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ABSTRACT 
 

This paper reports on the simplification of Boolean functions  problem encountered in the logic circuit 
design. The simplification process studied in this work  is concentrated on the Petrick’s Method, 
produce all solutions exactly rather then Quine McCluskey or Karnaugh Method. The Petrick’s 
algorithm is described in detail. A specific example is worked through to explain the algorithm. On 
the example, all different possible solutions  and “PLA” diagrams of these solutions are given as 
program outputs. Also, in this context, the comparisions of the methods used for simplification of 
Boolean functions are given.  
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1. INTRODUCTION  
The logic design complexity is direct related to 
the complexity of the Boolean functions as the 
algebraic expression of  the logic circuit outputs.  
The Boolean functions may be simplified by  the 
alternative methods as given in the literature. The 
most known method called the Map Method, first 
proposed by Veitch[1] and slightly modified by 
Karnough[2], provides a simple straightforward 
procedure for minimizing Boolean functions.  
However, the map method is not convinent as 
long as the number of variables exceed five or 
six.  In order to minimize the Boolean functions 
with many variables, the other method called as 
Tabulation Method which is step-by-step 

procedure was  first formulated by Quine [3] and 
later improved by Mc Cluskey[4], also known as 
the Quine-McCluskey method.  But it is quite 
boring and tedious work for human use.   
 
The another two-level minimization method that 
is named of Petrick’s method, provides the 
systematic way in the prime implicants selection, 
was improved.  Instead of  Quine-Mc Cluskey 
method, Petrick’s method could give all 
alternative minimum solutions. Also, in Quine-
Mc Cluskey method, defining the essential prime 
implicants is required to use  the designer’s 
intuition.  
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In this computer work, for the students take the 
logic design course and the logic circuit designer, 
an useful educational tool is improved by using 
Petrick method, the best minimization method 
explained above.  
 
In order to develop Boolean functions and create 
digital circuitry, this computer tool is proposed.  
Even for very simple projects these functions can 
become quite complicated unless the students are 
able to simplify the expressions. 
 
2.   SIMPLIFICATION OF  
BOOLEAN FUNCTIONS 
A boolean function is that it decribes an relation 
between variables and the function. If this 
relation is  explained with the simplest way, the 
circuit desing would be more simple and its 
implementation more economic.   
  
It is well known that, when a Boolean function is 
implemented with logic gates, each literal in the 
function designate an input to a gate and each 
term is implemented with a gate. The 
minimization of the number of literals and the 
number of terms (implicant) results in a circuit 
with less gates. 
 
In order to begin any minimization, the goals 
have to be clearly defined. In our case, we make 
the following assumptions: 
 
•    Each implicant corresponds to a logic gate. 
•    The number of literals corresponds to the size 
of the logic gate used to implement the implicant 
 
Therefore, we set our simplification goals as 
follows: 
 
•    The primary goal is to reduce the number of  
      implicants. 
•    The secondary goal is to reduce the number 
of  literals. 
 
On the other hand, we know that reducing the 
number of gates is more important than reducing 
the size of a particular gate. 
 
The main goal in the circuit design is to use less 
component, less bulk, less cost. Therefore a 
designer  have to make the Boolean function the 
simplest. Some methods are described in the next 
chapter to simplify the functions.  

3. THE SIMPLIFICATION 
METHODS 
There are well established methods for doing 
these simplifications.  Mainly, two methods are 
used in logic minimizations. 
 
1.  Map Method 
The simplification method  called Karnaugh 
maps  are not easily used after the number of 
input variables exceeds four.  Many circuits 
implemented  in practice may require more than 
four input variables. Karnaugh Maps provide an 
alternative way of simplifying logic circuits. 
Instead of using Boolean algebra simplification 
techniques, you can transfer logic values from a 
Boolean statement or a truth table into a 
Karnaugh map. The arrangement of 0's and 1's 
within the map helps you to visualise the logic 
relationships between the variables and leads 
directly to a simplified Boolean statement. 
 
Using K-maps to find the minimized two-level 
form of a function is difficult for functions of 
more than 4 variables and nearly impossible for 
functions of more than 6 variables because it is 
hard to visualize and spot patterns in 
multidimensional space[5] : 
 
2.  Two-Level Logic Minimization Method: 
An alternative to use K-maps is Two Level Logic 
Minimization Methods solve this problem on two 
levels  
 
1. Determination of Prime Implicants 
2. Prime Implicant Chart 
Quine-McCluskey and Petrick’s methods can be 
grouped as the two-level logic minimization 
method.  The methods classified into the group 
of two-level methods are similiar at 
determination of prime implicants, different at 
the approach of prime implicant chart with 
respect the others.  
 
••  Quine-McCluskey  Method 
Quine-McCluskey method reduces the minterm 
expansion of a function to obtain minimum sum 
of products form procedure has two steps[6] : 
 
1.  Eliminate as many literals as possible from 

each term by applying xy + xy' = x. The 
resulting terms are called prime implicants.  
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2. Use a prime implicant chart to select as 
minimum  of prime implicants such that when 
they are all together it equals the function being 
simplified. 

 
With both the K-map method and Quine-
McCluskey algorithm you are trying to find a 
minimum number of terms that cover all of the 
minterms in the function[7]. For example, the 
two minterms AB'CD' and ABCD' are covered 
by the term ACD' 
 
Although Quine-Mc Cluskey was the first 
methodical algorithm , it can not define essential 
prime implicants exactly[8].  We do that with 
Petrick’s Method. 
 
4.  PETRICK’S METHOD 
Petrick’s method has two levels , as other  two-
level methods have [9]; 
 
1.  Determination of  Prime Implicants 
In order to apply the Petrick’s method to 
determine a minimum sum of products 
expression for a function , the function must be 
given as a sum of minterms. If the function is not 
in minterm form the minterm form must be 
found. In the first part of  Petrick’s method all of 
the prime implicants of a function are 
systematically formed by combining minterms. 
The minterms are represented in binary notation 
and combined if they differ in exactly one 
variable. 

ABC + ABC’ = AB 
              (111)    (110)     (11X) 

 
In order to find all of the prime implicants all 
possible pairs of minterms should be compared 
and combined whenever possible. To reduce the 
required number of comparisons the binary 
minterms are sorted into groups according to the 
numbers of 1’s in each term. 
 
2. Prime Implicant Chart 
We use prime implicant chart to select minimum 
number of prime implicants that covers all the 
minterms. We call these prime implicants 
essential prime implicants. There can be one or 
less covers that can do that. All of them are 
solutions. 
 
We call choosing minimum number of prime 
implicants “covering problem”[10]. This 

problem has three replies according to 
simplificaton method. Quine-Mc Cluskey uses a 
heuristic methot to do that. Petrick’s method uses 
a systematic method.  
 
The prime implicant chart has minterms on its 
first row and prime implicants on its first column 
and check minterms included from prime 
implicants. 
 
The petrick algorithm is shown below. Before 
this program is being run prime implicant are 
computed and put into the array “Komsular”. 
The array “Minterm” includes minterms and 
don’t-cares.  
 
The Petrick’s algorithm selects the minimum 
essential prime implicant covers and puts its 
essential prime imp licant into the array 
“Arasonuç”. 
 
Algorithm: 

 
1. Put the minterms and don’t-cares into 

“Grup” array.  
 
2. Compute the implicants and remove the 

covered minters from the “Grup” aray. 
 
3.  Put minterms except don’t-cares into 

“Mintermler” array.  
 
4.  Select prime implicants and name them as 

“An” that includes a minterm from 
“komsular” array. “n” is prime implicant 
number.  

 
       Example:      A3 represents the third prime    
                        implicant in the “komºular” array. 

 
Repeat this for each minterm. Put the 
including prime implicants into the “Ptable” 
array on the same row for each minterm. 
 

                   Table.1  Ptable of the example 
1 A0 A1   
3 A2 A3   
4 A0 A1 A3  

 
Minterm “1” is including by PI’s A0 and A1 
A0 is the first PI in the Komsular array. 
The solution must be like this after that step 
according to petrick method ; 
P*=(A0+A1)(A2+A3)(A0+A1+A3) 
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5. Put the first row of Ptable into P array 
 
6. Calculate P* was shown above. 
 
7. Simplify P* with “Terimsadeleºtir” function.  

Remove the twin (or more) of each PI. At 
the end of this step we get the result of 
petrick method. 

 
8. Put each  result into the “Arasonuc” array. 

There can be more the one result. 
 
9. Write the results to the result list of the 

program. 
 
5.  ALGORITHM  EXAMPLE 
To make the algorithm clearer, use it to simplify 
the following function: 
 
            F = SUM( 0, 1, 2, 5, 6 )                    (1) 
 
To simplify this function with the program we 
use karnaugh map in order to input the function. 
Only click on the minterm to make it “1” ,”X” 
don’t-care or “0”. 
 

 
Figure 1.  Input interface 
 

 
Figure 2.  Minterms and Don’t-Cares window 
 
Thus the function given in (1) is represented by 
the following list of minterms. 
 
       Table 2.   The minterm list of  the function 

G PI A B C  
G0 0 0 0 0 ü 

1 0 0 1 ü G1 
2 0 1 0 ü 
5 1 0 1 ü G2 
6 1 1 0 ü 

 

In the above list the terms in group 0 has zero 
“1”, the terms in group 1 has one “1”, the terms 
in group 2 has two “1”. 
 
Step1:   (Creating ‘Grup’ Array) 
Put this table into “Grup” array. We process the 
first step of Petrick’s method on this array. Its 
dimentions are 500 row ,  “variable number+1” 
column and “variable number+1” table. For 
variable number “3” for this example Grup 
array’s dimentions are 500 row , 4 column and 4 
table. This table is defined as string. 
 
Every row represents a minterm or implicant. 
 
Every column represents a variable (A,B,C...). 
 
Last column is used to represent the “checked” 
minterms. 
 
Every table represents a step of determination 
prime implicants. First table must be like this; 
 
                      Table 3. ‘Grup’ Array 

A B C Check 
0 0 0 0 
0 0 1 0 
0 1 0 0 
1 0 1 0 
1 1 0 0 

 
Check = 0 not checked 
Check = 1 checked 
 
Step2: (Combining Minterms) 
 
Two terms  can be combined if they differ in 
exactly one variable. Comparison of terms in 
non-adjacent groups is unnecessary since such 
terms will always differ in at least two variables 
and can not be combined using XY+XY’=X. 
Similarly Comparison of terms within a group is 
unnecessary since two terms with the same 
number of 1’s must differ in at least two 
variables. 
 
First we will compare the term in group 0 with 
all of group 1.  
 
terms “000” and “001” can be combined to 
eleminate the third variable C which yields 
“00X“.  
terms “000” and “010” can be combined as 
“0X0” 
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Since comparison of groups 0 with groups 2 is 
unnecassary we proceed to compare terms in 
groups 1 and 2. 
 
terms “001” and “101” can be combined as 
“X01” 
terms “010” and “110” can be combined as 
“X10” 
 
The program does these steps on “Grup” array. 
Compares each row (minterm) with others and 
uses “komsu” function to determine whether or 
not these minterms can combineable. If two 
minterms are combined two of them are checked 
off with “1” and combined prime put into grup 
array to the next table. Last a new table formed 
including primes. 
                      
                     Table 4. Komsular Aray 

PI A B C 
PI1 0,1 0 0 X 
PI2 0,2 0 X 0 
PI3 1,5 X 0 1 
PI4 2,6 X 1 0 

                     
                      Table 5.  ‘Grup’ Array 

A B C Check 
0 0 X 0 
0 X 0 0 
X 0 1 0 
X 1 0 0 

 
Even though two terms have already been 
combined with another terms they still must be 
compared and combined if possible. This is 
necessary since the resultant term may be needed 
to form the minimum sum solution. 
 
But we can not combine any prime implicant in 
our example. Therefore the first, determination 
of prime implicants , step is finished. 
 
In order to use prime implicants easly , put them 
Rom Grup array to “Komsular” array. It is like 
that; 
                   Table 6.  ‘Komsular’ array 

A B C 
0 0 X 
0 X 0 
X 0 1 
X 1 0 

 
 

We name prime implicants as PIn in order to use 
it easyly.  n is row number. 
 

A0=A’B’ 
A1=A’C’ 
A2=B’C 
A3=BC’ 

 
Step3  :  (Prime Implicant Chart) 
 
 

Table 7. Prime Implicant Chart 
PI 0 1 2 5 6 
A0 X X    
A1 X  X   
A2  X  X  
A3   X  X 

 
We represent this table on cumputer with 
“Ptable” array. It has 2variable number-1 rows and 50 
columns. Every row represents a minterm 
without don’t- cares , every column represents a 
implicant that includes the rows minterm. Ptable 
must be like this; 

 
Table 8. “Ptable” array 

A0 A1 0 
A0 A2 1 
A1 A3 2 
A2  5 
A3  6 

 
Form a P function; 
 

1) for each minterm write a sum of prime 
implicants that includes this minterm. 

 
For “0” ( A0+ A1 ) 
For “1”  ( A0+ A2 ) 
For “2”  ( A2+ A3 ) 
For “5”  ( A2 ) 
For “6”  ( A3 ) 
 

2) product these sums. We call this 
product of sums pos 

 
 
P= ( A0+ A2 )( A0+ A3 )( A2+ A4 )( A3 )( A4 ) 
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Step4:  (Expanding P into SOP) 
 
 Apply (X+Y)(X+Z)=X+YZ and / or X+XY=X 
to reduce a minimum sop expression of P. In 
order to that step we use a auxiliary “P” array 
with 500 rows and 1000 columns. First we put 
the first row of Ptable to that array then multiply 
each row of Ptable Of this , first , row and write 
the results to a new row. At the last row , we 
have the result. But this result must be simplified 
with “terimsadeleºtir” function. Last we have the 
exact result after we find the minimum term(s). 
Each term represents a result. 
 
P = A0A3A4 + A2A3A4 
 
Result: each term of P is  a solution. But we take 
the term / terms with minimum number of 
variables as solution. Here there are two 
solutions. 
Solution1: A0 A2 A3 means the solution is; 

A’B’+B’C+BC’ 
 
Solution2: A1 A2 A3 means the solution is; 
                           A’C’+B’C+BC’ 

 
Step5:  (Show the Result) 
 
 In order to show the result on the program , we 
use “Arasonuc” array. Ýt includes each essential 
prime implicant (at the columns) of each solution 
(at the rows). 
 
The result is shown on 4 companent; 
 
I. Solutions list ( a list of each solution by 

its EPIs) 
II. EPS list that shows the selectted 

solution 
III. Karnaugh Map shows the minterm with 

red forecolor that EPI included which is 
selected from the EPIs list 

IV.  PAL Diagram that shows the selected 
solution. 

 

       
Figure 3. Solution, EPI lists and PAL diagram 

 

 
Figure 4.  Showing the groups 

 

 
Figure 5.  Final view of the program output 
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                  PETRICK  ALGORITHM 
                        FLOW CHART 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. CONCLUSIONS 
Petrick’s method is the one that can define all of 
minimum solutions. This is especially important , 
because in Quine-Mc Cluskey method , it is 
often left to user to define essential prime 
implicants. Therefore the user sometimes, 
especially in complex problems with lots of 
prime implicants,  can not define minimum 
solution or  other alternative solutions. The error 
risk is very  high. 
 
Unlike Quine-Mc Cluskey method, Petrick’s 
method can define all exact solutions correctly. It 
gives us all alternative minimum solutions. In 
Quine-Mc Cluskey method you use your 

intuition to define essential prime implicants. 
Therefore sometimes you can’t define them.  But 
in Petrick’s method you do what the method 
says. Because this method is systematic but 
rather tedious. 
 
Finally, in this work, a very useful computer 
design tool is developed for a graduate student 
takes the logic design course and a designer to 
have to realize the logic circuit quickly. Also, the 
tool  can give the PAL implementation of the 
designed circuit.   
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Mintermler( ) ß Minterm(  ) 

Ptable( ) ß A&MintermNumber 

P(0,i) ß Ptable(0,i) 

P( ) ß P( ) & Ptable( ) 

P(son,i) ß Terimsadeleºtir (son,i) 

AraSonuc( ) ß EPI’s 

Result List ß AraSonuc( ) 


