

ISTANBUL UNIVERSITY ENGINEERING FACULTY
JOURNAL OF ELECTRICAL & ELECTRONICS

YEAR
VOLUME
NUMBER

: 2002
: 2
: 2

(555-561)

Received Date :10.2.2002
Accepted Date:12.5.2002

AN EDUCATIONAL COMPUTER TOOL

 for SIMPLIFICATION of BOOLEAN FUNCTION’s
VIA PETRICK’s METHOD

Necati ARSLAN1 Ahmet SERTBAS2

1,2 Istanbul University, Engineering Faculty, Computer Engineering Department
34850, Avcilar, Istanbul, TURKEY

1e-mail: necatiist@hotmail.com 2e-mail: asertbas@istanbul.edu.tr

ABSTRACT

This paper reports on the simplification of Boolean functions problem encountered in the logic circuit
design. The simplification process studied in this work is concentrated on the Petrick’s Method,
produce all solutions exactly rather then Quine McCluskey or Karnaugh Method. The Petrick’s
algorithm is described in detail. A specific example is worked through to explain the algorithm. On
the example, all different possible solutions and “PLA” diagrams of these solutions are given as
program outputs. Also, in this context, the comparisions of the methods used for simplification of
Boolean functions are given.

Keywords: Boolean Function, Two-level Minimization, Petrick’s Method, Prime Implicant.

1. INTRODUCTION
The logic design complexity is direct related to
the complexity of the Boolean functions as the
algebraic expression of the logic circuit outputs.
The Boolean functions may be simplified by the
alternative methods as given in the literature. The
most known method called the Map Method, first
proposed by Veitch[1] and slightly modified by
Karnough[2], provides a simple straightforward
procedure for minimizing Boolean functions.
However, the map method is not convinent as
long as the number of variables exceed five or
six. In order to minimize the Boolean functions
with many variables, the other method called as
Tabulation Method which is step-by-step

procedure was first formulated by Quine [3] and
later improved by Mc Cluskey[4], also known as
the Quine-McCluskey method. But it is quite
boring and tedious work for human use.

The another two-level minimization method that
is named of Petrick’s method, provides the
systematic way in the prime implicants selection,
was improved. Instead of Quine-Mc Cluskey
method, Petrick’s method could give all
alternative minimum solutions. Also, in Quine-
Mc Cluskey method, defining the essential prime
implicants is required to use the designer’s
intuition.

An Educational Computer Tool For Simplification Of Boolean Functions
VIA Petrick’s Method

Necati ARSLAN and Ahmet SERTBAS

556

In this computer work, for the students take the
logic design course and the logic circuit designer,
an useful educational tool is improved by using
Petrick method, the best minimization method
explained above.

In order to develop Boolean functions and create
digital circuitry, this computer tool is proposed.
Even for very simple projects these functions can
become quite complicated unless the students are
able to simplify the expressions.

2. SIMPLIFICATION OF
BOOLEAN FUNCTIONS
A boolean function is that it decribes an relation
between variables and the function. If this
relation is explained with the simplest way, the
circuit desing would be more simple and its
implementation more economic.

It is well known that, when a Boolean function is
implemented with logic gates, each literal in the
function designate an input to a gate and each
term is implemented with a gate. The
minimization of the number of literals and the
number of terms (implicant) results in a circuit
with less gates.

In order to begin any minimization, the goals
have to be clearly defined. In our case, we make
the following assumptions:

• Each implicant corresponds to a logic gate.
• The number of literals corresponds to the size
of the logic gate used to implement the implicant

Therefore, we set our simplification goals as
follows:

• The primary goal is to reduce the number of
 implicants.
• The secondary goal is to reduce the number
of literals.

On the other hand, we know that reducing the
number of gates is more important than reducing
the size of a particular gate.

The main goal in the circuit design is to use less
component, less bulk, less cost. Therefore a
designer have to make the Boolean function the
simplest. Some methods are described in the next
chapter to simplify the functions.

3. THE SIMPLIFICATION
METHODS
There are well established methods for doing
these simplifications. Mainly, two methods are
used in logic minimizations.

1. Map Method
The simplification method called Karnaugh
maps are not easily used after the number of
input variables exceeds four. Many circuits
implemented in practice may require more than
four input variables. Karnaugh Maps provide an
alternative way of simplifying logic circuits.
Instead of using Boolean algebra simplification
techniques, you can transfer logic values from a
Boolean statement or a truth table into a
Karnaugh map. The arrangement of 0's and 1's
within the map helps you to visualise the logic
relationships between the variables and leads
directly to a simplified Boolean statement.

Using K-maps to find the minimized two-level
form of a function is difficult for functions of
more than 4 variables and nearly impossible for
functions of more than 6 variables because it is
hard to visualize and spot patterns in
multidimensional space[5] :

2. Two-Level Logic Minimization Method:
An alternative to use K-maps is Two Level Logic
Minimization Methods solve this problem on two
levels

1. Determination of Prime Implicants
2. Prime Implicant Chart
Quine-McCluskey and Petrick’s methods can be
grouped as the two-level logic minimization
method. The methods classified into the group
of two-level methods are similiar at
determination of prime implicants, different at
the approach of prime implicant chart with
respect the others.

•• Quine-McCluskey Method
Quine-McCluskey method reduces the minterm
expansion of a function to obtain minimum sum
of products form procedure has two steps[6] :

1. Eliminate as many literals as possible from

each term by applying xy + xy' = x. The
resulting terms are called prime implicants.

An Educational Computer Tool For Simplification Of Boolean Functions
VIA Petrick’s Method

Necati ARSLAN and Ahmet SERTBAS

557

2. Use a prime implicant chart to select as
minimum of prime implicants such that when
they are all together it equals the function being
simplified.

With both the K-map method and Quine-
McCluskey algorithm you are trying to find a
minimum number of terms that cover all of the
minterms in the function[7]. For example, the
two minterms AB'CD' and ABCD' are covered
by the term ACD'

Although Quine-Mc Cluskey was the first
methodical algorithm , it can not define essential
prime implicants exactly[8]. We do that with
Petrick’s Method.

4. PETRICK’S METHOD
Petrick’s method has two levels , as other two-
level methods have [9];

1. Determination of Prime Implicants
In order to apply the Petrick’s method to
determine a minimum sum of products
expression for a function , the function must be
given as a sum of minterms. If the function is not
in minterm form the minterm form must be
found. In the first part of Petrick’s method all of
the prime implicants of a function are
systematically formed by combining minterms.
The minterms are represented in binary notation
and combined if they differ in exactly one
variable.

ABC + ABC’ = AB
 (111) (110) (11X)

In order to find all of the prime implicants all
possible pairs of minterms should be compared
and combined whenever possible. To reduce the
required number of comparisons the binary
minterms are sorted into groups according to the
numbers of 1’s in each term.

2. Prime Implicant Chart
We use prime implicant chart to select minimum
number of prime implicants that covers all the
minterms. We call these prime implicants
essential prime implicants. There can be one or
less covers that can do that. All of them are
solutions.

We call choosing minimum number of prime
implicants “covering problem”[10]. This

problem has three replies according to
simplificaton method. Quine-Mc Cluskey uses a
heuristic methot to do that. Petrick’s method uses
a systematic method.

The prime implicant chart has minterms on its
first row and prime implicants on its first column
and check minterms included from prime
implicants.

The petrick algorithm is shown below. Before
this program is being run prime implicant are
computed and put into the array “Komsular”.
The array “Minterm” includes minterms and
don’t-cares.

The Petrick’s algorithm selects the minimum
essential prime implicant covers and puts its
essential prime imp licant into the array
“Arasonuç”.

Algorithm:

1. Put the minterms and don’t-cares into

“Grup” array.

2. Compute the implicants and remove the

covered minters from the “Grup” aray.

3. Put minterms except don’t-cares into

“Mintermler” array.

4. Select prime implicants and name them as

“An” that includes a minterm from
“komsular” array. “n” is prime implicant
number.

 Example: A3 represents the third prime
 implicant in the “komºular” array.

Repeat this for each minterm. Put the
including prime implicants into the “Ptable”
array on the same row for each minterm.

 Table.1 Ptable of the example
1 A0 A1
3 A2 A3
4 A0 A1 A3

Minterm “1” is including by PI’s A0 and A1
A0 is the first PI in the Komsular array.
The solution must be like this after that step
according to petrick method ;
P*=(A0+A1)(A2+A3)(A0+A1+A3)

An Educational Computer Tool For Simplification Of Boolean Functions
VIA Petrick’s Method

Necati ARSLAN and Ahmet SERTBAS

558

5. Put the first row of Ptable into P array

6. Calculate P* was shown above.

7. Simplify P* with “Terimsadeleºtir” function.

Remove the twin (or more) of each PI. At
the end of this step we get the result of
petrick method.

8. Put each result into the “Arasonuc” array.

There can be more the one result.

9. Write the results to the result list of the

program.

5. ALGORITHM EXAMPLE
To make the algorithm clearer, use it to simplify
the following function:

 F = SUM(0, 1, 2, 5, 6) (1)

To simplify this function with the program we
use karnaugh map in order to input the function.
Only click on the minterm to make it “1” ,”X”
don’t-care or “0”.

Figure 1. Input interface

Figure 2. Minterms and Don’t-Cares window

Thus the function given in (1) is represented by
the following list of minterms.

 Table 2. The minterm list of the function

G PI A B C
G0 0 0 0 0 ü

1 0 0 1 ü G1
2 0 1 0 ü
5 1 0 1 ü G2
6 1 1 0 ü

In the above list the terms in group 0 has zero
“1”, the terms in group 1 has one “1”, the terms
in group 2 has two “1”.

Step1: (Creating ‘Grup’ Array)
Put this table into “Grup” array. We process the
first step of Petrick’s method on this array. Its
dimentions are 500 row , “variable number+1”
column and “variable number+1” table. For
variable number “3” for this example Grup
array’s dimentions are 500 row , 4 column and 4
table. This table is defined as string.

Every row represents a minterm or implicant.

Every column represents a variable (A,B,C...).

Last column is used to represent the “checked”
minterms.

Every table represents a step of determination
prime implicants. First table must be like this;

 Table 3. ‘Grup’ Array

A B C Check
0 0 0 0
0 0 1 0
0 1 0 0
1 0 1 0
1 1 0 0

Check = 0 not checked
Check = 1 checked

Step2: (Combining Minterms)

Two terms can be combined if they differ in
exactly one variable. Comparison of terms in
non-adjacent groups is unnecessary since such
terms will always differ in at least two variables
and can not be combined using XY+XY’=X.
Similarly Comparison of terms within a group is
unnecessary since two terms with the same
number of 1’s must differ in at least two
variables.

First we will compare the term in group 0 with
all of group 1.

terms “000” and “001” can be combined to
eleminate the third variable C which yields
“00X“.
terms “000” and “010” can be combined as
“0X0”

An Educational Computer Tool For Simplification Of Boolean Functions
VIA Petrick’s Method

Necati ARSLAN and Ahmet SERTBAS

559

Since comparison of groups 0 with groups 2 is
unnecassary we proceed to compare terms in
groups 1 and 2.

terms “001” and “101” can be combined as
“X01”
terms “010” and “110” can be combined as
“X10”

The program does these steps on “Grup” array.
Compares each row (minterm) with others and
uses “komsu” function to determine whether or
not these minterms can combineable. If two
minterms are combined two of them are checked
off with “1” and combined prime put into grup
array to the next table. Last a new table formed
including primes.

 Table 4. Komsular Aray

PI A B C
PI1 0,1 0 0 X
PI2 0,2 0 X 0
PI3 1,5 X 0 1
PI4 2,6 X 1 0

 Table 5. ‘Grup’ Array

A B C Check
0 0 X 0
0 X 0 0
X 0 1 0
X 1 0 0

Even though two terms have already been
combined with another terms they still must be
compared and combined if possible. This is
necessary since the resultant term may be needed
to form the minimum sum solution.

But we can not combine any prime implicant in
our example. Therefore the first, determination
of prime implicants , step is finished.

In order to use prime implicants easly , put them
Rom Grup array to “Komsular” array. It is like
that;
 Table 6. ‘Komsular’ array

A B C
0 0 X
0 X 0
X 0 1
X 1 0

We name prime implicants as PIn in order to use
it easyly. n is row number.

A0=A’B’
A1=A’C’
A2=B’C
A3=BC’

Step3 : (Prime Implicant Chart)

Table 7. Prime Implicant Chart
PI 0 1 2 5 6
A0 X X
A1 X X
A2 X X
A3 X X

We represent this table on cumputer with
“Ptable” array. It has 2variable number-1 rows and 50
columns. Every row represents a minterm
without don’t- cares , every column represents a
implicant that includes the rows minterm. Ptable
must be like this;

Table 8. “Ptable” array

A0 A1 0
A0 A2 1
A1 A3 2
A2 5
A3 6

Form a P function;

1) for each minterm write a sum of prime
implicants that includes this minterm.

For “0” (A0+ A1)
For “1” (A0+ A2)
For “2” (A2+ A3)
For “5” (A2)
For “6” (A3)

2) product these sums. We call this
product of sums pos

P= (A0+ A2)(A0+ A3)(A2+ A4)(A3)(A4)

An Educational Computer Tool For Simplification Of Boolean Functions
VIA Petrick’s Method

Necati ARSLAN and Ahmet SERTBAS

560

Step4: (Expanding P into SOP)

 Apply (X+Y)(X+Z)=X+YZ and / or X+XY=X
to reduce a minimum sop expression of P. In
order to that step we use a auxiliary “P” array
with 500 rows and 1000 columns. First we put
the first row of Ptable to that array then multiply
each row of Ptable Of this , first , row and write
the results to a new row. At the last row , we
have the result. But this result must be simplified
with “terimsadeleºtir” function. Last we have the
exact result after we find the minimum term(s).
Each term represents a result.

P = A0A3A4 + A2A3A4

Result: each term of P is a solution. But we take
the term / terms with minimum number of
variables as solution. Here there are two
solutions.
Solution1: A0 A2 A3 means the solution is;

A’B’+B’C+BC’

Solution2: A1 A2 A3 means the solution is;
 A’C’+B’C+BC’

Step5: (Show the Result)

 In order to show the result on the program , we
use “Arasonuc” array. Ýt includes each essential
prime implicant (at the columns) of each solution
(at the rows).

The result is shown on 4 companent;

I. Solutions list (a list of each solution by

its EPIs)
II. EPS list that shows the selectted

solution
III. Karnaugh Map shows the minterm with

red forecolor that EPI included which is
selected from the EPIs list

IV. PAL Diagram that shows the selected
solution.

Figure 3. Solution, EPI lists and PAL diagram

Figure 4. Showing the groups

Figure 5. Final view of the program output

An Educational Computer Tool For Simplification Of Boolean Functions
VIA Petrick’s Method

Necati ARSLAN and Ahmet SERTBAS

561

 PETRICK ALGORITHM
 FLOW CHART

6. CONCLUSIONS
Petrick’s method is the one that can define all of
minimum solutions. This is especially important ,
because in Quine-Mc Cluskey method , it is
often left to user to define essential prime
implicants. Therefore the user sometimes,
especially in complex problems with lots of
prime implicants, can not define minimum
solution or other alternative solutions. The error
risk is very high.

Unlike Quine-Mc Cluskey method, Petrick’s
method can define all exact solutions correctly. It
gives us all alternative minimum solutions. In
Quine-Mc Cluskey method you use your

intuition to define essential prime implicants.
Therefore sometimes you can’t define them. But
in Petrick’s method you do what the method
says. Because this method is systematic but
rather tedious.

Finally, in this work, a very useful computer
design tool is developed for a graduate student
takes the logic design course and a designer to
have to realize the logic circuit quickly. Also, the
tool can give the PAL implementation of the
designed circuit.

REFERENCES
1) E.W. Veith, ‘A Chart Method for

Simplifiying Truth Functions.’ , Proc. Of the
ACM, pages 127-133, May 1952.

2) M. Karnaugh, ‘A Map Method for Synthesis
of Combinational Logic Circuits’, Trans.
AIEE, Comm. And Electronics, Vol.72, Part
1, pages 593-99, November 1953.

3) W.V. Quine,’ The Problem of Simplifiying
Truth Functions’, Am. Math. Montly, Vol.59,
No.8, 521-31, October 1952.

4) McCluskey, E.J. Jr., ’Minimization of
Boolean Functions’, Bell System Tech.J. ,
Vol.35, No.6, 1417-44, November 1956

5) http://www.dei.isep.ipp.pt/~acc/bfunc/
6) http://www.capcol.edu/faculty/andresho/ee30

4/quine.htm
7) http://users.ece.gatech.edu/~mooney/Courses/

ECE3060/pdfs/quine-mccluskey.pdf
8) http://www.cs.columbia.edu/~cs4861/handou

ts/quine-mccluskey-handout/quine-
mccluskey-handout.html

9) http://poppy.snu.ac.kr/~kchoi/class/lc_intro/t
wo_level.pdf

10) http://users.ece.gatech.edu/~mooney/Courses/
ECE3060/pdfs/exact2lev.pdf

11) http://www.necatiist.cjb.net
 (for all documents and program)

Necati Arslan: He was born in 1980 in Çan Çanakkale. After the primary school he studied
at Çan Ýbrahim Bodur Anatolian High School.. He was graduated from there in 1998 with 2nd
degree. Then he studied at Istanbul University Computer Engineering department He was
graduated there this year (2002).

 Ahmet Sertbaº: See Vol.2, Number 1, page 415

Mintermler() ß Minterm()

Ptable() ß A&MintermNumber

P(0,i) ß Ptable(0,i)

P() ß P() & Ptable()

P(son,i) ß Terimsadeleºtir (son,i)

AraSonuc() ß EPI’s

Result List ß AraSonuc()

