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ABSTRACT

In this paper, two methods for calculating all stabilizing gains for discrete-time systems are given.
The first method focuses on converting the problem using a bilinear transformation and then applying
a previously developed theorem for continuous time systems. Unlike previous results, the method
introduced here does not use the Generalised Hermite-Biehler Theorem and therefore provides a
computational advantage. The second method demonstrates the use of Chebyshev Polynomials in the

solution of the problem.
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1. INTRODUCTION

Calculation of all stabilizing low-order
controllers for linear time invariant systems has
attracted a lot of attention in the recent years
[1-9]. Recently in [3], a generalized version of
the Hermite-Biehler theorem to find all
stabilizing P, Pl and PID compensators for
continuous time systems has been used. This
result has then been extended to discrete-time
systems to provide a general formulation of
stabilizing low-order controllers [2, 4, 5, 9]. An
inherent problem with the application of the
Generalised Hermite-Biehler theorem is that it
requires a search in an exponentially growing set.

Therefore a possible alternative to this approach,
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where a generalised Nyquist criterion is used,
was presented for continuous time systems in
[7,8]. This paper extends these results to discrete
time systems and provides an alternative to the
Generalised Hermite-Biehler theorem based
approaches [2, 4, 5, 9].

Two methods are introduced to find the entire set
of stabilizing gains. The first method requires the
bilinear transformation to solve the problem of
constant gain stabilization of a discrete time
control  system. Furthermore, this method
suggests to determine the number of the unstable
poles for gain intervals obtained by calculating
the location and direction of the crossing of the
Nyquist plot with the real axis. The second
method requires to calculate the Chebyshev
representation of a given system by the use of the
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first and second Kkinds of Chebyshev
polynomials. With all such calculations, we
obtain ordinary real polynomials. Since Nyquist
stability criterion is used, imaginary part of the
Chebyshev representation of a given system is
equalized to zero to find the intersections of the
Nyquist plot with the real axis and then, the
values found are substituted into real part of the
Chebyshev representation of the system. Thus,
the entire set of stabilizing gains are determined
by the use of Nyquist stability criterion.
Furthermore, when Chebyshev polynomials are
used, the solution of the problem of stabilization
is reduced to a set of linear equalities.

2. STABILITY ANALYSIS USING
THE BILINEAR
TRANSFORMATION

The bilinear transformation is a method that can
be used to determine the Schur stability of
discrete-time control systems. This method
requires transformation from the z plane to
another complex W plane. The problem of
calculating the Schur stability of discrete-time
control systems can be converted to an
equivalent Hurwitz stability problem via the
bilinear transformation [9]. Several different
bilinear transformations can be used for this
purpose. The bilinear transformation that is used
in this paper is given by

w+1 )

w=2*t @)

and maps the inside of the unit circle in the z
plane into the left half of the W plane. Let

5(z)=a,z"+a, 2" +..+az+a, (3

be a polynomial of degree n with real
coefficients. Then, the bilinear transformation of
&(z) is given by
o(w
wis)= 2t
(w-1)
where s(w)=b, w™ +b, ,w"* +...+bw+b,
is a polynomial of degree m.

(4)

Recently, in continuous time control systems a
new and simple computational method has been
developed for the construction of the set of low-
order compensators [6,7]. This compensators
ensure the closed-loop system poles lie in a given
stability region. In this paper, the method
developed in [6] is modified for discrete-time
control systems via the bilinear transformation
and the results are given in Theorem 1. Thus, a
simple method is suggested to compute all of the
stabilizing set of low-order compensators for a
given discrete time system using Theorem 1.
This method has several advantages over the
technique of [3]. The most important advantage
is that the suggested method is computationally
much faster than that of [3], particularly for high
order systems. In Theorem 1, a search in an
exponentially growing set does not require to

find K € K, intervals. These are advantages
over the technique of [3].

Now, consider the control system shown in
Figure 1 where the plant is represented by its
discrete-time transfer function P(z)

_N@

= D) (5)

P(2)

with N (z) and D(z) are polynomials with real
coefficients. Constant gain controller is given by

C(2)=K (6)

C(2)=K P(z)

\ 4
<

Figure 1. Closed loop system with constant
gain

The characteristic polynomial of the closed loop
system is obtained by the following equation.

6(2)=D(z) + KN(2) @)

Applying the bilinear transformation to P(z),

we have
_ N(w)
P(w) = D(w) (8)
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where P(w) represents the new plant in the W-

domain.  Similarly, applying the bilinear
transformation ~ to 6(z), we  have

S(w)=D(w)+ KN(w). If we substitute
W = jw into equation (8), we have

N(j(()) _ Nre + jNim

= 9
D(Ja)) Dre + jDim ( )

P(jo) =

N, and N, are defined similarly. By noting

re

that

D,.=D,(-0?) D, =D,(~0®)w  (10)
N.=N,(-0")  N,=N,(-0’)o (1)
It is possible to write
. N, + joN
P(j) =1
De +JaDO
_DN. DN’ | .{DQNO —DONE}
D? +D}w’ D? +D o’
2 2
_ X(a)z)+ . Y(a)z) (12)
Z(o®) Z(o®)
where,
X(®®)=D,N, +D,N o (13)

Y(»*)2D,N, -D,N, (14)
Z(w®)2D? + Do’ (15)

and where for notation purposes D,, D,, N,
and N, are used instead of D, (-w%),
D, (-®%), N, (-»®), and N,(~0%),
respectively. The imaginary part of P(jw) is
Y(@)
Z(%)

VZ@?®, and the positive real roots of Y(v) as

given by Im{P(jw)} = o . By denoting

V;,V3,.., V), itis obvious that the Nyquist plot
of P(jw) crosses the real axis only if @=0,
w=ow, or a)zi\/f for 1=12,...,7.

Therefore, denoting V;+1 =0 and v, , =0,

7+2
the real axis crossing points are found as
X, = X(v,)/Z(v) for i=12..,y+2.
Relabeling  the (X,v;)  (for
i=12..,7+2)as (X,V;;) (for i=12,..,q)
such that X; < X,; and x; = X (v{;)/Z(v};)
(for all j=1.2,.., p,), it is possible to state the
following theorem.

pairs

Theorem 1

Consider a linear time-invariant system given by
a proper rational transfer ~ function
P(w)=N(w)/D(w) given as in (8), and
assume that D(w) has no roots on the imaginary
axis. Let X(w?), Y(w?), and Z(w®) be
polynomials as defined equations (13)-(15), and
the pairs (x;,v;;) (i=12,..,q) be as defined
above. Furthermore, denote the first coefficient
of Y(v) as Y,, and the last nonzero coefficient
of Y(v) as Y,. Then, for a given gain
keK; =(-1/%,_,,~1/%;), the number of
unstable poles of the closed-loop system is given
by

u, =u, +

i-1
r, (16)
=1

t

where U, is the number of unstable poles of
P(w),

r=>4d,; (17)
and i
@A-DHsan(y O v;;) if 0<v); <o
d;; =1Sgn(y,) if vi;=0
—=San(y,) if vifj =
(18)

in  which Y(')(V:j) is the first nonzero
derivative of Y (v) at the point v;,. Theorem 1

can easily be extended to cover systems with
imaginary axis poles [8].
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3. STABILITY ANALYSIS USING
THE CHEBYSHEV POLYNOMIALS

The first and second kinds of Chebyshev
polynomials can be used to solve Schur
stabilization problem of discrete-time control
systems. Thus, Chebyshev representation of a
discrete-time system is obtained by using the
first and second kinds of Chebyshev
polynomials. This problem results in a
determination of the entire set of stabilizing
gains as a solution of sets of linear inequalities.
For this aim, a procedure has been developed to
determine the phase unwrapping of real
polynomial or rational function along the unit
circle in [4], but this procedure requires analysis
of exponentially growing signs. In this section,
Nyquist stability criterion is applied to
Chebyshev representation of the system. The set
of stabilizing gains are determined by
computation of the intersections of the Nyquist
plot with the real axis. For the stability analysis
with respect to the unit circle, it will be necessary
to determine the unit circle image of &(z) given

by equation (3). It is possible to write

6(2): z=e" 0<@<27} (19)

As the coefficients a are real, §(e!’) and
S(e™'?) are conjugate complex numbers, and so

it suffices to determine the image of upper half
of the unit circle

{6(2): z=e¢"¥ 0<0<z} (20)
Since
24|, = cosko + jsinko (21)
it is possible to write
5E¥)=(a, e +a, """ +..+ae'" +a)
=(a,cosné +...+a,cosb +a,)
R(0)
+ j(a,sinn@ +...+ a,;sin )
1(6)
5(’) = R(0) + j1(6) (22)

coskd and sink@/sin@ can be written as
polynomials in cos@ using Chebyshev
polynomials. Write t =—cos@. Then as & runs

from 0—> 7, t runs from -1 to +1. From
sin@+cos’0 =1, we have

sin@ =+1-cos? @ =1-t° (23)
From (21) and (23), we obtain
z72e =t 4 jy1-t? (24)

3.1. The First Kind Of Chebyshev
Polynomials

The first kind of Chebyshev polynomials is
defined for te[-1+1] and they have the
following form [5, 10].

t=-cos@d c(t)=coskd k=1,2,3,.... (25)

Using (25), we find the first six of the first kind
of Chebyshev polynomials as follows.

c,(t)=-t

c,(t)=2t* -1

C, (t) = -4t + 3t
c,(t)=8t*-8t> +1

c, (1) =-16t° +20t® - 5t
Cq(t) =32t° —48t* +18t° -1

(26)

3.2. The Second Kind Of Chebyshev
Polynomials

The second kind of Chebyshev polynomials has
the following form for t e [—1,+1]

sin[k cos™t] _sinké

- (27)
@1-t?)2 sin @

Sy (t) =

Using (27), we find the first six of the second
kind of Chebyshev polynomials as follows

s, (t)y=+1
s, (t) = -2t
s, (t) =4t -1 (28)

s, (t) = -8t° + 4t
sg(t)=16t" —12t° +1
s (1) = -32t° + 32t° - 6t

Nevra BAYHAN, Mehmet Turan SOYLEMEZ



23

Fast Calculation Of All Stabilizing Gains For Discrete-Time Systems

Substituting equations (25) and (27) into
equation (22), we have
5", =[a:Ca 0 +8, €, (1) +... + a0 (H) +3)]
R(t)
+V1-t'[as,O+a.s.,0-+as®]  (29)

T

5(ej”)‘ =R(t)+ j\/l—j T(t) = 0,(1)

(30)

t=—cos 6

o.(t) refers to Chebyshev representation of
o(t). R(t) and T(t) are real polynomials with
leading coefficients of opposite sign and equal
magnitude. Respectively, R(t) and T(t) have the
following form.

R(t) =a,c, ) +a, () +..+act)+a, (31)

T(t) = a'nsn (t)+an—1sn—1(t)"'+alsl (t) (32)

3.3.Stability Of Closed-Loop System With
Constant Gain

In this section, we will apply the results given in
Section 3.1 and Section 3.2 to the problem of
constant gain stabilization of a discrete-time
control system. The control system in Figure 1 is
considered again. Determining the entire set of
constant gains to stabilize &5(z) given in (7) is

our aim. Therefore, Chebyshev representations
of N(z)and D(z) are found. From equation
(30), respectively Chebyshev representations of
N (z)and D(z) are given below.

NE7),_ .., =Re®+jvI-t’T ()  (33)
D), s =Ro®+V1-t*To(t)  (34)
Substituting equations (33) and (34) into
equation (5), we have
i f 2
D(t) R, (t)+ jv1-t2T,(t)
When we multiply the numerator and

denominator of the last equation by the complex
conjugate of the denominator, equation (35)
becomes

[Ry R, (1) + A—t2)T, T, ()]
Rp’ (1) +(1-t*)T,%(t)
W[R OT, O =R, OT, O] 5
Ro’ () +(L—t3)T,  (t)

P(t) =

Respectively, the real and imaginary parts of P(t)
are given below.

Refp() = 1R R0 0 OLOLO]  (67)
0+ -1

m{P(t)} = vi—t R OTu (O = Ry OT, )]
Ro (1) + (L t))To (1)

(38)

According to Nyquist stability criterion,
Im{P(t)} is equalized to zero to find the
intersections of the Nyquist plot with the real
axis and then, the values found are substituted
into Re{P(t)}. The result is

Im{P(t)}=0 and Re{P(t)}=c (ceR) (39)

Thus, the characteristic equation of the closed
loop system is

%+ P(t)=0 (40)

Due to the fact that K is equal to —1/0o, the
Nyquist plot intersects the real axis at the —1/K
point. From egs. (38) and (39), we can write

Ro (T () =Ry (T () =0 (41)

1-t°=0 (42)
From equation (42), we compute that t is equal to
+1. When t = %1 and from equation (41), real
values lying in te[-1+1] are substituted into
equation (37), we find the intersections of the
Nyquist plot with the real axis and gain intervals
not changing the number of unstable poles. The
gain interval being equal o to zero is interval
stabilizing the closed loop system. Thus, the
entire set of stabilizing gains are determined.

4. EXAMPLE

Consider the example given in [9].
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_N(2) _ 100z +2z° +3z +11
D(z) 100z° +2z* +52° - 412> +522 + 70

P(2)

are to be
bilinear
Chebyshev

The set of Hurwitz stabilizing K’s
calculated by both using of
transformation and using of
polynomials

4.1. Solution Of The Problem Using the
Bilinear Transformation

Substituting (1) into the numerator and

denominator polynomials, we have

N (w) =116w° + 34w* — 88w° — 300wW? + 148w + 90
D(w) =188w° + 46w* +1880w° + 308w + 652w +126

Applying the even-odd decompositions to the
N(w) and D(w) polynomials, it is possible to

write (W= jw)

N, (-0”) = 340" + 300> + 90
No(—wz) =1160" +88w? +148
D,(-0?) = 460" — 3080 +126
D,(-o”) =188w" —1880w* + 652

from v = @w?, we have

N, (-v) = 34v? +300v + 90

N, (~v) = 116V + 88v +148
D, (-v) = 46v? —308v +126
D,(-Vv) = 188v* —1880v + 652

and from egs. (13)-(15), it is possible to write

X (v) = 21808v°® —199972v* — 58656 v* — 304840v°
+106576v +11340

Y (v) = —1056v* — 24160v* +519232v* — 60896v — 40032

Z(v) = 35344V° — 704764 v* + 3751216 v® — 2345064 v2
+347488v +15876

When we compute the roots of D(w), we see

that there are two unstable roots. Hence ug is
equal to 2. The positive real roots of Y(v) are

v, =0.345853 and v; =13.4212. Adding
v; =0 and v, =oo, there exist four crossing
frequencies for this problem. The crossing points

corresponding to these frequencies are given by
X1=7.91936,  x,=2.39371, x5;=0.714286, and

X4=0.61702. Relabeling the pairs (Xi,vi*), and
noting that Y '(0.345853) = 289416 ,
Y'(13.4212) = -939088, Y, =—40032, y, =1,

the net crossing counts are calculated as shown
in Table 1.

Table 1.Calculation of d; , u; and the stabilizing

intervals

[ Vi*:O X d|u| K

1| 0.61702 | 1| 2 |(0,00)U(-o0,-1.6206)

210 0.71428 | -1| 3| (-1.6206, -1.3999)
13.4212 | 2.39371 | -2| 2](-1.3999, -0.41776)

410.34585 | 7.91936 2| 0(-0.41776,-0.1263)

5] - © -| 2](-0.1263,0)

Forming K;, and noting that u,=0 , the number of
unstable closed-loop system poles, u,, are

calculated from (16). An examination of Table 1
reveals that the closed-loop system is stable for
gains K e(-0.41776, —0.1263), Which agrees

with the result of Xu in [9].

4.2. Solution Of The Problem Using
Chebyshev Polynomials

Substituting the first five of the first kind of
Chebyshev polynomials into D(z), we obtain
Rp (1) as follows.

R, (t) = —1600t° +16t* +1980t° — 98t* — 537t + 113

Similarly, substituting the second kind of
Chebyshev polynomials into D(z) and N(z), we
have

T, (t) = 1600t* —16t° —1180t* + 90t + 147
T, (t) = 400t* - 4t — 97

From eqs. (37) and (38), respectively Re{P(t)}
and Im{P(t)} are obtained as follows.
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Num{Re{P(t)}}

RetP O} = DeniretP)]!

Num{Re{P(t)}} = 8800t°> —1288t" + 3522t°
—13620t° — 9705t + 6621

Den{Re{P(t)}} = 112000t° — 42720t* —154584t>
+47104t% + 47451t 17189

~ Num{Im{P(t)}}

Im{PO} = Den{Im{P(t)}}

Num{Im{P(t)}} = 2(v1-t?) (4400t" —644t*
—10039t? 1792t +3071)

Den{Im{P(t)}} = Den{Re{P(t)}}
The roots of Im{P(t)} are obtained as follows.

1= '0861315, L= 0486046, t3= +1, 1= -1

t5: -15646, tez 1.5781

the first four of this roots lie in [-1,+1] interval
and are real. Substituting this roots lying in [-
1,+1] into Re{P(t)}, we obtain the intersections

of the Nyquist plot with the real axis and gain
intervals not changing the number of unstable
poles. Thus, it is possible to show that

t,=-0861315 = Re{P(~0.861315)} = 2.39372

20486046 = Re|P(0.486046 )}=7.91944

>Re{P(+1)}= 0.7142857
= Re{P(-1)}=0.6170213

t= +1
t,= -1

Gain intervals not changing the number of
unstable poles of the closed-loop system are
given below.

K <-1.606897 -> 2 unstable poles
-1.606897 <K< -1.4 -> 3 unstable poles
-1.4 <K <-0.4177598 -> 2 unstable poles
-0.4177598 < K <-0.12627 -> 0 unstable pole

-0.12627 < K - 2 unstable poles

It is clear that when we use Chebyshev
polynomials, the solution of stabilization
problem by constant gain is reduced the set of
linear  equalities.  This is  particularly
advantageous for high order systems. As seen,
the closed loop system is stable for

K e (-0.4177598,-0.12627), which agrees

with both the result obtained in Section 4.1 and
the result of Xu in [9].

5. CONCLUSIONS

The problem of calculation of all stabilizing
gains for discrete-time systems has been solved
both wusing the bilinear transformation and
Chebyshev polynomials in this paper. The
methods show that the number of unstable closed
loop system poles for a given constant gain can
be calculated by the help of Nyquist stability
criterion. We consider that the use of the bilinear
transform or Chebyshev representation bring
practical and theoretical advantages in the
solution of the problem. Although it is not
mandatory, the use of a symbolic algebra
language can be helpful in applying the bilinear
transformation and finding the Chebyshev
representation.
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