those five words, i.e., all
messages containing those five words should be
retrieved. A sequential search is performed on
the descriptor file to determine if the five words
are contained in any entry in the file; if the
search is successful, the corresponding document
is retrieved. Note, however, that although the
descriptor file contains the five words, it is
possible that the actual corresponding message
need not contain those five words. This is
because there is no one-to-one correspondence
between a word and its descriptor.

Partial-Match Retrieval Using
Hashing and Descriptors
A partial-match retrieval scheme based solely on
descriptors seems to have some disadvantages,
especiallyfor dynamic files. However, a small,
simplified descriptor file, built on top of a
hashing scheme, is a practical and effective
solution to the problem of large key spaces.

Let us now be more precise about descriptor
files. A descriptor is a fixed-length bit string
consisting of w bits. Typically, w would be 100
to 500. Each page in the main file has a
descriptor associated with it. The descriptors are
numbered in the same way as the pages of the
main file, and the collection of all descriptors is
called the descriptor file. Each field f, has
associated with it a transformation Ti, which
maps from the key space of fi to the subset of bit
strings of length wi, where each bit string has
exactly one bit set to 1, with the remainder 0.
Furthermore, w1+ … +wk=w. Now the descriptor
associated with a page is obtained by the
(bitwise) ORing of the record descriptors for
each record in the page and any associated

Analysis Of Efficient File Structures For Partial-Match Retrieval

Oðuzhan ÖZTAÞ

450
overflow pages. A record descriptor is obtained
by applying the transformation Ti to each field fi
(i=1, 2, … , k) and forming the bit string of
length w, which is the concatenation of each of
the resulting strings. Only page descriptors are
actually stored. When a record is added to or
deleted from a page, the descriptor must be
updated. A major difference between the
descriptor file here and that in indexed descriptor
file is that we have only one level of descriptor
file. Furthermore, the descriptors in indexed
descriptor file are larger than ours because the
scheme in indexed descriptor file relies solely on
the descriptors for retrieval. Thus our descriptor
file is smaller. The size of the descriptor file is
w2a bits.

2. ANALYSIS
The index methods are compared for add and
query records. The same record structure are
used to compare methods. The record pattern as
shown below :










=
=
=
=

=

4)(
3324671)_(

1966/12/12)_(
_)(

4

3

2

1

Meslegiv

numarasýTelefonv
tarihiDogumv

KAYAALÝisimv

Rk

Average data access time and average data
insertion time graphics are shown as below :

3. CONCLUSIONS
In this study, we eximined the index technics and
compared them with average data access time
and average data insertion time. As a result of

this process we obtained that the indexed
descriptor file is the best partial-match retrieval
method.

4. REFERENCES
1. C. Faloutsos, March 1985, “Access methods

for text”, ACM Comput. Surveys, Vol. 17,
No. 1, pp. 49-74

2. C.J.Date, 1990, “Database Systems”,
Addison-Wesley Pub.Comp., Vo l. 1

3. J.Llyod and K.Ramamohanarao, 1982,
“Partial Match Retriavel For Dynamic Files”,
BIT, Vol. 22, pp. 150-168.

4. J.Pfaltz, W.Berman and E.Cagley,
September 1980, “Partial-Match Retrieval
Using Indexed Descriptor Files”, Commun.
ACM, Vol. 23, No. 9, pp. 522-528.

5. K.Ramamohanarao, John W.Lloyd and
James A. Thom, December 1983, “Partial-
Match Retrieval Using Hashing and
Descriptors”, ACM Transactions on Database
Systems, Vol. 8, No. 4, pp. 552-576.

6. Philip J. Pratt, Joseph J. Adamski, 1987,
“Database Systems Management and
Design”, Boyd & Fraser Publishing Com.

7. R.Fagin, J.Nievergelt, N.Pippenger and
R.Strong, September 1979, “Extendible
Hashing – A Fast Access Method for
Dynamic Files”, ACM Transactions on
Database Systems, Vol. 4, No. 3, pp. 315-
344.

Oðuzhan Öztaþ was born in Izmir, Turkey, 1966. He received B. Sc. Degree in
Mathematical Engineering from the Faculty of Science and Letters, Ýstanbul Technical
University, Turkey in 1989. He received M.Sc. Degree in System Analysis, from the
Institute of Science and Technology of the same University in 1992. He received Ph. D.
Degree in Computer Engineering, from the Institute of Science and Technology, Ýstanbul
University in 2001. He has been teaching computer science courses in the Computer
Engineering Department of Istanbul University. His research interests include computer
graphics, fuzzy systems, multimedia and database systems. He is married and has one
son.

Analysis Of Efficient File Structures For Partial-Match Retrieval

Oðuzhan ÖZTAÞ

451

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000 1100 1200

DATA

T
IM

E
 (

1
/1

0
0
)S

N

idx.des.

inver.file

m.sig.file

sig.file

ext.hash

des&hash

Fig. 1.Average access time.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

100 200 300 400 500 600 700 800 900 1000 1100 1200

DATA

T
IM

E
 (

1
/1

0
0
)S

N

idx.des.

inver.file

m.sig.file

sig.file

ext.hash

des&hash

Fig. 2. Average data insertion time.

