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ABSTRACT 
 

In this paper, two methods for calculating all stabilizing gains for discrete-time systems are given. 
The first method focuses on converting the problem using a bilinear transformation and then applying 
a previously developed theorem for continuous time systems. Unlike previous results, the method 
introduced here does not use the Generalised Hermite-Biehler Theorem and therefore provides a 
computational advantage. The second method demonstrates the use of  Chebyshev Polynomials in the 
solution of the problem. 
 
Keywords: Bilinear Transformation, Nyquist’s Criterion, Chebyshev Polynomials
 
1. INTRODUCTION 
 
Calculation of all stabilizing low-order 
controllers for linear time invariant systems has 
attracted a lot of attention in the recent years     
[1-9]. Recently in [3], a generalized version of 
the Hermite-Biehler theorem to find all 
stabilizing P, PI and PID compensators for 
continuous time systems has been used. This 
result has then been extended to discrete-time 
systems to provide a general formulation of 
stabilizing low-order controllers [2, 4, 5, 9]. An 
inherent problem with the application of the 
Generalised Hermite-Biehler theorem is that it 
requires a search in an exponentially growing set. 
 
Therefore a possible alternative to this approach, 

where a generalised Nyquist criterion is used, 
was presented for continuous time systems in 
[7,8]. This paper extends these results to discrete 
time systems and provides an alternative to the 
Generalised Hermite-Biehler theorem based 
approaches [2, 4, 5, 9]. 
 
Two methods are introduced to find the entire set 
of stabilizing gains. The first method requires the 
bilinear transformation to solve the problem of 
constant gain stabilization of a discrete time 
control system. Furthermore, this method 
suggests to determine the number of the unstable 
poles for gain intervals obtained by calculating 
the location and direction of the crossing of the 
Nyquist plot with the real axis. The second 
method requires to calculate the Chebyshev 
representation of a given system by the use of the 

Accepted Date: 17.12.2005 

mailto:hustlwb@yahoo.com
mailto:guray_gurkan@yahoo.co.uk
mailto:cxmao@263.net
mailto:akan@istanbul.edu.tr


 
Fast Calculation Of All Stabilizing Gains For Discrete-Time Systems 

 

20

first and second kinds of Chebyshev 
polynomials. With all such calculations, we 
obtain ordinary real polynomials. Since Nyquist 
stability criterion is used, imaginary part of the 
Chebyshev representation of a given system is 
equalized to zero to find the intersections of the 
Nyquist plot with the real axis and then, the 
values found are substituted into real part of the 
Chebyshev representation of  the system. Thus, 
the entire set of stabilizing gains are determined 
by the use of Nyquist stability criterion. 
Furthermore, when Chebyshev polynomials are 
used,  the solution of the problem of stabilization 
is reduced to a set of linear equalities.  
 
2. STABILITY ANALYSIS USING 
THE BILINEAR 
TRANSFORMATION  
 
The bilinear transformation is a method that can 
be used to determine the Schur stability of 
discrete-time control systems. This method 
requires transformation from the  plane to 
another complex  plane. The problem of 
calculating the Schur stability of discrete-time 
control systems can be converted to an 
equivalent Hurwitz stability problem via the 
bilinear transformation [9]. Several different 
bilinear transformations  can be used for this 
purpose. The bilinear transformation that is used 
in this paper is given by  

z
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and maps the inside of the unit circle in the  
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be a polynomial of degree n with real 
coefficients. Then, the bilinear transformation of 

)(zδ  is given by 
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is a polynomial of degree m.  

 
Recently, in continuous time control systems a 
new and simple computational method has been 
developed for the construction of the set of low-
order compensators [6,7]. This compensators 
ensure the closed-loop system poles lie in a given 
stability region. In this paper, the method 
developed in [6] is modified for discrete-time 
control systems via the bilinear transformation 
and the results are given in Theorem 1. Thus, a 
simple method is suggested to compute all of the 
stabilizing  set of low-order compensators for a 
given discrete time system using Theorem 1. 
This method  has several advantages over the 
technique of [3].  The most important advantage 
is that the suggested method is computationally 
much faster than that of [3], particularly for high 
order systems. In Theorem 1, a search in an 
exponentially growing set does not require to 
find  iKk ∈  intervals. These are advantages 
over the technique of  [3]. 
 
Now, consider the control system shown in 
Figure 1 where the plant is represented by its 
discrete-time transfer function P(z)   
 

                        
)(
)()(

zD
zNzP =                             (5) 

 
with  and  are polynomials with real 
coefficients. Constant gain controller  is given by   

)(zN )(zD

 
                       KzC =)(                                  (6) 

 
    r      + 

                                   y 
           -  

       
 
  

C(z)=K P(z) 

 Figure 1. Closed loop system with constant 
gain 

 
The characteristic polynomial of the closed loop 
system is obtained by the following equation. 
 
                  )()()( zKNzDz +=δ                   (7) 

 
Applying the bilinear transformation to , 
we have 

)(zP
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where  represents the new plant in the -
domain. Similarly, applying the bilinear 
transformation to 

)(wP w

)(zδ , we have  
)()()( wKNwDw +=δ . If we substitute 

ωjw =̂  into equation (8), we have 
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  and   are defined similarly. By noting 
that  
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where, 
 
                              (13) 22 ˆ)( ωω ooee NDNDX +=

                                    (14) eooe NDNDY −=̂)( 2ω
                                         (15) 2222 ˆ)( ωω oe DDZ +=
 
and where for notation purposes , , 

and   are used instead of , 
, , and , 

respectively. The imaginary part of  

,eD oD eN

oN )( 2ω−eD
)( 2ω−oD )( 2ω−eN )( 2ω−oN

)( ωjP  is 

given by { }
)(
)()(Im 2

2

ω
ωωω

Z
YjP =  . By denoting 

, and the positive real roots of Y(v) as 
 it is obvious that the Nyquist plot  

2ˆ ω=v
∗∗∗
γvvv ,...,, 21

of )( ωjP  crosses the real axis only if 0=ω , 

∞=ω , or ∗±= ivω  for γ,...,2,1=i . 

Therefore, denoting  and , 
the real axis crossing points are found as 

 for 
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Relabeling the pairs ( ) (for ∗
ii vx ,

2,...,2,1 += γi ) as ( ) (for ) 

such that 

∗
jii vx ,, qi ,...,2,1=

1+< ii xx  and   

(for all 
)(/)( ,,

∗∗= jijii vZvXx

ipj ,...,2,1= ), it is possible to state the 
following theorem. 
 
Theorem 1 
 
Consider a linear time-invariant system given by 
a proper rational transfer function 

)(/)()( wDwNwP =  given as in (8), and 
assume that  has no roots on the imaginary 

axis. Let , , and  be 
polynomials as defined equations (13)-(15), and 
the pairs ( ) (

)(wD
)( 2ωX )( 2ωY )( 2ωZ

∗
jii vx ,, qi ,...,2,1= ) be as defined 

above. Furthermore, denote the first coefficient 
of   as , and the last nonzero coefficient 

of   as . Then, for a given gain 
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unstable poles of the closed-loop system is given 
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 in which  is the first nonzero 

derivative  of  at the point .  Theorem 1 
can easily be extended to cover systems with 
imaginary axis poles [8]. 
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3. STABILITY ANALYSIS USING 
THE CHEBYSHEV POLYNOMIALS   
 
The first and second kinds of Chebyshev 
polynomials can be used to solve Schur 
stabilization problem of discrete-time control 
systems. Thus, Chebyshev representation of a 
discrete-time system is obtained by using the 
first and second kinds of Chebyshev 
polynomials. This problem results in a 
determination of the entire set of stabilizing 
gains as  a solution of sets of linear inequalities. 
For this aim, a procedure has been developed to 
determine the phase unwrapping of real 
polynomial or rational function along the unit 
circle in [4], but this procedure requires analysis 
of exponentially growing signs. In this section, 
Nyquist stability criterion is applied to 
Chebyshev representation of the system. The set 
of stabilizing gains are determined by 
computation of the intersections of the Nyquist 
plot with the real axis.  For the stability analysis 
with respect to the unit circle, it will be necessary 
to determine the unit circle image of )(zδ given 
by equation (3). It is possible to write 
 
    { }            (19) πθδ θ 20:)( ≤≤= jezz

 
As the coefficients ai are real,  and   

 are conjugate complex numbers, and so 
it suffices to determine the image of upper half 
of the unit circle 

)( θδ je
)( θδ je −
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θkcos  and θθ sin/sin k  can be written as 
polynomials in θcos  using  Chebyshev 
polynomials.  Write θcos−=t . Then as θ  runs 

from π→0 ,  t runs from –1 to +1. From 
,  we have 1cossin 22 =+ θθ

 
        22 1cos1sin t−=−= θθ                  (23) 
  
From (21) and (23), we obtain 
 
        21ˆ tjtez j −+−== θ                         (24) 
 
 
3.1. The First Kind Of Chebyshev  
Polynomials 
 
The first kind of  Chebyshev polynomials is 
defined for [ ]1,1 +−∈t  and they have the 
following  form [5, 10].  
 
    t=-cosθ      ck(t)=cos kθ      k=1,2,3,....       (25)        
 
Using  (25), we find the first six of the first kind 
of  Chebyshev polynomials as follows. 
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3.2. The Second Kind Of Chebyshev  
Polynomials  
 
The second kind of  Chebyshev polynomials has 
the following form for [ ]1,1 +−∈t  
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Using  (27), we find the first six of the second 
kind of Chebyshev polynomials as follows 
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Substituting equations (25) and (27) into 
equation (22), we have 
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)(tcδ  refers to Chebyshev representation of 
)(tδ . R(t) and T(t) are real polynomials with 

leading coefficients of opposite sign and equal 
magnitude. Respectively, R(t) and T(t) have  the 
following form. 
 

01111 )(...)()()( atcatcatcatR nnnn ++++= −−       (31) 
 

)()...()()( 1111 tsatsatsatT nnnn ++= −−          (32) 
 
3.3.Stability Of Closed-Loop System With 
Constant Gain 
 
In this section, we will apply the results given in 
Section 3.1 and Section 3.2 to the problem of 
constant gain stabilization of a discrete-time 
control system. The control system in Figure 1 is 
considered again. Determining the entire set of 
constant gains to stabilize )(zδ  given in (7) is 
our aim. Therefore, Chebyshev representations 
of and  are found. From equation 
(30), respectively Chebyshev representations of 

and  are given below. 
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Substituting equations (33) and (34) into 
equation (5), we have 
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When we multiply the numerator and 
denominator of the last equation by the complex 
conjugate of  the denominator,  equation (35) 
becomes 
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Respectively, the real and imaginary parts of P(t) 
are given below. 
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Accordin
 

g to Nyquist stability criterion, 
{ })(Im tP  is equalized to zero to find the 

intersections of the Nyquist plot with the real 
axis n, the values fand the ound are substituted 

toin  { })(Re tP . The result is 
 

{ } 0)(Im =t    and  P { } σ=)(Re tP )    (39)    ( ℜ∈σ
 
Thus, the characteristic equation  of the closed 
loop system  is 
 
                   0)(1

=+ tP
K

                                (40) 

 
Due to the fact that K  is equal to σ/1− , the 
Nyquist plot intersects the real axis at the –1/K 
point.  From eqs. (38) and (39), we can write 
 
                 0)()()()( =− tTtRtTtR DNND             (41)   

 
                                                         (42) 01 2 =− t
 
From equation (42), we compute that t is equal to 

1± . When 1±=t  and from equation (41), real 
values lying in [ ]1,1 +−∈t  are substituted into 
equation (37), we find the intersections of the 
Nyquist plot with the real axis and  gain intervals 
not changing the number of unstable poles. The 
gain interval being equal o to zero is interval 
stabilizing the closed loop system. Thus, the 
entire set of stabilizing  gains are determined.  
 
4. EXAMPLE 
 
Consider the example given in [9]. 
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The set of Hurwitz stabilizing K’s  are to be 
calculated by both using of bilinear 
transformation and using of Chebyshev 
polynomials 
 
4.1. Solution Of The Problem Using the 
Bilinear Transformation 
 
Substituting (1) into the numerator and 
denominator polynomials, we have 
 

901483008834116)( 2345 ++−−+= wwwwwwN  
126652308188046188)( 2345 +++++= wwwwwwD

 
Applying the even-odd decompositions to the 

 and  polynomials, it is possible to 
write  (

)(wN )(wD
ωjw =̂ ) 
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from , we have 2ˆ ω=v
                
                 9030034)( 2 ++=− vvvNe
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                                     12630846)( 2 +−=− vvvDe
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and from eqs. (13)-(15), it is possible to write 
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When we compute the roots of , we see 
that there are two unstable roots. Hence  u

)(wD
0 is 

equal to 2. The positive real roots of Y(v) are 
 and . Adding  

 and  , there exist four crossing 
frequencies for this problem. The crossing points 

corresponding to these frequencies are given by  
x

345853.01 =∗v 4212.132 =∗v
03 =∗v ∞=∗

4v

1=7.91936,  x2=2.39371, x3=0.714286, and 
x4=0.61702.  Relabeling the pairs ( ), and 
noting that 

∗
ii vx ,

289416)345853.0( =′Y ,  
939088)4212.13( −=′Y , , , 

the net crossing counts are calculated as shown 
in Table 1. 

400320 −=y 11 =y

 
Table 1.Calculation of  di  ,  ui  and the stabilizing 
intervals 
 
 i                           0=∗

iv ix id iu iK
   
1    ∞                0.61702       1    2   (0,∞)U(-∞,-1.6206) 
 
2    0       0.71428      -1    3    (-1.6206, -1.3999)    
     
3    13.4212      2.39371      -2    2   (-1.3999, -0.41776) 
 
4    0.34585      7.91936       2    0   (-0.41776,-0.1263) 
 
5     -                  ∞                -     2   (-0.1263, 0 ) 
  
 
Forming Ki, and noting that u0=0 , the number of 
unstable closed-loop system poles, , are 
calculated from (16). An examination of Table 1 
reveals that the closed-loop system is stable for 
gains , which agrees 
with the result of  Xu in [9]. 

iu

)1263.0,41776.0( −−∈K

 
4.2. Solution Of The Problem Using 
Chebyshev Polynomials 
 
Substituting the first five of the first kind of  
Chebyshev polynomials into D(z), we obtain    
RD (t) as follows. 
 

113537981980161600)( 2345 +−−++−= ttttttRD
 

 
Similarly, substituting the second kind of  
Chebyshev polynomials into  D(z) and N(z), we 
have 
 
        147901180161600)( 234 ++−−= tttttTD

        974400)( 2 −−= tttTN

 
From eqs. (37) and (38), respectively  
and 

{ })(Re tP
{ })(Im   are obtained as follows. tP
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tt
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{ }{ } {{ })(Re)(Im tPDentPDen }=  

 
The roots of  are obtained as follows. { )(Im tP }

}

 
 t1= -0.861315,   t2= 0.486046,   t3= +1,   t4= -1 

 
  t5= -1.5646,     t6= 1.5781 
 
the first four of this roots lie in [-1,+1] interval 
and are real.  Substituting  this roots lying in [-
1,+1] into , we obtain the intersections 
of the Nyquist plot with the real axis and  gain 
intervals not changing the number of unstable 
poles. Thus, it is possible to show that 

{ )(Re tP

 
 t1=-0.861315  ⇒  { } 39372.2)861315.0(Re =−P
 t2=0.486046    ⇒ { } 91944.7)486046.0(Re =P  

 t3= +1             ⇒ { } 7142857.0)1(Re =+P        

 t4= -1              ⇒ { } 6170213.0)1(Re =−P  

 
Gain intervals not changing the number of 
unstable poles of the closed-loop system are 
given below. 
  K < -1.606897            2 unstable poles 
 -1.606897 < K < -1.4             3 unstable poles 
 -1.4 < K < -0.4177598           2 unstable poles 
  -0.4177598 < K <-0.12627    0 unstable pole 
   -0.12627 < K                         2 unstable poles  
 
It is clear that when we use Chebyshev 
polynomials, the solution of stabilization 
problem by constant gain is reduced the set of 
linear equalities. This is particularly 
advantageous for high order systems. As seen, 
the closed loop system is stable for  

)12627.0,4177598.0( −−∈K , which agrees 
with both the result obtained in Section 4.1 and 
the result of  Xu in [9]. 
 
5. CONCLUSIONS 
 
The problem of calculation of all stabilizing 
gains for discrete-time systems has been solved 
both using the bilinear transformation and 
Chebyshev polynomials in this paper. The 
methods show that the number of unstable closed 
loop system poles for a given constant gain can  
be calculated by the help of Nyquist stability 
criterion. We consider that the use of the bilinear 
transform or Chebyshev representation  bring 
practical and theoretical advantages in the 
solution of the problem. Although it is not 
mandatory, the use of a symbolic algebra 
language can be helpful in applying  the bilinear 
transformation and finding the Chebyshev 
representation. 
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